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Impact of nutrition on inflammation,
tauopathy, and behavioral outcomes from
chronic traumatic encephalopathy
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Abstract

Background: Repetitive mild traumatic brain injuries (rmTBI) are associated with cognitive deficits, inflammation, and
stress-related events. We tested the effect of nutrient intake on the impact of rmTBI in an animal model of chronic
traumatic encephalopathy (CTE) to study the pathophysiological mechanisms underlying this model. We used a
between group design rmTBI closed head injuries in mice, compared to a control and nutrient-treated groups.

Methods: Our model allows for controlled, repetitive closed head impacts to mice. Briefly, 24-week-old mice were
divided into five groups: control, rmTBI, and rmTBI with nutrients (2% of NF-216, NF-316 and NF-416). rmTBI mice
received four concussive impacts over 7 days. Mice were treated with NutriFusion diets for 2 months prior to the rmTBI
and until euthanasia (6 months). Mice were then subsequently euthanized for macro- and micro-histopathologic
analysis for various times up to 6 months after the last TBI received. Animals were examined behaviorally, and brain
sections were immunostained for glial fibrillary acidic protein (GFAP) for astrocytes, iba-1 for activated microglia, and
AT8 for phosphorylated tau protein.

Results: Animals on nutrient diets showed attenuated behavioral changes. The brains from all mice lacked macroscopic
tissue damage at all time points. The rmTBI resulted in a marked neuroinflammatory response, with persistent and
widespread astrogliosis and microglial activation, as well as significantly elevated phospho-tau immunoreactivity to
6 months. Mice treated with diets had significantly reduced inflammation and phospho-tau staining.

Conclusions: The neuropathological findings in the rmTBI mice showed histopathological hallmarks of CTE, including
increased astrogliosis, microglial activation, and hyperphosphorylated tau protein accumulation, while mice treated
with diets had attenuated disease process. These studies demonstrate that consumption of nutrient-rich diets reduced
disease progression.

Keywords: Animal model, Chronic traumatic encephalopathy, Concussion, Pathophysiology, Repetitive, Diet,
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Background
Mild traumatic brain injury (mTBI) is a result of concus-
sive head traumas that are considered a growing issue,
with millions of sports-, military-, and recreation-related
concussions occurring each year [1, 2]. In the USA alone,
over four million concussions occur each year, which is a

considerable problem [3, 4]. Evidence from various studies
on the physical properties, neuroimaging, neuropathology,
and basic science experiments has determined that these
concussive injuries and related subconcussive impacts
have led to the development of both acute and chronic
post-traumatic sequelae [5, 6]. Recently, the discovery of
chronic traumatic encephalopathy (CTE) following “re-
petitive head injuries” has been seen in the majority of
sports programs including football, soccer, hockey, and
boxing, and is a serious problem [7–10].
Much of the information we have about CTE has been de-

rived from data collected from autopsies and retrospective
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and population studies [11]. Because of the nature of the
disorder, the incidence and prevalence are difficult to deter-
mine [12]. The risk factors associated with the development
and progression of CTE are not well known, yet we under-
stand that repetitive blunt force trauma to the head and
body, blast impacts, and acceleration-deceleration influences
can trigger the processes [13]. CTE has a myriad of clinical
presentations that include impairments in cognition, behav-
ior, and mood, and in some cases, chronic headache and
motor and cerebellar dysfunction [14]. Behavioral changes
such as irritability, judgment issues, increased risk-taking,
and depression are characteristic and prominent early in the
disease course. Unfortunately, the only way to diagnose the
disease is through histological and immunohistochemical
analyses that show the presence of hyperphosphorylated tau
as multifocal or diffuse cortical and subcortical regions
within the brain [15, 16]. In addition, the presence of inflam-
mation during CTE is accompanied by the activation of as-
trocytes and microglial cells [17].
The mechanisms associated with the pathophysiological

changes seen in CTE are still not well documented. Because
of this, researchers have attempted to generate paradigms
that best define the clinical evidence [18–20]. Various
models of CTE have been developed including closed head
repetitive mild traumatic brain injury (rmTBI) to mimic the
pathological outcomes [21]. CTE may be a compilation of
co-morbidities, normal or accelerated aging, or other fac-
tors that contribute to the symptomology [22]. Based on
current data, following a TBI (or multiple TBIs), neurode-
generative conditions set in years afterwards, which is why
accumulation of information takes a significant time to
understand the potential mechanisms involved [23]. Over
the years, experimental models that are representative of
CTE and the neurological sequelae such as post-concussion
syndrome (PCS), post-traumatic stress disorder (PTSD),
and mild cognitive impairment (MCI) may be well repre-
sented by repetitive brain injury [24]. The behavioral pat-
terns observed in CTE patients include cognitive deficits,
increased risk-taking, depression-like behavior, and sleep
disturbances [25, 26]. Therefore, rmTBI models result in
the histopathological hallmarks of CTE, including
increased astrogliosis, microglial activation, and phosphory-
lated tau immunoreactivity.
In the current study, our goal was to determine the in-

fluence of diets rich in vegetables and fruits on the out-
comes associated with rmTBI or CTE. Mice were fed
diets enriched in fruits and vegetables for 2 months and
then subjected to rmTBI. The results demonstrated that
diets high in phytonutrients were able to attenuate the
“CTE-like” pathology provoked by the rmTBI. Behav-
ioral changes, inflammation, and tau pathology were ex-
amined in mice chronically exposed to the diets. The
results suggest that supplementation of mice with the
enhanced diets limited the extent of the CTE, reduced

inflammation, and altered pathways typical of CTE.
These data suggest that these diets may be beneficial in
altering the presentation of CTE seen in models of
rmTBI and improve outcome.

Methods
Animal care and maintenance
All animals used in this study were treated in accord-
ance with the National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals, and all pro-
cedures were performed under the approval of the Insti-
tutional Animal Care and Use Committee at the
University of South Florida. Adult male, human Tau
mice (hTau, Taconic, Hudson, NY) were purchased and
housed with five mice per cage. Animals were 24 weeks
of age at the start of the experiment and were main-
tained on a 12-h light/dark cycle (lights on at 7:00 a.m.).
All animals were randomized to the various groups.
Prior to TBI, animals were fed for 2 months a normal
diet or a normal diet with ∼ 2% supplementation of the
different materials NF-216 (GrandFusion – Fruit and
Veggie #1 Blend), NF-316 (GrandFusion – Fruit #2
Blend), and NF-416 (GrandFusion – Vegetable #3 Blend)
[27]. See Table 1 for composition of supplementation. In
addition to the vitamins, through the isolation/extraction
process, the phytonutrients in the fruits and vegetables
are maintained and non-oxidized. Animals were gavaged
with the supplements on a daily basis, once per day.
GrandFusion supplements were prepared by NutriFu-
sion, LLC (www.nutrifusion.com). Average food intake
was 3.81 ± 0.08 g/day/mouse, and the average consump-
tion of diets was 0.09 ± 0.006 g/day/mouse.

