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Circulating EZH2-positive T cells are
decreased in multiple sclerosis patients
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Abstract

Background: Recent studies in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis
(MS), suggest an involvement of the histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2
subunit (EZH2) in important processes such as cell adhesion and migration.

Methods: Here, we aimed to expand these initial observations by investigating the role of EZH2 in MS. mRNA expression
levels for EZH2 were measured by real-time PCR in peripheral blood mononuclear cells (PBMC) from 121 MS
patients (62 untreated and 59 receiving treatment) and 24 healthy controls.

Results: EZH2 expression levels were decreased in PBMC from untreated patients compared to that from controls, and
treatment significantly upregulated EZH2 expression. Expression of miR-124 was increased in MS patients compared to
controls. Blood immunophenotyping revealed EZH2 expression mostly restricted to CD4+ and CD8+ T cells, and
circulating EZH2+ CD4+ and CD8+ T cells were decreased in untreated MS patients compared to controls. CD8+
T cells expressing EZH2 exhibited a predominant central memory phenotype, whereas EZH2+ CD4+ T cells were
of effector memory nature, and both T cell subsets produced TNF-a. EZH2+ T cells were enriched in the cerebrospinal
fluid compartment compared to blood and were found in chronic active lesions from MS patients. EZH2 inhibition and
microarray analysis in PBMC was associated with significant downregulation of key T cell adhesion molecules.

Conclusion: These findings suggest a role of EZH2 in the migration of T cells in MS patients. The observation of TNF-a
expression by CD4+ and CD8+ T cells expressing EZH2 warrants additional studies to explore more in depth
the pathogenic potential of EZH2+-positive cells in MS.
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Background

Enhancer of zeste 2 polycomb repressive complex 2 sub-
unit (EZH2) is a histone methyltransferase that serves as
the catalytic subunit of the polycomb repressive complex
2, a protein complex that regulates gene expression by
methylating nucleosomal histone H3 at lysine 27 (H3K27)
on the promoter of its target genes [1]. The identification
of a cytosolic methyltransferase EZH2-containing complex
suggested that, in addition to its role methylating his-
tones, EZH2 could also be involved in the regulation of
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extra-nuclear signaling pathways, in particular actin
polymerization-dependent processes [2]. Recent investi-
gation on its cytoplasmic role has revealed that EZH2
interacts with cytosolic proteins such as talin and the
guanine nucleotide—exchange factor vavl that link in-
tegrin molecules to the actin cytoskeleton, suggesting
the potential implication of EZH2 in cell adhesion and
migration processes [3]. Interestingly, mice lacking the
EZH2 gene exhibited attenuated experimental auto-
immune encephalomyelitis (EAE) disease progression
due to the inability of EZH2-deficient cells, particularly
neutrophils and dendritic cells, to reach the site of in-
flammation [3]. Taking into consideration the findings
of EZH2 in EAE mice and its implication in important
processes for the pathogenesis of multiple sclerosis
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such as cell adhesion and migration, we believe that
EZH2 may also be playing a role in multiple sclerosis
and contribute to the inflammatory component observed
in the central nervous system (CNS) of patients. Hence,
the purpose of the present study was to explore the role of
EZH2 in the disease by measuring the gene expression
levels of EZH2 and associated molecules in peripheral
blood cells from untreated and treated multiple sclerosis
patients and by characterizing the immune cell popula-
tions responsible for EZH2 expression.

Methods

Patients

Initial cohort

Messenger RNA (mRNA) expression levels of EZH2, talin
1 (TLN1), and VAV1 were determined in peripheral blood
mononuclear cells (PBMC) from a first cohort of 24 healthy
controls (HC) and 62 treatment-naive multiple scler-
osis patients. The case group included 25 patients with
relapsing-remitting multiple sclerosis (RRMS), 20 patients
with secondary progressive multiple sclerosis (SPMS), and
17 patients with primary progressive multiple sclerosis
(PPMS). The RRMS group included 20 patients in clinical
remission and 5 patients whose blood was drawn at the
time of an acute relapse.

Validation cohort

In order to replicate EZH2 findings, mRNA expression
levels for EZH2 were also measured in PBMC from an
independent validation cohort comprised of 12 HC and
13 treatment-naive multiple sclerosis patients. Considering
that EZH2 expression levels in the initial cohort were
similar between different clinical forms of the disease,
for the validation cohort, only patients with RRMS
were included.

Treated cohort

EZH2 and TLN1 mRNA expression levels were deter-
mined in an additional cohort of 59 RRMS patients
treated for at least 1 year with interferon-beta (1=
17), glatiramer acetate (n =15), fingolimod (n =16), or
natalizumab (n =11). Expression levels for these genes
were compared with those observed in a subgroup of
14 untreated RRMS patients included in the initial
cohort.