TBI injury
The rmTBI mouse model was used to deliver a controlled,
consistent injury to all animals [28]. Adult mice were
anesthetized with ketamine (60–90 mg/kg) and xylazine
(6–9 mg/kg) or isoflurane (5% induction, 1–2% mainten-
ance). The degree of anesthesia was assessed by testing of
interdigital pinch withdrawal reflex. Lacrilube ophthalmic
ointment was applied to both eyes to prevent drying. For
the repetitive closed head injury, following anesthesia, the
mouse was placed in the pneumatic impactor device (Pre-
cision Systems and Instrumentation, Fairfax Station, VA)
and was subjected to a closed head injury of 4 m/s (speed),
3.8 mm (depth), and 200 ms (dwell time). The mouse was
returned to its home cage and monitored until it is awake.
The procedure was repeated up to three times (four total
injuries), spaced 2–3 days apart (i.e., M, W, F, M). Animals
were returned to their home cages after recovery from
anesthesia and monitored daily for any signs of discomfort
or other abnormal behavior. See diagram for outline of be-
havioral testing.
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Neurological Severity Score
To characterize the effects of the nutritional diet on repeti-
tive mTBI/CTE in this model, a Neurological Severity Score
(NSS) was used to evaluate the neurological impairment,
compared to uninjured controls, as previously described
[29]. The NSS is a composite clinical score consisting of 10
individual clinical parameters, including tasks on motor
function, alertness, and general physiological behavior
(Table 2). Mice (10 per group) were tested at 1, 4, 24, 48,
and 72 h post-injury, as well as at 7-day and 1-month time
points. Severity of injury was defined by the initial NSS
measured at 1 h post-TBI and is a reliable predictor of late
outcome [29].

Assessment of motor function
Vestibulomotor function was determined by a wire grip test
(WGT) 1 h after TBI and on post-injury days 1–7 [30].
Mice (10 per group) were picked up by the tail and placed
on a metal wire suspended between two upright bars
30 cm above a padded floor. The mice were assessed for
the time and manner they could hold onto the wire and
were recorded and scored on a scale of 0–5. Mice were
tested three consecutive times at each of the indicated time
points. The score reported is the average of these individual
trials by individuals blinded to the treatments. A composite
group score was then calculated as the mean of these scores
at each time point and then used for analysis.

Assessment of spatial learning and memory
Control and repetitive mTBI groups were tested in the
Morris water maze (MWM) acutely (acquisition trials on
post-injury days [PIDs] 1–5 and probe trial on PID 6),
subacutely (acquisition trials on PIDs 9–13 and probe trial
on PID 14), and chronically at 1 (acquisition trials on PIDs
30–34 and probe trial on PID 35) and 6 months (acquisi-
tion trials on PIDs 180–184 and probe trial on PID 185)
after the final head impact. Mice had to locate an invisible
platform submerged 5 mm below the water level in a cir-
cular pool (dimensions, 90 × 60 cm; temperature, 24 ± 3 °
C), based on the spatial location of six strategic visual cues
fixed at distinct positions around the pool. The water was
made opaque by adding nontoxic, water-soluble tempera

paint. Data were recorded with the help of video cameras
(SMART video tracking system, San Diego Instruments,
San Diego, CA).
For training days (acquisition phase), all mice (15 per

group, per time point) were given a maximum test dur-
ation of 60 s to find the hidden platform. The latency to
reach the platform was recorded by the video tracking sys-
tem. Mice that failed to locate the platform within the
time limit were guided to it and allowed to rest and orient
themselves for 15 s. The acquisition phase testing was
conducted over five consecutive days, with four trials on
each day, with the goal of locating the submerged hidden
platform from different starting points and orientations
(north, south, east, and west). On day 6 of MWM testing,
all animals were tested for visual acuity and swimming
speed using a visible platform paradigm. None of the ani-
mals were excluded from further testing based on the vis-
ual acuity and motor evaluation tests. On day 6, all mice
also underwent a probe trial (retention phase), where the
platform was removed from the pool. Mice were given
30 s to swim, and time spent in the target quadrant (quad-
rant where the platform had been) versus the other quad-
rants was assessed as described previously.

Assessment of anxiety-related and risk-taking behaviors
Anxiety-related and risk-taking behavior of the mice was
evaluated using the elevated plus maze (EPM) test. Mice
(15 per group, per time point) were evaluated at 2 weeks,
1 month, and 6 months from the last head impact. The
EPM consisted of two opposing open arms (35 × 5 cm)
and two closed arms (35 × 5 × 15 cm) that extended from
a central platform (5 × 5 cm) elevated 60 cm above the
floor. A small raised lip (0.5 cm) around the edges of the
open arms prevents animals from slipping off. Mice were
placed individually on the central platform facing an
open arm, away from the examiner, and were allowed to
freely explore the maze for 5 min under even overhead
fluorescent lighting. The behavior of each mouse was
monitored using a SMART video tracking system (San
Diego Instruments, San Diego, CA). Time spent in the
open and closed arms was determined, and each mouse
was only tested once in the maze.
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Assessment of depression-like behavior
To determine the long-term effects of mTBI on depression-
like behavior, mice (15 per group) were tested in the Porsolt
forced swim test (PFST) and the tail suspension test (TST)
at 1 month post-injury [31, 32].

Porsolt forced swim test
Mice were placed in an open glass cylinder (diameter
12 cm, height 24 cm, and water level 16 cm) containing
water at 23–25 °C. The time for the test was 6 min, with
the first 2 min for habituation and the last 4 min used

Table 1 Composition of GrandFusion supplements
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for analysis. Two different experimenters were blinded to
the groups of mice evaluated for behavior, manually. A
mouse was judged to be immobile when it remained float-
ing in the water, making only those movements necessary
to keep its head above the water surface.

Tail suspension test
Briefly, mice were suspended by the tail to a bar elevated
40 cm above the surface of a table. The duration of the test
was 6 min. Two different experimenters blinded to the
groups of mice manually evaluated the behavior. The im-
mobility time of the tail-suspended mice was measured and
defined as the absence of limb movement. These tests were
done at 2 and 6 months.