The study was approved by the local Ethics Committee
[EPA(AG)57/2013(3834)], and participants gave written
informed consent. Tables 1 and 2 summarize demo-
graphic and baseline clinical characteristics of mul-
tiple sclerosis patients from the initial, validation, and
treated cohorts and the HC included in the study.
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Sample collection and determination of mRNA expression
levels of EZH2, TLN1, and VAV1 by real-time PCR

PBMC from multiple sclerosis patients and HC were iso-
lated by Ficoll-Isopaque density gradient centrifugation
(Gibco BRL, Life Technologies LTD, UK) and stored in
liquid nitrogen until used. Total RNA was extracted from
PBMC using an RNeasy kit (Quiagen, Santa Clarita, USA)
and cDNA synthesized using the High-Capacity cDNA
Archive kit (Applied Biosystems, Foster City, CA, USA).
mRNA expression levels for EZH2, TLN1, and VAV1 were
determined with TagMan® probes specific for the gene (Ap-
plied Biosystems). The housekeeping gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as an
endogenous control (Applied Biosystems). Assays were run
on the ABI PRISM® 7900HT system (Applied Biosystems),
and data were analyzed with the 27T method [4].

Determination of microRNA expression levels by real-time
PCR

Expression levels for miR-124 and miR-155 were deter-
mined according to sample availability in PBMC from a
subgroup of 18 HC and 21 untreated multiple sclerosis
patients (15 RRMS and 6 SPMS patients) who were also
included in the initial cohort. Additional file 1: Table S1
summarizes demographic and main clinical characteristics
of individuals included for this part of the study. PBMC
were collected and processed in the same conditions as
described in the previous section. Expression levels
for miR-124 and miR-155 were measured with Taq
Man® probes specific for the microRNAs (Applied
Biosystems) using RNU 6b as endogenous control.
Analysis was performed as described above with the
27A8CT method [4].

EZH2 immunophenotyping

EZH2 protein expression was determined by flow cytome-
try according to sample availability in PBMC from 13 HC
[9 females (69.2%); mean age (standard deviation), 35.8 years
(10.9)] and 10 RRMS patients [5 females (50%); mean age,
32.1 years (13.5); mean disease duration, 4.5 (3.5)] at base-
line and after 1 year of natalizumab treatment. Only one
MS patient and one HC were also included in the initial
cohort whereas the remaining individuals corresponded to
new multiple sclerosis patients and HC. EZH2 expression
was also determined in cerebrospinal fluid (CSF) cells from
3 untreated RRMS patients [2 females (66.7%); mean age,
34.3 years (11.9); mean disease duration, 0.4 (0.5)]. CSF
samples were collected by lumbar puncture for clinical
purposes and centrifuged at 1200g for 15 min. Superna-
tants were stored at — 80 °C until processed for clinical
tests and CSF cells resuspended in PBS and labeled as
described below.
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Table 1 Demographic and baseline clinical characteristics of the MS patients and healthy controls
Baseline characteristics HC RRMS SPMS PPMS Relapse
Initial cohort
N 24 20 20 17 5
Age (years) 302 (7.2) 30.0 (7.8) 45.7 (87) 502 (7.3) 30.8 (8.7)
Female/male (% women) 18/6 (75.0) 10/10 (50.0) 11/9 (55.0) 11/6 (64.7) 2/3 (40.0)
Duration of disease (years) - 48 (4.6) 115 (7.6) 122 (7.9) 22 (2.7)
EDSS® - 1.7 (1.0-4.2) 40 (3.5-5.1) 6.0 (4.0-6.0) 3.0 (25-53)
Numbers of relapsesb - 22 (0.7) 0.8 (0.8) - 26 (1.3)
Validation cohort
N 12 13
Age (years) 28.2 (6.0) 376 (9.3)
Female/male (% women) 8/3 (72.7) 12/2 (85.7)
Duration of disease (years) - 38(3.2)
EDSS® - 2.5 (1.0-35)
Numbers of relapsesIO - 2.5 (0.8)

Data are expressed as mean (standard deviation) unless otherwise stated

RRMS relapsing-remitting multiple sclerosis, SPMS secondary progressive multiple sclerosis, PPMS primary progressive multiple sclerosis, Relapse RRMS patients

whose blood was collected at the time of an acute exacerbation
?Data are expressed as mean (interquartile range)
PThe number of relapses in the 2 years before blood collection

Monoclonal antibodies

The following monoclonal antibodies were used in the
study: EZH2-Alexa Fluor 488, CD197-PE (CCR7-PE),
CD3-PE, granulocyte/macrophage colony-stimulating
factor (GM-CSF)-PE, CD16-PE-Cy5, tumor necrosis fac-
tor (TNF)-a-PercP-Cy5.5, CD19-PE-Cy7, CD45RO-APC,
CD56-APC, CD8-APC-H7, CD14-APC-H7, CD3-BV421,
CD45-V450, CD45-V500 (all from BD Biosciences, San
Diego, CA), and IL-17-APC (R&D Systems, Minneapolis,
MN).

Characterization of EZH2 expression by CSF cells

CSF cells were stained for 30 min at 4 °C in the dark
with the appropriate amounts of monoclonal antibodies
recognizing the surface antigens. Subsequently, cells
were washed with PBS, fixed and permeabilized for
20 min at 4 °C in the dark with Cytofix/Cytoperm Kit
(BD Biosciences), washed twice with Perm/Wash solution

(BD Biosciences) and stained intracellularly for 30 min at
4 °C in the dark with a monoclonal antibody recognizing
EZH2, and washed and analyzed in a FACSCanto II flow
cytometer (BD Biosciences).

Intracellular cytokine staining

Aliquots of 10° PBMC were resuspended in 1 ml of
complete medium with 50 ng/ml phorbol 12-myristate
13-acetate (PMA) (Sigma-Aldrich, St. Louis, MO) and
750 ng/ml ionomycin (Sigma-Aldrich), in the presence
of 2 pg/ml brefeldin A (GolgiPlug, BD Biosciences) and
2.1 pM monensin (Golgi Stop, BD Biosciences) in poly-
propylene tubes, and incubated for 4 h at 37 °C in 5%
CO,. Cells were washed in PBS and surface stained as
indicated above. Afterward, cells were fixed and perme-
abilized for 20 min at 4 °C in the dark with Cytofix/
Cytoperm Kit (BD Biosciences), washed twice with
Perm/Wash solution (BD Biosciences), and stained with

Table 2 Summary of demographic and baseline clinical characteristics of the treated MS cohort

Characteristics UNT IFN GA FG NTZ

N 14 17 15 16 11

Age (years) 283 (6.3) 348 (7.5) 323 (7.9 303 (7.8) 27.7 (14.5)
Female/male (% women) 8/6 (57.2) 9/8 (52.9) 8/7 (53.3) 11/5 (68.7) 7/4 (63.6)
Duration of disease (years) 33(2.7) 5.0 (10.7) 6.7 (5.8) 3.0 (3.8 6.1 (7.0)
EDSS® 1.8 (1.4-2.5) 1.6 (1.0-2.0) 2.2 (1.5-3.0) 1.6 (1.0-2.0) 25 (1.6-35)
Numbers of relapses® 20 (0.8) 1.5 (0.8) 23 (1.5 22(07) 1.9 (0.6)

Data are expressed as mean (standard deviation) unless otherwise stated

UNT untreated relapsing-remitting MS patients, IFN interferon-beta, GA glatiramer acetate, FG fingolimod, NTZ natalizumab
“Data are expressed as mean (interquartile range) and refers to EDSS at the time of treatment onset

EThe number of relapses in the 2 years before treatment onset
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monoclonal antibodies recognizing GM-CSF, TNF-q,
and IL-17.

Flow cytometry analysis

Cells were always analyzed within 1 h of staining. Mean
autofluorescence values were set using appropriate nega-
tive isotype controls. Data analysis was performed using
FACSDiva Software V.8.0 (BD Biosciences). A gate includ-
ing lymphocytes and monocytes and excluding debris and
apoptotic cells was established; a minimum amount of
30,000 events for PBMC samples and 500 events for CSF
cells were analyzed.

EZH2 expression in EAE mice

Anesthetized C57BL/6 mice were immunized by subcuta-
neous injections of PBS containing 50 pg of MOGs3s5_s5
(Proteomics Section, Universitat Pompeu Fabra, Barcelona,
Spain) or PBS, emulsified in complete Freund’s adjuvant
(Sigma Chemical, St. Louis, MO, USA), and supplemented
with 2 mg/ml Mycobacterium tuberculosis H37RA (Difco
Laboratories, Detroit, MI, USA). The animals received an
additional intravenous injection of 150 ng pertussis toxin in
100 pl PBS on the day of immunization and again 48 h
later. Four animals per group (EAE or controls—
PBS) were sacrificed at 8, 16, 22, 29, 36, and 50 days
post-immunization, and spinal cord tissue was subse-
quently obtained. mRNA expression levels of EZH2
and CD3e were determined by real-time PCR as previously
described. Changes in gene expression were always com-
pared with animals treated with PBS at the respective days.

EZH2 expression in human brain tissue

Samples

Paraffin-embedded brain samples from RRMS patients
and non-neurological controls were provided by the UK
Multiple Sclerosis Tissue Bank. Tissue sections were stained
with hematoxylin and eosin (HE) and Kliiver-Barrera (KB)
for inflammation and demyelination assessment. Ten sam-
ples from multiple sclerosis patients with chronic active
lesions and four control samples were selected for the study
(demographic and clinical information was not available for
these patients).