Assessment of sleep behavior
Electroencephalography (EEG) and electromyography
(EMG) data were acquired in mice at 1 month post-injury
(15 per group) using implantable telemetry devices (Data
Sciences International, ST. Paul, MN) and the Dataquest
A.R.T. system (Data Sciences International). The transmit-
ter was implanted intraperitoneally through a mid-line ab-
dominal incision. EEG lead implantation was performed by
insertion of leads in small burr holes overlying the cortex.
EMG leads EMG electrodes were implanted into the neck
muscle. The EEG electrodes were secured with dental ce-
ment, and the EMG electrodes were secured with sutures.
Mice were allowed to recover and were individually housed
in a sound-attenuated and ventilated chamber on a stand-
ard light/dark cycle, with food and water available ad libi-
tum. After a 7-day acclimation and recovery period, the
telemetry EEG/EMG devices were activated and continu-
ous recordings were obtained for a total of 24 h (6 PM to 6
PM) [33]. EEG and EMG data were analyzed in 1-min
epochs using Neuroscore software devices (Data Sciences
International). Using both manual scoring and automated

software, EEG/EMG recordings were broken down into ac-
tive wake, non-rapid eye movement (NREM) sleep, and
REM sleep. Raw EMG signals were full-wave rectified, inte-
grated, and quantified in arbitrary units. Active wake was
classified as low-amplitude EEG with high EMG activity.
NREM sleep was classified as high-amplitude EEG domi-
nated by delta band components (0–4 Hz). REM sleep was
classified as low-amplitude EEG with low EMG activity. In
addition to total sleep/wake time, power band (i.e., delta,
theta, alpha, and beta) and power spectral (frequency) ana-
lysis of sleep/wake states was further assessed to study the
quality of NREM and REM sleep in each animal.

Immunohistochemistry
At the indicated times following rmTBI, the mice under-
went transcardial perfusion with ice-cold 0.01 M
phosphate-buffered saline (PBS) (pH 7.4), followed by fix-
ation with 4% para-formaldehyde (PFA) in PBS. Brain tis-
sue from all animals was dissected and post-fixed in 4%
PFA for 24 h. Following fixation, the tissue underwent de-
hydration first in 30% sucrose for 24 h each. Tissue was
placed in optimal cutting temperature (OCT) compound
(Tissue-Tek) and was sliced on a cryostat (Microm HE
505E) into 30 μm coronal sections. Tissue sections were
then floated in PBS. Six mice were included in each of the
above groups. For each mouse, five representative coronal
sections were selected for staining by collecting a single
section every 1000 μm along a rostral–caudal axis begin-
ning 1.1 mm anterior to and ending 2.5 mm posterior to
bregma. The primary antibodies used included rabbit
anti-mouse glial fibrillary acidic protein (GFAP) polyclonal
IgG (Millipore, Billerica, MA, USA), mouse anti-human
phospho-PHF-tau (pTau) monoclonal IgG (AT8, specific
for pSer202/pThr205 tau phosphorylation sites) (Thermo
Scientific, Rochester, Illinois, USA), and rabbit anti-mouse
iba-1 (DAKO, Santa Clara, CA, USA) diluted to 1:1000.

Table 2 Neurological Severity Score

Task Description Score (success/failure)

Exit circle Ability and initiative to exit a circle of 30 cm in diameter within 3 min

Monoparesis/hemiparesis Assess paresis of upper and/or lower limb 0/1

Straight walk/gait Initiative and motor ability to walk straight

Startle reflex Innate reflex assessment; mouse should bounce in response to a loud hand clap 0/1

Seeking behavior Physiological behavior as a sign of “interest” in the environment

Beam balancing Ability to balance on a beam of 7 mm in width for at least 10 s 0/1

Round stick balancing Ability to balance on a round stick of 5 mm in diameter for at least 10 s

Beam walk: 3 cm Ability to cross a 30-cm-long beam: 3-cm-wide beam 0/1

Beam walk: 2 cm Ability to cross a 30-cm-long beam (increased difficulty): 2-cm-wide beam

Beam walk: 1 cm Ability to cross a 30-cm-long beam (increased difficulty): 1-cm-wide beam 0/1

Total score Of 10

Adapted from [29]. One point is awarded for the lack of a tested reflex or for the inability to perform the tasks outlined in the table, and no point for succeeding.
A maximal Neurological Severity Score (NSS) of 10 points thus indicates severe neurological dysfunction, with failure of all tasks, and a normal healthy mouse
would get a score of a zero on the tasks above. Roughly, NSS score: 1–4, mild TBI; 5–7, moderate TBI; 8–10, severe TBI
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The secondary antibodies used were all diluted to 1:20,000
and included donkey anti-rabbit (Jackson ImmunoRe-
search, West Grove, PA, USA). All sections were blocked in
0.01 M PBS (pH 7.4) and 7% normal donkey serum [NDS]
(VectorLabs, Burlingame, CA). Primary and secondary
agents were diluted in 0.1% Triton X-100/PBS and 1% nor-
mal donkey serum.

Image quantification
Immunohistochemical images were collected on a Nikon
microscope, and image analyses were performed blinded
to the experimental group. ImageJ software (http://
rsbweb.nih.gov/ij/) was used to apply a standard threshold
to the images.

Western blot analyses
Relative levels of tau, p-tau, GFAP, iba-1, cathepsin B, and
actin in the supernatant fraction from the brain extract
were determined by Western blot (polyclonal antibodies:
Cathepsin B, sc-13985; β-actin, sc-130657; Santa Cruz
Biotechnology, Santa Cruz, CA; tau, ThermoFisher, Roch-
ester, IL; p-tau, ThermoFisher, Rochester, IL; iba-1, DAKO,
Santa Clara, CA), as described previously [34]. Relative in-
tensities of Western blot bands were assessed by densi-
tometry in triplicate for each sample. Densitometric
analysis was done using IQTL software (GE Life Sciences,
Piscataway, NJ). For protein studies, the entire lesional
area was harvested for Western blot analysis. In control or
sham animals, a similar region was harvested.

ELISA analysis
For quantitative analysis of cytokines, an ELISA was used
to measure the levels of tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), or transforming growth factor-β
(TGF-β) in the brain tissue [35]. Cytokines were extracted
from mouse brains as follows: frozen hemibrains were
placed in tissue homogenization buffer containing prote-
ase inhibitor cocktail (Sigma, St Louis, MO, USA) 1:1000
dilution immediately before use and homogenized using
polytron. Tissue sample suspensions were distributed in
aliquots and snap frozen in liquid nitrogen for later mea-
surements. Invitrogen ELISA kits were then used, accord-
ing to manufacturer directions (Carlsbad, CA, USA).

Statistical analysis
All statistical analyses were performed using SAS statis-
tical software version 9.3. All tests were two-sided and
conducted at 5% significance level. Continuous variables
were summarized using sample means. All studies used 10
mice per group. All data are presented as means ± stand-
ard error of the mean (SEM). Ipsilateral and contralateral
sides were compared to the corresponding sides between
groups [i.e., repetitive ipsilateral vs. single ipsilateral vs.
control ipsilateral (left side)]. Normalized GFAP, pTau,

and iba-1 immunoreactive areas were evaluated with thre-
sholded pixel areas analyzed using one-way analysis of
variance (ANOVA) including injury group (control, single
hit, and repeated hits) as the factor. Post hoc analyses
based on Tukey’s method to adjust for multiple compari-
sons were conducted to compare pairs of injury groups.