Immunohistochemistries

Immunostainings were developed with the automated
Benchmark XT platform from Ventana Medical System.
Briefly, 4-pm-thick, paraffin-embedded serial sections
were deparaffinized with EZ prepTM (Ventana Medical
System). Antigen retrieval was performed with Cell Con-
ditioning 1 pH =8 (Ventana Medical System) for 30 min.
Endogenous peroxidase activity was blocked with hydro-
gen peroxide 3%. Samples were incubated with rabbit
anti-EZH2 (clone EPR9307(2), Abcam) for 36 min and vi-
sualized with ultraView Universal DAB (Ventana Medical
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Systems). Subsequently, samples were kept at 95 °C for
8 min and incubated with rabbit anti-CD4 (clone SP35,
Ventana Medical System) or rabbit anti-CD8 (clone SP57,
Ventana Medical System) for 40 min and visualized with
ultraView Universal Alkaline Phosphatase Red Detection
(Ventana Medical Systems). All samples were counter-
stained with hematoxylin.

Immunostaining assessment

A range between 5 and 20 pictures were taken for each
multiple sclerosis sample. Total CD4+ and CD8+ T cells
and double-positive EZH2 and CD4 or CD8 cells were
counted. The percentages of double-positive cells were cal-
culated with respect to the total of CD4+ or CD8+ T cells.

EZH2 blocking and gene expression microarrays

PBMC from 7 untreated RRMS patients [5 females (71.4%);
mean age, 39.0 years (8.0); mean disease duration, 7.0 years
(5.1)] were plated into 24-well plates for 24 h in the pres-
ence or absence of an EZH2 inhibitor (histone deacetylase
inhibitor suberoylanilide hydroxamic acid—SAHA) at 1 pg/
ul concentration. After 24 h, cells were harvested and total
RNA isolated using the RNeasy kit (Quiagen) and hybrid-
ized to Affymetrix Human Transcriptome Arrays (HTA
2.0) (Affymetrix, Santa Clara, CA, USA) according to the
manufacturer’s protocol (GeneChip WT Pico Reagent Kit

(Affymetrix)).

Statistical analysis

Statistical analysis was performed by using the SPSS 17.0
package (SPSS Inc., Chicago, IL) for MS Windows. Com-
parisons of mRNA expression levels for EZH2, TLNI1,
and VAV1; expression levels for miR-124 and miR-155;
and the percentage of EZH2-positive cells between the
different study groups were performed by parametric
and non-parametric tests depending on the applicability
conditions. Real-time PCR data were expressed as fold
change in gene expression in controls relative to the
whole group of multiple sclerosis patients and patients
stratified according to the different clinical forms, in RRMS
patients in clinical remission relative to patients in relapse,
and in treated RRMS relative to untreated patients. For
microarray analysis, images were processed with AGCC,
Affymetrix GeneChip Command Console, to generate .CEL
files. Raw expression values obtained directly from .CEL
files were pre-processed using the RMA method [5]. These
normalized values were the basis for all the subsequent ana-
lyses. Previous to any analysis data were submitted to
non-specific filtering to remove low-signal genes (those
genes whose mean signal in each group did not exceed a
minimum threshold) and low-variability genes (those genes
whose standard deviation between all samples did not ex-
ceed a minimum threshold). The selection of differentially
expressed genes between the untreated and the EZH2
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blocking conditions was based on a linear model analysis
with empirical Bayes moderation of the variance estimates
following the methodology developed by Smyth [6]. In
order to deal with the multiple testing issues derived from
the fact that many tests (one per gene) were performed
simultaneously, p values were adjusted to obtain strong
control over the false discovery rate using the Benjamini
and Hochberg method [7].

Results

EZH2 expression is decreased in multiple sclerosis patients
In order to investigate the role of EZH2 in multiple
sclerosis, we first measured the mRNA expression levels
of EZH2 and EZH2-associated genes in PBMC from an
initial cohort of 62 untreated multiple sclerosis patients
and 24 HC. As shown in Fig. la, expression levels for
EZH2, TLN1, and VAV1 were significantly decreased in
PBMC from the whole multiple sclerosis group com-
pared to controls. Further stratification of the multiple
sclerosis group into the different clinical forms revealed
significantly decreased gene expression levels of EZH2,
TLN1, and VAV1 in PBMC from RRMS, SPMS, and
PPMS patients compared to HC (Fig. 1b). As depicted in
Fig. 1c, mRNA expression levels for EZH2, TLN1, and
VAV1 were not changed in RRMS patients at the time of
acute exacerbations, and expression levels for these
genes were similar between RRMS patients in clinical re-
mission and RRMS patients during relapse.

EZH2 findings were validated in an independent cohort
of 13 untreated multiple sclerosis patients and 12 HC, and
mRNA expression levels for EZH2 were again found to be
significantly decreased in PBMC from the multiple scler-
osis group compared to the HC group (p = 0.01; Fig. 1d).

Expression levels of miR-124 are increased in multiple
sclerosis patients

We next investigated the expression levels of miR-124 and
miR-155, two microRNAs that are known on the one
hand to target EZH2 [8, 9] and on the other hand to be in-
volved in multiple sclerosis [10, 11]. Following the deter-
mination of microRNA expression levels in 21 untreated
multiple sclerosis patients and 18 HC, miR-124 expression
was found to be significantly upregulated in PBMC from
multiple sclerosis patients compared to controls (p = 0.03),
whereas miR-155 expression levels were similar between
patients and HC (Fig. 2). These results may suggest a
potential and inverse relationship between EZH2 and
miR-124 expression levels in multiple sclerosis patients.

EZH2 expression is increased in treated multiple sclerosis
patients

As a next step, we investigated whether EZH2 and TLN1
expression was modulated by commonly used multiple
sclerosis therapies. For this, mRNA expression levels for
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EZH2 and TLN1 were determined in PBMC from 59
treated patients. Compared to untreated patients, EZH2
and TLN1 expression was significantly upregulated in
PBMC by the effect of interferon-beta, Copaxone, and nata-
lizumab treatments (Fig. 3). In contrast, whereas fingolimod
significantly increased TLN1 expression, this treatment had
no effect on EZH2 expression (Fig. 3). Overall, the in-
creased EZH2 and TLN1 expression in PBMC from treated
MS patients may indicate a reduced leukocyte trafficking
into the CNS by the effect of treatment.

EZH2 is expressed by circulating CD4+ and CD8+ T cells
with effector memory and central memory phenotypes
respectively

In order to characterize the PBMC populations that
express EZH2, immunophenotyping for EZH2 and flow
cytometry analysis was performed in T cells (CD3+,
CD4+, and CD8+), B cells, monocytes, and NK cells
from 10 multiple sclerosis patients and 13 HC. EZH2
expression was restricted to CD3+ (both CD4+ and
CD8+) T cells and CD56dim NK cells (Fig. 4a), whereas
it was absent in B cells and monocytes. Similar to the
mRNA expression findings observed in the whole
PBMC population, the percentage of EZH2-positive
cells in CD4+ and CD8+ T cells was significantly re-
duced in untreated multiple sclerosis patients com-
pared to controls (Fig. 4a). Although treatment with
natalizumab, which was selected as control therapy, in-
creased EZH2 expression by T cells, differences did not
reach statistical significance (Fig. 4a). In contrast, EZH2
expression by CD56dim NK cells was similar across the
different groups (Fig. 4a).

Further, EZH2 immunophenotyping in naive and differ-
ent memory T cell populations revealed that CD4+ T cells
expressing EZH2 had a clear effector memory phenotype
with low contribution of naive T cells compared to CD4+
T cells negative for EZH2 expression (Fig. 4b). In contrast,
CD8+ T cells expressing EZH2 exhibited a predominant
central memory phenotype compared to EZH2-negative
CD8+ T cells (Fig. 4c). A trend towards decreased expres-
sion of EZH2 (p = 0.07) was observed in terminally differ-
entiated effector CD4+ T cells from untreated multiple
sclerosis patients compared to HC, and EZH2 expression
was significantly upregulated in patients by the effect of
natalizumab treatment (p =0.03) (Fig. 4b). However, a
similar pattern was also observed in terminally differenti-
ated effector CD4+ T cells negative for EZH2 (p =0.05
and p =0.003 in untreated patients versus controls and
patients receiving treatment respectively) (Fig. 4b).

Finally, in order to evaluate the pathogenic potential of
EZH2-positive cells, staining for proinflammatory cyto-
kines such as TNF-a, GM-CSF, and IL-17 was also in-
cluded in CD4+ and CD8+ T cells from a subgroup of
untreated (N=4) and treated (N =4) patients and HC
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Fig. 1 Expression levels of EZH2 and EZH2-associated molecules in multiple sclerosis patients and controls. mRNA expression levels for EZH2,
TLNT, and VAV1 were determined in PBMC from untreated multiple sclerosis patients and healthy controls by real-time PCR relative quantification, as
described in the “Methods” section. Graphs showing expression levels for EZH2, TLN1, and VAV1 a-c in the initial discovery cohort and d in an
independent cohort of patients and controls. Results are expressed as fold change (standard error of the mean) in gene expression in multiple
sclerosis patients relative to controls and in patients in relapse relative to patients in remission. Statistics: unpaired Student's t test. *p values < 0.05; **p
values < 0.01; ***p values < 0.001. HC healthy controls, MS whole group of multiple sclerosis patients, RRMS relapsing-remitting multiple sclerosis, SPMS
secondary progressive multiple sclerosis, PPMS primary progressive multiple sclerosis, Remission RRMS patients in clinical remission, Relapse RRMS
patients whose blood was collected at the time of an acute exacerbation, EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit, TLN1

(N'=7). EZH2-positive cells expressed TNF-a though were
negative for GM-CSF and IL-17 expression. Interestingly,
trends towards decreased percentage of TNF-a-positive
cells were observed in CD4+ and CD8+ T cells expressing
EZH2 from untreated patients compared to HC (p = 0.08
and p = 0.07 respectively), whereas no similar findings were
seen in their EZH2-negative counterparts (Fig. 4d). Further-
more, natalizumab treatment was associated with signifi-
cant increases in the percentage of TNF-a-positive cells in

CD4+ and CD8+ T cells expressing EZH2 (p =0.02 and
p =0.04 respectively), while treatment had no effect in
the percentage of TNF-a-positive cells by EZH2-negative
CD4+ and CD8+ T cells (Fig. 4d).