Results
Quantification of and immunolocalization of tau
In order to determine the impact of the nutritional diets
on the development and progression of CTE, 24-week-old
hTau mice were fed diets supplemented with GrandFusion
diets (2%) for 2 months. The diets were as follows: group
3 received a 2% GrandFusion (GF1, NF-216—Fruit and
Veggie #1 Blend), with the ND; group 4 received a 2%
GrandFusion diet (GF2, NF-316—Fruit #2 Blend); and
group 5 received a 2% GrandFusion diet (GF3, NF-416—
Vegetable #3 Blend) (Table 1). The diets contain similar
level of vitamins, phytochemicals, and phytonutrients that
might impact the outcomes. These are same diets that
were used in previous studies [27]. The animals were ex-
amined for food intake and body weight every week for
the 24 weeks of feeding. The mice on all diets maintained
a constant intake of food over the course of the study
(data not shown). In addition, consistent with the food in-
take, all of the mice showed a similar gain in weight over
the 8 months.
The mice were subjected to closed head rmTBI as de-

scribed previously [28]. Mice were examined for phosphor-
tau (p-tau) presence in the brain following rmTBI and the
impact of the diets on altering p-tau expression. Figure 1
shows that control mice at 14 months of age show little
p-tau pathology (Fig. 1a). Mice subjected to rmTBI showed
a dramatic increase in p-tau pathology compared to the
control animals (Fig. 1b). With the presence of the diets,
there was a significant reduction in the p-tau pathology
suggesting the diets had an effect on rmTBI-induced out-
comes (Fig. 1c–e). Western blot analysis of the mice from
the above studies shows the changes in p-tau versus tau in
the brains of the mice with and without rmTBI and with
and without GF diets (Fig. 1f, g). As seen in the figure, with
rmTBI, the levels of p-tau are increased 5–10 fold com-
pared to the control animals, while the mice on the GF di-
ets showed an attenuation of p-tau expression.

RmTBI results in a transient Neurological Severity Score
elevation and short-lived motor deficits that are
ameliorated with diets
In NSS testing, severity of impact for rmTBI groups fell in
the mild spectrum. We found that averaged NSS scores
were statistically different between the injury and treated
groups and that the effect of the diets on outcomes was
significant. Figure 2a shows that rmTBI at 6 months
post-injury, the NSS was significantly higher in the rmTBI
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group compared to the control group. In addition, the ani-
mals on the diets had an attenuation of the NSS following
rmTBI.
Vestibulomotor function was assessed by WGT, and

there were significant effects of injury group on perform-
ance. We found that averaged wire grip scores were statis-
tically different between rmTBI group and the control
group and that the effect of injury was significant at 1 h to
day 7 post-injury, even after adjustment for multiple com-
parisons (padj < 0.05; Kruskal-Wallis). Post hoc analyses
found significant difference at the 5% significance level, at
1 h to 7 days post-injury, with the rmTBI group statisti-
cally different from the control group. In addition, the GF
groups all showed a significant difference compared to
the rmTBI group. We also found that the performance
on the WGT improved over time, with wire grip scores
increasing over time in the repeat injury group (both
groups, p < 0.001; Friedman).

Impact of rmTBI and diets on cytokine levels
To determine the impact of the diets on neuroinflamma-
tion in the mouse brain after rmTBI, mouse brains were
examined for the expression of inflammatory markers.
We evaluated the levels of the cytokines tumor necrosis

factor-α (TNF-α), interleukin-1β (IL-1β), and transform-
ing growth factor-β (TGF-β) at 6 months after rmTBI
(Fig. 3). As seen in the figure, rmTBI that resulted in
“CTE-like” effects elevated cytokine levels that were still
increased at 6 months after injury. The GF diets signifi-
cantly reduced or attenuated TNF-α, IL-1β, and TGF-β
levels after injury. All the diets showed an effect redu-
cing the above cytokine levels by 67% (TNF-α), 85%
(IL-1β), and 80% (TGF-β).

Changes in cathepsin B levels following rmTBI and effect
of diets
Our previous studies have shown that TBI results in an in-
crease in cathepsin B protein and activity that can lead to
inflammatory mediators such as IL-1β. To determine the
impact of rmTBI on cathepsin B levels and diets associated
with the alterations in inflammation (Fig. 4), we measured
cathepsin B protein and activity at 4 months following in-
jury. rmTBI increased cathepsin B levels in the brain, and
the GF diets reduced or attenuated the increase (Fig. 4).
These results suggest that reduction in inflammation occur-
ring with treatments was partially the result of inhibition of
cathepsin B activity.
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Fig. 1 Effects of GF diets on tau pathology. Control hTau mice (a), hTau mice + rmTBI (b), hTau mice + rmTBI plus NF-216 (c, GF1), hTau mice +
rmTBI plus NF-316 (d, GF2), and hTau mice + rmTBI plus NF-416 (e, GF3). Mice were fed a normal diet or diets supplemented with 2% GF for
2 months prior to rmTBI and then for 4 months after rmTBI. Animals were euthanized and subjected to immunohistochemical analysis (a–f) or
Western blot analysis (g). f Graphical representation of p-tau immunohistochemistry in a–e. Each group represents mean ± SD (n = 10 per group).
*p < 0.001 compared to TBI group
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Impact of rmTBI and diets on glial activation following
rmTBI
To further analyze the impact of the diets on neuroinflam-
mation in the mouse brain after rmTBI, brains were ex-
amined for the expression of glial inflammatory markers.
We evaluated the levels of the astrocyte (GFAP) and
microglial (iba-1) at 6 months after rmTBI (Figs. 5 and 6).
As seen in the figures, rmTBI that resulted in “CTE-like”
effects elevated both iba-1 (Fig. 5) and GFAP (Fig. 6) levels
that were still increased at 6 months after injury. The GF

diets significantly reduced or attenuated iba-1 and GFAP
levels after injury. All the diets showed an effect reducing
the above glial markers by 67% (iba-1) and 82% (GFAP).