Altogether, these data point to a different expression
of EZH2 depending on the differentiation stages of the
CD4+ and CD8+ T cells and suggest a common patho-
genic potential of EZH2-positive cells in MS via TNF-a
production.
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Fig. 2 Expression levels of miR-124 and miR-155 in multiple sclerosis patients and controls. Expression levels for miR-124 and miR-155 were
determined in PBMC from untreated multiple sclerosis patients and controls by real-time PCR relative quantification. Results are expressed as fold
change (standard error of the mean) in gene expression in patients relative to controls. Statistics: unpaired Student's t test. *p value =0.03. HC
healthy controls, MS whole group of untreated multiple sclerosis patients, which included 15 RRMS and 6 SPMS patients

EZH2-positive T cells migrate to the CNS during EAE and
multiple sclerosis

Based on the gene and protein expression findings, we hy-
pothesized that the decrease of circulating EZH2-positive
T cells in untreated multiple patients compared to con-
trols was secondary to the migration of EZH2-positive T
cells into the CNS. To evaluate this hypothesis, we first in-
vestigated EZH2 expression in the CNS of EAE mice and
observed that EZH2 was expressed in spinal cord tissue
during EAE, and EZH?2 expression levels peaked at the
inflammatory phase of the disease (day 16 post-
immunization) (Fig. 5a). Interestingly, EZH2 followed
a similar temporal pattern of CNS expression to Cd3
in EAE mice, and expression levels for these two genes cor-
related with each other (Spearman correlation coefficient =

0.63, p=0.002), suggesting a relationship between EZH2
expression and the inflammatory cell infiltrate during EAE
(Fig. 5a). We next aimed to extrapolate these findings to
patients with multiple sclerosis by determining EZH2
expression in CSF cells from three untreated patients. As
shown in Fig. 5b, EZH2-positive T cells were enriched in
the CSF compartment, and the percentage of CD3+ T cells
expressing EZH2 was significantly increased in the CSF
compared to peripheral blood (p =0.007). In contrast, in
CD56dim NK cells, a cell subset that also expressed EZH2
(Fig. 4a), the percentage of EZH2-positive cells did not dif-
fer between the CSF and blood compartments, indicating a
preferential capacity for EZH2-positive T cells to migrate
into the CNS. In this line, we finally investigated EZH2 ex-
pression in chronic active lesions from 10 multiple sclerosis
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patients and observed that 8.5% (mean percentage) and
10.9% of the total CD4+ and CD8+ T cells were expressing
EZH2 respectively (Fig. 5¢). Occasionally, EZH2 expression
was also observed in the nuclei of few glial cells, and brain
tissues from non-neurological controls were negative for
EZH2 expression (data not shown).

EZH2 blocking downregulates T cell adhesion molecules
As a last step, we incubated in vitro PBMC from seven
untreated multiple sclerosis patients with an EZH2

inhibitor in order to investigate the genes modulated by
EZH?2 and aiming to better understand the role of EZH2
in disease pathophysiology. A total of 6763 genes were
significantly up- or downregulated by the effect of the
EZH?2 inhibitor (with p values < 0.05; data not shown).
Interestingly, among the top 1% of differentially expressed
genes between the untreated and treated conditions, we
identified key T cell adhesion molecules that were strikingly
downregulated by the EZH2 inhibitor such as selectin L
(SELL, also known as CD62L; adjusted p value versus the
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untreated condition = 6.4 x 107%°), integrin subunit alpha 4
(ITGA4, also known as CD49D; p = 3.6 x 10'°), integrin
subunit alpha L. ITGAL, also known as CD11A; p=1.1 x
107"?), and platelet and endothelial cell adhesion molecule
1 (PECAML; p =5.2 x 107**) (Fig. 6). These data support a
role of EZH2 in the adhesion of circulating T cells.

Discussion

Extensive literature exists about the role of EZH?2 as histone
methyltransferase and, particularly, about EZH2 involve-
ment in a wide range of malignant tumors [8, 12, 13] due
to its function as epigenetic silencer [14]. The identification
of a cytosolic methyltransferase complex containing EZH2
suggested that, in addition to its nuclear role, EZH2 could
also be involved in other important cellular processes
such as cell adhesion and migration [2]. In an attempt
to characterize more in depth the cytosolic role of
EZH2, Gunawan et al. [2] recently reported that EZH2
was critical for regulating leukocyte migration to sites
of inflammation in EAE mice, findings that opened a
potential and attractive link between EZH2 and auto-
immune disorders such as multiple sclerosis in which