Repetitive mild traumatic brain injury causes persistent
deficits with spatial learning and memory
We next determined the hippocampal-dependent spatial
learning and long-term memory in the rmTBI and rmTBI
+ GF diets mice using the MWM (Fig. 7). Animals from
all groups showed daily improvements in their abilities to
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Fig. 2 Repetitive mild traumatic brain injury (rmTBI) results in elevated Neurological Severity Scores (NSS) and transient vestibulomotor deficits. a
rmTBI mice +/− were assessed with an NSS at 1, 4, 24, 48, and 72 h post-injury, as well as at 7-day and 1-month time points. Repetitive mTBI
mice exhibited significantly elevated scores, compared to control mice, and mice fed GF diets had reduced NSS score compared to rmTBI alone.
b Mice underwent wire grip testing 1 h after TBI and on post-injury days 1–7. rmTBI resulted in short-lived vestibulomotor dysfunction, compared
to controls, at 1 h to 7 days post-injury (Kruskal-Wallis). There were significant differences between rmTBI mice plus diets and rmTBI alone on
post-injury days 1–7. *p < 0.05 versus control mice. **p < 0.01 versus rmTBI mice. Values are mean ± SD
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A B

C

Fig. 3 Reduced inflammatory markers in the brain after rmTBI. Mice were grouped as control, rmTBI, or rmTBI subjected to various diets followed by
24 h of recovery. Quantitative analysis of TNF-α (a), IL-1β (b), and TGF-β (c) in the rmTBI brain was determined by ELISA. Brain homogenates were
subjected to ELISA. The results are expressed as mean ± SD (n = 10, *P < 0.001 compared to the sham group; < 0.001 compared to the rmTBI group)

B C

A

Fig. 4 The effect of GF diets on cathepsin protein levels and B activity. a Brain cathepsin B protein levels were determined 4 months following
rmTBI. Western blot analysis of the cathepsin B levels in the brains of control, rmTBI, and rmTBI + GF diets. b Quantitative analysis of cathepsin B
protein levels of the mice in a. c Brain cathepsin B activities were determined in the mice following 4 months after rmTBI in control, rmTBI, and
rmTBI + GF diets. The results are expressed as mean ± SD (n = 10, *p < 0.001 compared to the control group; †p < 0.01 versus rmTBI group)

Yu et al. Journal of Neuroinflammation  (2018) 15:277 Page 9 of 16



locate the hidden platform during the acquisition phase of
the MWM task; however, rmTBI mice demonstrated in-
creased latencies. Mice maintained on the DF diets
showed an attenuation of the changes and were similar to
the control animals. At the acute and subacute time
points, we found that the main effect of time, the main ef-
fect of injury group, and the interaction of time and injury
group were statistically significant (Fig. 7a, b). At 1 month
post-injury, the main effect of time and the main effect of
injury group were statistically significant, and the GF diets
were significantly different compared to the rmTBI group
(Fig. 7c). At 6 months post-injury, we found that time and
the interaction of time and injury group were significant
and that the main effect of GF injury group was significant
to the rmTBI group (Fig. 7d). Post hoc analyses found
that, at the acute time point, all pairs of injury groups
(control vs. repetitive mTBI) were statistically different at

the 5% significance level. At the subacute time point, the
analyses found statistically significant differences between
the control and the repetitive mTBI groups. At 1 month
post-injury, we found statistically significant differences
when comparing control to repetitive mTBI groups. At
6 months, we found statistically significant differences
when comparing control to repetitive mTBI groups. In
addition, the diet-treated animals showed significant dif-
ference at all time points compared to the rmTBI group.
For the probe trial testing, analyses comparing the con-

trol groups found significant differences in the distribution
pattern of the time that mice spent in the four quadrants
at any of the time points. When comparing the rmTBI
and the control injury group, we found significant differ-
ences in the distribution of the time that mice spent in the
four quadrants. When analyzing within each time point,
we found significant differences between the control and
the repeat group at the acute time point. The difference
was significant at both the subacute and 1-month time
points and at 6 months. In addition, the diet-treated ani-
mals showed significant difference at all time points com-
pared to the rmTBI group.
Subsequent analysis was performed to evaluate the pref-

erence for the target quadrant compared to the other
three quadrants. Findings from the probe test indicate that
mice from the uninjured control groups, at all time points,
spent a significantly higher percentage of time in the tar-
get quadrant (the location that contained the platform
during training), when compared to the other equivalent
zones (Fig. 7e–h). We found that mice in the control
group spent significantly more time in the target quadrant
than in any of the other three quadrants at the acute, sub-
acute, 1-month, and 6-month time points post-injury. In
contrast, rmTBI mice exhibited impaired spatial memory,
failing to show significant discrimination and preference
for the target quadrant, compared to the other quadrants
(Fig. 7e–h). We did not find that mice in the repetitive in-
jury group spent significantly more time in the target
quadrant than in any other quadrants at any of the
post-injury times. Meanwhile, mice fed GF diets showed a
significant increase in the time spent in the target quad-
rant and less time in any other quadrant (Fig. 7e–h).

rmTBI resulted in subacute anxiety leading to increased
risk-taking activity which is attenuated in GF diets
We used the EPM to determine the effect of rmTBI on
anxiety-related and risk-taking behaviors. One-way
ANOVA revealed that the amount of time spent in the
open arm differed significantly between the control and
injury group +/− diets at 14 days, 1 month, and
6 months. At 2 weeks post-injury, mTBI mice exhibited
increased anxiety-like behavior (Fig. 8a). Post hoc ana-
lyses found significant differences at the 5% significance
level at 14 days post-injury between the control and the

A

B

Fig. 5 Reduced inflammatory markers in the brain after rmTBI. Mice
were grouped as control, rmTBI, or rmTBI subjected to various diets
followed by 4 months of recovery. a Western blot analysis of iba-1
(activated microglia) was determined in the mice. b Quantitative
assessment of the Western blot in a. The results are expressed as
mean ± SD (n = 10, *p < 0.001 compared to the control group; †p <
0.001 compared to the rmTBI group)
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repetitive injury groups. rmTBI resulted in significantly
reduced time spent in the open arms of the maze, con-
sistent with increased anxiety. At day 14 post-injury,
the mice with GF diets showed an increased time in the
open arms consistent with decreased anxiety.
At the 1- and 6-month time points, significant differ-

ences were found in post hoc analyses between the con-
trols and repetitive injury group. Mice in the rmTBI
group spent an increased amount of time on the open
arms of the EPM, compared to control mice (Fig. 8b).
Such increased exploratory activity in the open arms and
reduced fearfulness are consistent with increased risk
taking, as noted in other studies [36]. This increased risk
taking persisted and progressed in the rmTBI mice out
to 6 months (Fig. 8c). However, the GF diet-fed mice
showed an attenuation of the presence in the open arm

supports decreased risk-taking and a maintenance of
normal activity.

Repetitive mild traumatic brain injury results in
depression-like behavior at 1 month
At 1 month post-injury, in the Porsolt FST, there was a sig-
nificant effect of injury severity on depression-like behavior.
Data from the swim test indicated significant differences
between groups. Post hoc analyses found significantly in-
creased immobility time in the rmTBI group, compared to
the control group (Fig. 8d). The TST revealed comparable
effects of mTBI on depression-like behavior as the FST.
Similar analyses carried out on data from the TST sug-
gested that immobility times differed significantly between
injury groups. rmTBI mice demonstrated significantly in-
creased immobility time, compared to the control group
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(Fig. 8e). The rmTBI mice on GF diets showed a return to
control levels in both the FST and TST suggesting protect-
ive effects on the rmTBI. No differences were seen in the
TST (data not shown).

Mild traumatic brain injury mice exhibit sleep
disturbances at 1 month
To evaluate the long-term effect of rmTBI +/− diets on
sleep-wake behavior, we used infrared videography and
electrophysiological monitoring [37]. We determined that
the effect of rmTBI on percent wake time was statistically
significant (Fig. 9a). The percentage of wake time in the
rmTBI group was significantly different from those re-
corded in the control group. With the significant increase
in wake time, we found a concomitant reduction in NREM
sleep in the rmTBI mice. We found that the effect of injury
group on percent NREM time was statistically significant.
The percentage of NREM time in the rmTBI group was
significantly different from those recorded in the control

group. We also found that the effect of the rmTBI on the
percent REM time was not statistically significant. However,
mice on the diets showed a decrease in wake time and an
increase in NREM time (statistically significant).
We sought to further examine the quality of NREM and

REM sleep in these mice. During NREM sleep, there was
an increase in cortical activity with a significant shift toward
higher frequencies (Fig. 9b). The prevalence was signifi-
cantly different across levels of frequency, and the rmTBI
group had a significant effect on prevalence through its
interaction with frequency. Analyses found that the effect
of rmTBI group on frequency prevalence was statistically
significant at all frequency levels compared to the control
group. In addition, we found significant difference between
the rmTBI and the rmTBI + GF diets, suggesting that there
was an impact by the diets on the NREM activity.
Repetitive mTBI also caused NREM sleep fragmentation

as well (Fig. 9c, d). We found that the rmTBI group had a
significant effect on both the number of episodes and
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average episode length. The number of episodes in the
rmTBI mice was significantly increased from those ob-
served in the control group (Fig. 9c). The average episode
length in the rmTBI mice was also significantly reduced,
compared to control mice (Fig. 9d). Meanwhile, mice on
the GF diets subjected to rmTBI had attenuated NREM
episodes and increased NREM episode length, comparable
to the control animals. Both were statistically significant
compared to the rmTBI animals. Effect of injury was sig-
nificant on REM EMG data. Analyses revealed that the
rmTBI mice demonstrated significantly increased EMG
activity, compared to controls, during REM sleep (Fig. 10).
However, mice on the GF diets showed an attenuation of
the REM EMG activity.

Discussion
In the present study, we examined the impact of diets rich
in vegetables and/or fruits on outcomes and recovery/re-
pair from rmTBI and the potential link to CTE. Our stud-
ies have shown that long-term intake of these diets for
2 months prior to rmTBI and 6 months subsequent to the
injury improved behavioral outcomes, reduced inflamma-
tion, and diminished tauopathy in a mouse model of CTE.
A number of recent studies have implicated rTBI in the

pathogenesis associated with CTE [38]. A chronic increase
in phosphorylated tau (p-tau) immunostaining has been
detected in the cortex, amygdalae, and the hippocampus
of individuals subjected to rTBI. A number of models have
been developed to study the mechanisms associated with

rTBI and CTE [39]. For the lack of a better model, a
rmTBI seems to be the most relevant approach to study
the pathophysiology related to CTE [40]. In these models,
p-tau staining was associated with increased GFAP-posi-
tive astrocytes and iba-1-positive microglial cells [41].
These markers are consistent with the appearance in re-
ported cases of CTE and individuals that experience
chronic mild repetitive head traumas [42]. The presence
of the inflammation and glial markers is most likely due to
several different parameters [43]. The microglial activation
and reactive astrocytosis are probably the result of the pri-
mary injury, the repetitive mTBI, and the consequences of
a progressive, chronic neuroinflammatory condition that
contributes to secondary and potentially tertiary responses
[44]. In addition, the presence of the p-tau and deposition
may contribute to the continued inflammation, i.e., in-
flammation begets inflammation [45]. The resulting injury
and inflammation contributes to glial activation and neur-
onal cell death that will give rise to more inflammation
and glial activation and more cell death, etc. They may be
one of the main issues related to CTE [46]. We continue
to see inflammation at the 6-month time point in our
model suggesting that chronic inflammation is critical to
the disease process [47].
Recent studies from our group have demonstrated that

application of nutrient rich diets may alter the outcomes as-
sociated with neurological disorders, aging, and TBI [27,
34]. As shown previously, mice provided a diet enriched in
fruits and vegetables help to attenuate the damage insti-
gated by middle cerebral artery occlusion (MCAo) and
maintain behavioral parameters [27]. These studies also fur-
ther validated that phyto-nutriceuticals were capable of lim-
iting inflammation and oxidative stress while stimulating
neuronal proliferation. We also showed that when aged rats
were provided the GF diets, there appeared to be an effect
upon the aging process by a reduction in inflammatory
markers, oxidative stress, and an increase in behavioral
movement [34]. A recent related study showed that when
mice were pre-exposed to these diets, there was a protec-
tion from the detrimental effects of TBI. When exposed to
controlled cortical impact, the mice showed cortical dam-
age, increased inflammation, and behavioral deficits. How-
ever, when exposed to GF diets, the mice had preserved
neuronal function, reduced inflammatory markers, and im-
proved or attenuated outcomes. As seen in the behavioral
studies, most of the behavioral outcomes were suppressed
but not completely obviated following TBI as seen in other
studies, while the grip-strength showed a complete recov-
ery. The grip strength test is not as selective as some of the
other test; therefore, it needs to be taken within the
complete context of the study. These data suggest that con-
sumption of diets enriched in fruits and vegetables either
naturally or through powdered form can provide protection
from the detrimental effects of injury.

Fig. 10 Repetitive mild traumatic brain injury (rmTBI) results in abnormal
REM EMG. Repetitive mTBI mice demonstrated significantly higher EMG
activity than controls during REM sleep (Tukey). All treatments with GF
diets returned the levels to normal. *p< 0.05, compared to control mice;
**p< 0.05, compared to rmTBI mice. Values are mean ± SD. REM, rapid
eye movement; EMG, electromyography; A.U., arbitrary units
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We describe the impact of long-term treatment of mice
to diets enriched with vegetable and/or fruit concentrates
in a model of repetitive mild TBI. Mice subjected to
rmTBI showed chronic inflammatory responses and in-
creased tau phosphorylation out to 6 months. The neu-
roinflammatory response with GFAP and iba-1 persisted
out to the 6-month time point. The application of the GF
diets to the mice, pre- and post-injury, reduced the neuro-
inflammation as apparent with both cytokine and glia acti-
vation. In addition, behavior and p-tau were both
attenuated in the animal model suggesting an impact on
the disease process. The studies further define the inter-
play between neuroinflammation and tau phosphorylation
or vice versa, in the pathology and behavioral manifesta-
tions. They demonstrated that diets containing anti-oxi-
dants, anti-inflammatory agents, and other compounds
may have some interventional aspect in a mouse model of
“CTE” and may provide a potential preventative/thera-
peutic approach. While in the context of a “real world”
setting, predicting when and where TBI(s) might occur is
not possible to preload with phytochemicals and phytonu-
trients. However, the studies suggest that using a diet like
used in the study will help to attenuate the damage caused
by TBIs.