cell adhesion and migration are critical pathogenic
mechanisms [15]. Despite this initial publication in the
animal model of multiple sclerosis [3], to date, there
are no studies of EZH2 in patients with multiple scler-
osis. Aiming to explore the role of EZH2 in multiple
sclerosis, we first determined mRNA expression levels
in PBMC from untreated patients and healthy individ-
uals and observed that EZH2, together with molecules
reported to be associated with cytosolic EZH2 such as
TLN1 and VAV1 [3], were all downregulated in mul-
tiple sclerosis patients regardless of whether they were
having relapse-onset or progressive clinical forms, or
whether they were in clinical remission or in acute re-
lapse. The decreased expression of EZH2 in PBMC
from patients with multiple sclerosis was replicated in
an independent validation cohort of patients and con-
trols. These initial observations at the gene expression
level suggested an involvement of EZH2 in the disease,
which was explored in additional experiments.

We first explored microRNAs, which are known to
exert regulatory functions at the posttranscriptional level
via binding to the 3" untranslated region of target mRNAs
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[16]. In the search for potential microRNAs that on the
one hand regulated EZH2 expression and on the other
hand were involved in multiple sclerosis, the microRNAs
miR-124 and miR-155 emerged as attractive candidates
[8, 9]. In this context, expression levels for miR-124
were found increased in demyelinated hippocampi from
postmortem brains of multiple sclerosis patients [10].
miR-155 expression was upregulated in peripheral blood
monocytes and active lesions from patients [11]. In our
study, when expression levels for these two microRNAs
were determined in PBMC from a subgroup of untreated
multiple sclerosis patients and controls, miR-124 but not
miR-155 was significantly upregulated in patients, suggest-
ing a potential functional relationship between decreased
EZH2 mRNA expression levels and miR-124 upregulation
in patients with multiple sclerosis. These findings warrant
future studies to investigate the cell types that contribute
to miR-124 upregulation.

In order to explore whether the expression of EZH2
and associated molecules was modulated by commonly

used disease-modifying therapies in patients with multiple
sclerosis, a cohort of patients treated with interferon-beta,
glatiramer acetate, fingolimod, and natalizumab was also in-
cluded in the study. Treatment with interferon-beta, glatira-
mer acetate, and natalizumab was associated with increased
expression levels of EZH2 and TLN1. By contrast, fingoli-
mod treatment was only associated with upregulated ex-
pression of TLNI1. Although based on a small number of
samples and in spite of the descriptive nature of the experi-
ments, it is tempting to speculate that this finding may be
due to the different mechanisms by which these drugs
regulate leukocyte migration to the CNS, being the mech-
anism of action of fingolimod not exerted in peripheral
blood but in the lymph nodes where it retains naive and
central memory lymphocytes [17-20]. In view of these data,
we hypothesize that the reduction in EZH2 expression ob-
served in untreated patients with subsequent upregulation
after treatment may indicate a migration capacity of PBMC
expressing EZH2 to the CNS that is inhibited by the effect
of treatment. These findings also open a new research
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avenue to investigate whether the increase in EZH2
expression observed after treatment is associated with
the response to therapies and hence may differ between
responders and non-responders to each particular thera-
peutic strategy.

Immunophenotyping of the major PBMC populations
revealed restricted EZH2 expression in CD4+ and CD8+
T cells as well as CD56dim NK cells. Similar to the gene
expression findings, the percentage of EZH2-positive T
cells was reduced in untreated multiple sclerosis patients
compared to controls, pointing to a role of EZH2 in this
particular cell subset rather than in CD56dim NK cells,
which showed similar percentages of EZH2-positive cells
in patients and controls. It is worth highlighting that ex-
cept for one patient and one control, the immunopheno-
typing cohort included new individuals, and hence, the
decrease of EZH2-positive T cells observed in patients
can also be considered as a new validation of the EZH2
expression findings at the protein level. Natalizumab,
which was selected as control therapy because of its
known effects reducing T cell trafficking into the CNS,
increased the percentage of EZH2-positive T cells, but,
contrary to gene expression results, differences did not
reach statistical significance. Interestingly, further T cell
immunophenotyping showed heterogeneity in the T cell
subsets positive for EZH2 expression. In this context,
most CD4+ T cells expressing EZH2 were effector mem-
ory T cells, a population that per se has the capacity to
migrate to non-lymphoid tissues including the CNS [21].
In contrast, CD8+ T cells positive for EZH2 had a pre-
dominant central memory phenotype, suggesting that
this particular subset can migrate to the CNS in MS and
may later differentiate into effector memory populations
in the sites of inflammation. Of note, EZH2-positive cells
both in CD4+ and CD8+ T cells may have pathogenic po-
tential through the secretion of TNF-q, a pro-inflammatory
cytokine involved in the pathogenesis of multiple sclerosis
[22]. Although caution should be taken when considering
these data owing to the small sample size and high variabil-
ity, these findings altogether warrant additional studies to
deepen into the pathogenic capacity of T cells expressing
EZH2 and explore whether EZH2 may become a thera-
peutic target in MS patients to reduce disease activity.