Conclusion
Here, we show that treatment of mice with diets enriched
in fruits and vegetables (phytochemicals) can alter the
pathogenesis of CTE. Although treatment was started
prior to the CTE, the indications are that the presence of
these diets helped to attenuate the disease process, reduce
inflammation, and improve outcomes. These data suggest
that diets enriched in phytochemicals and other entities
will help to limit the extent of injury following TBIs and
reduce the potential progression to CTE in individuals.

Abbreviations
CTE: Chronic traumatic encephalopathy; GFAP: Glial fibrillary acidic protein;
IL-1β: Interleukin-1beta; TBI: Traumatic brain injury

Acknowledgements
The authors wish to acknowledge NutriFusion, LLC for providing the
GrandFusion® diets for the studies. We thank Mr. William Grand for
reviewing the manuscript prior to submission. GrandFusion® is a patent
pending product of NutriFusion, LLC.

Funding
This work was partially supported by grants from the National Institutes of
Health (R01 ES016774-01, R21AG043718, 1P20GM109091, 2P20GM103444,
and 5P30GM103342), VA Merit Award, a grant from the National Science
Foundation (IIP-0903795), an AHA SFRN grant, and VA Merit Review (M.S.K.).
Dr. Kindy is a Senior Research Career Scientist in the VA.

Availability of data and materials
Supporting data is available upon request.

Authors’ contributions
JY and MSK provided the study concept and the design. JY, HZ, ST, WM, and
MSK acquired the data. SP and MSK provided the analysis and interpretation
of the data. MSK drafted the manuscript. All authors critically reviewed the

manuscript for important intellectual content. JY and MSK supervised the
study. All authors read and approved the final manuscript.

Ethics approval and consent to participate
NA

Consent for publication
All authors consent to publication of the data.

Competing interests
Dr. Stephen Perry is a technical and science consultant for NutriFusion, LLC.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Department of Pharmaceutical Sciences, College of Pharmacy, University of
South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL 33612, USA.
2NutriFusion®, LLC, 10641 Airport Pulling Rd., Suite 31, Naples, FL 34109, USA.
3Departments of Molecular Medicine, Molecular Pharmacology, Physiology
and Pathology and Cell Biology, and Neurology, College of Medicine,
University of South Florida, Tampa, FL, USA. 4James A. Haley VA Medical
Center, Tampa, FL, USA. 5Shriners Hospital for Children, Tampa, FL, USA.

Received: 29 June 2018 Accepted: 10 September 2018

References
1. Petraglia AL, Maroon JC, Bailes JE. From the field of play to the field of

combat: a review of the pharmacological management of concussion.
Neurosurgery. 2012;70:1520–33.

2. Dashnaw ML, Petraglia AL, Bailes JE. An overview of the basic science of
concussion and subconcussion: where we are and where we are going.
Neurosurg Focus. 2012;33:1–9.

3. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of
traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:
375–8.

4. Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of
subconcussion in repetitive mild traumatic brain injury. J Neurosurg. 2013;
119:1235–45.

5. Turner RC, Lucke-Wold BP, Robson MJ, Omalu BI, Petraglia AL, Bailes JE.
Repetitive traumatic brain injury and development of chronic traumatic
encephalopathy: a potential role for biomarkers in diagnosis, prognosis, and
treatment? Front Neurol. 2012;3:186.

6. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE,
Santini VE, Lee HS, Kubilus CA, Stern RA. Chronic traumatic encephalopathy
in athletes: progressive tauopathy after repetitive head injury. J Neuropathol
Exp Neurol. 2009;68:709–35.

7. Omalu B, Bailes J, Hamilton RL, Kamboh MI, Hammers J, Case M,
Fitzsimmons R. Emerging histomorphologic phenotypes of chronic
traumatic encephalopathy in American athletes. Neurosurgery. 2001;69:
173–83.

8. Omalu BI, Bailes J, Hammers JL, Fitzsimmons RP. Chronic traumatic
encephalopathy, suicides and parasuicides in professional American
athletes: the role of the forensic pathologist. Am J Forensic Med Pathol.
2010;31:130–2.

9. Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH.
Chronic traumatic encephalopathy in a National Football League player.
Neurosurgery. 2005;57:128–34.

10. Stern RA, Daneshvar DH, Baugh CM, Seichepine DR, Montenigro PH, Riley
DO, Fritts NG, Stamm JM, Robbins CA, McHale L, Simkin I, Stein TD, Alvarez
VE, Goldstein LE, Budson AE, Kowall NW, Nowinski CJ, Cantu RC, McKee AC.
Clinical presentation of chronic traumatic encephalopathy. Neurology. 2003;
81:1122–9.

11. McKee AC, Alosco ML, Huber BR. Repetitive Head Impacts and Chronic
Traumatic Encephalopathy. Neurosurg Clin N Am. 2016;27:529–35.

12. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding HP Jr, Matthews A,
et al. Recurrent concussion and risk of depression in retired professional
football players. Med Sci Sports Exerc. 2007;39:903–9.

Yu et al. Journal of Neuroinflammation  (2018) 15:277 Page 15 of 16



13. Zaloshnja E, Miller T, Langlois JA, Selassie AW. Prevalence of long-term
disability from traumatic brain injury in the civilian population of the United
States, 2005. J Head Trauma Rehabil. 2008;23(6):394–400.

14. McCrory P, Meeuwisse WH, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et
al. Consensus statement on concussion in sport: the 4th International
Conference on Concussion in Sport held in Zurich, November 2012. Br J
Sports Med. 2013;47:250–8.

15. Huber BR, Alosco ML, Stein TD, McKee AC. Potential Long-Term
Consequences of Concussive and Subconcussive Injury. Phys Med Rehabil
Clin N Am. 2016;27:503–11.

16. Muller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F,
Swaab DF. Neither major depression nor glucocorticoid treatment
affects the cellular integrity of the human hippocampus. Eur J Neurosci.
2001;14:1603–12.

17. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation
and psychiatric illness. J Neuroinflammation. 2013;10:43.

18. Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild
neurotrauma on motor function in an animal model of focal brain injury.
Neuroscience. 2000;99:93–105.

19. Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, et al. Vitamin E
reduces amyloidosis and improves cognitive function in Tg2576 mice
following repetitive concussive brain injury. J Neurochem. 2004;90:758–64.

20. Creeley CE, Wozniak DF, Bayly PV, Olney JW, Lewis LM. Multiple episodes of
mild traumatic brain injury result in impaired cognitive performance in
mice. Acad Emerg Med. 2004;11:809–19.

21. Dewitt DS, Perez-Polo R, Hulsebosch CE, Dash PK, Robertson CS. Challenges
in the development of rodent models of mild traumatic brain injury. J
Neurotrauma. 2013;30:688–701.

22. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al.
Chronic traumatic encephalopathy in blast-exposed military veterans and a
blast neurotrauma mouse model. Sci Transl Med. 2012;4:134ra160.

23. Hawkins BE, Krishnamurthy S, Castillo-Carranza DL, Sengupta U, Prough DS,
Jackson GR, et al. Rapid accumulation of endogenous tau oligomers in a rat
model of traumatic brain injury: possible link between traumatic brain injury
and sporadic tauopathies. J Biol Chem. 2013;288:17042–50.

24. Kane MJ, Angoa-Perez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM. A
mouse model of human repetitive mild traumatic brain injury. J Neurosci
Methods. 2012;203:41–9.

25. Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, et al.
Chronic neuropathological and neurobehavioral changes in a repetitive
mTBI model. Ann Neurol. 2014;75:241–54.

26. Small GW, Kepe V, Siddarth P, Ercoli LM, Merrill DA, Donoghue N,
Bookheimer SY, Martinez J, Omalu B, Bailes J, Barrio JR. PET scanning of
brain tau in retired national football league players: preliminary findings. Am
J Geriatr Psychiatry. 2012;21:138–44.

27. Yu J, Zhu H, Gattoni-Celli S, Taheri S, Kindy MS. Dietary supplementation of
GrandFusion® mitigates cerebral ischemia-induced neuronal damage and
attenuates inflammation. Nutr Neurosci. 2015;6:154–63.

28. Ojo JO, Mouzon B, Greenberg MB, Bachmeier C, Mullan M, Crawford F.
Repetitive mild traumatic brain injury augments tau pathology and glial
activation in aged hTau mice. J Neuropathol Exp Neurol. 2013;72:137–51.

29. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E.
Mouse closed head injury model induced by a weight-drop device. Nat
Protoc. 2009;4:1328–37.

30. Adelson PD, Dixon CE, Robichaud P, Kochanek PM. Motor and cognitive
functional deficits following diffuse traumatic brain injury in the immature
rat. J Neurotrauma. 1997;14:99–108.

31. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a
review of antidepressant activity. Psychopharmacology. 2005;177:245–55.

32. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive
to antidepressant treatments. Nature. 1977;266:730–2.

33. Bilkei-Gorzo A, Racz I, Michel K, Zimmer A. Diminished anxiety- and
depression-related behaviors in mice with selective deletion of the Tac1
gene. J Neurosci. 2002;22:10046–52.

34. Yu J, Zhu H, Perry S, Taheri S, Kindy MS. Daily supplementation with
GrandFusion® improves memory and learning in aged rats. Aging (Albany
NY). 2017;9:1041–54.

35. Hook GR, Yu J, Sipes N, Pierschbacher M, Hook V, Kindy M. The cysteine
protease cathepsin B is an important drug target and cysteine protease
inhibitors are potential therapeutics for traumatic brain injury. J
Neurotrauma. 2014;31:515–29.

36. Tang X, Yang L, Sanford LD. Individual variation in sleep and motor activity
in rats. Behav Brain Res. 2007;180:62–8.

37. Tang X, Sanford LD. Telemetric recording of sleep and home cage activity
in mice. Sleep. 2002;25:691–9.

38. Johnson VE, Stewart W, Arena JD, Smith DH. Traumatic brain injury as a
trigger of neurodegeneration. Adv Neurobiol. 2017;15:383–400.

39. Mouzon BC, Bachmeier C, Ojo JO, Acker CM, Ferguson S, Paris D, Ait-
Ghezala G, Crynen G, Davies P, Mullan M, Stewart W, Crawford F. Lifelong
behavioral and neuropathological consequences of repetitive mild
traumatic brain injury. Ann Clin Transl Neurol. 2017;5(1):64–80.

40. Ferguson S, Mouzon B, Paris D, Aponte D, Abdullah L, Stewart W, Mullan M,
Crawford F. Acute or delayed treatment with anatabine improves spatial
memory and reduces pathological sequelae at late time-points after
repetitive mild traumatic brain injury. J Neurotrauma. 2017;34(8):1676–91.

41. Robinson S, Berglass JB, Denson JL, Berkner J, Anstine CV, Winer JL, Maxwell
JR, Qiu J, Yang Y, Sillerud LO, Meehan WP 3rd, Mannix R, Jantzie LL.
Microstructural and microglial changes after repetitive mild traumatic brain
injury in mice. J Neurosci Res. 2017;95(4):1025–35.

42. Ojo JO, Mouzon BC, Crawford F. Repetitive head trauma, chronic traumatic
encephalopathy and tau: challenges in translating from mice to men. Exp
Neurol. 2016;275(Pt 3):389–404.

43. Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, Brody DL.
Repetitive closed-skull traumatic brain injury in mice causes persistent
multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol.
2011;70(7):551–67.

44. Yoshiyama Y, Uryu K, Higuchi M, Longhi L, Hoover R, Fujimoto S, McIntosh
T, Lee VM, Trojanowski JQ. Enhanced neurofibrillary tangle formation,
cerebral atrophy, and cognitive deficits induced by repetitive mild brain
injury in a transgenic tauopathy mouse model. J Neurotrauma. 2005;22(10):
1134–41.

45. Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological
inflammation: a mini review. Front Mol Neurosci. 2015;8:77.

46. Lim S, Chun Y, Lee JS, Lee SJ. Neuroinflammation in synucleinopathies. Brain
Pathol. 2016;26(3):404–9.

47. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS
neurodegenerative diseases. Immunology. 2018;154:204–19.

Yu et al. Journal of Neuroinflammation  (2018) 15:277 Page 16 of 16


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Animal care and maintenance
	TBI injury
	Neurological Severity Score
	Assessment of motor function
	Assessment of spatial learning and memory
	Assessment of anxiety-related and risk-taking behaviors
	Assessment of depression-like behavior
	Porsolt forced swim test
	Tail suspension test
	Assessment of sleep behavior
	Immunohistochemistry
	Image quantification
	Western blot analyses
	ELISA analysis
	Statistical analysis

	Results
	Quantification of and immunolocalization of tau
	RmTBI results in a transient Neurological Severity Score elevation and short-lived motor deficits that are ameliorated with diets
	Impact of rmTBI and diets on cytokine levels
	Changes in cathepsin B levels following rmTBI and effect of diets
	Impact of rmTBI and diets on glial activation following rmTBI
	Repetitive mild traumatic brain injury causes persistent deficits with spatial learning and memory
	rmTBI resulted in subacute anxiety leading to increased risk-taking activity which is attenuated in GF diets
	Repetitive mild traumatic brain injury results in depression-like behavior at 1 month
	Mild traumatic brain injury mice exhibit sleep disturbances at 1 month

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