The potential for EZH2-positive T cells to migrate to the
CNS was first suggested in the EAE study, which showed
EZH2 expression in spinal cord tissue from EAE mice fol-
lowing a similar pattern to Cd3 expression over time.
Confirmation of the migratory capacity of EZH2-positive
T cells was provided by their detection in the CSF and
brain lesions from multiple sclerosis patients. Noteworthy,
the enrichment for CD4+ and CD8+ T cells expressing
EZH2 in the CSF and chronic active lesions compared to
the blood compartment suggested that the decrease of
EZH2-positive T cells observed in untreated multiple
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sclerosis patients compared to healthy individuals was
secondary to their migration into the CNS. This notion
was further supported by the observation that other
EZH2-expressing blood cell populations such as CD56dim
NK cells, which did not depict differences between patients
and controls in blood, were not enriched in the CSF. Al-
though EZH2 expression in brain lesions from multiple
sclerosis patients seemed restricted to CD4+ and CD8+ T
cells, additional sources of EZH2 expression within the
CNS cannot be totally ruled out, as evidenced by EZH2
immunohistochemistry. In contrast, EZH2 expression was
not observed in brain tissue from non-neurological con-
trols, a finding that confers specificity for EZH2 expression
in the CNS of multiple sclerosis patients.

Conclusions

Finally, the implication of EZH2 in T cell adhesion, an
important step for cell migration, was supported by the
microarray findings conducted after EZH2 blocking with
a histone deacetylase inhibitor that regulates EZH2 ex-
pression [23], which showed striking downregulation of
cell adhesion molecules expressed in T cells such as SELL
[24], ITGA4 [25], ITGAL [26], and PECAM1 [27]. The
aggregate results from the study suggest a role for EZH2
in the migration of T cells into the CNS in patients with
multiple sclerosis and also suggest a potential pathogenic
capacity of EZH2-positive T cells that will need to be
explored more in depth in future studies.

Additional file

Additional file 1: Table S1. Demographic and clinical characteristics of
the multiple sclerosis patients and HC included for the determination of
microRNA expression levels. (DOC 36 kb)

Abbreviations

EAE: Experimental autoimmune encephalomyelitis; EZH2: Enhancer of zeste 2
polycomb repressive complex 2 subunit; GM-CSF: Granulocyte/macrophage
colony-stimulating factor; H3K27: Histone H3 at lysine 27; HC: Healthy
controls; ITGA4: Integrin subunit alpha 4; ITGAL: Integrin subunit alpha L;

KB: Kltver-Barrera; mRNA: Messenger RNA; MS: Multiple sclerosis; PBMC: Peripheral
blood mononuclear cells; PECAM1: Platelet and endothelial cell adhesion
molecule 1; PMA: Phorbol 12-myristate 13-acetate; PPMS: Patients with
primary progressive multiple sclerosis; RRMS: Relapsing-remitting multiple
sclerosis; SAHA: Suberoylanilide hydroxamic acid; SELL: Selectin L;

TLNT: Talin 1; TNF: Tumor necrosis factor

Acknowledgements
The authors would like to thank the nurses, laboratory technicians, and patients
for their participation in sample collection.

Funding

The authors thank the “Red Espariola de Esclerosis Multiple (REEM)” sponsored
by the FEDER-FIS and the “Ajuts per donar Suport als Grups de Recerca de
Catalunya,” sponsored by the “Agencia de Gestid d'Ajuts Universitaris i de
Recerca” (AGAUR), Generalitat de Catalunya, Spain.

Availability of data and materials
The dataset used or analyzed for the current study is available from the
corresponding author on reasonable request.


https://doi.org/10.1186/s12974-018-1336-9

Malhotra et al. Journal of Neuroinflammation (2018) 15:296

Authors’ contributions

SM, LMV, XM, and MC contributed to the conception and study design. CC,
LM, MCu SMe, NF, JR, JC, JCA-C, and AS contributed to the data acquisition
and analysis. SM, LMV, and MC contributed to the drafting of the manuscript
and figures. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Experiments were done according to the EU regulations and approved by
our institutional Ethics Committee on Animal Experimentation. The study
was approved by the local Ethics Committee, and participants gave written
informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Multiple de
Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital
Universitari Vall d'Hebron, Universitat Autbnoma de Barcelona, Barcelona,
Spain. “Departments of Neurology and Immunology, Hospital Universitario
Ramon y Cajal, Instituto Ramén y Cajal de Investigacion Sanitaria, Madrid,
Spain. *Departament d'Estadistica, Facultat de Biologia, Universitat de
Barcelona, Barcelona, Spain. “Unitat d’Estadistica i Bioinformatica, Institut de
Recerca, HUVH, Barcelona, Spain. “Genetics, Microbiology and Statistics
Department, Universitat de Barcelona, Barcelona, Spain.

Received: 25 June 2018 Accepted: 16 October 2018
Published online: 26 October 2018

References

1. Cao R Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role
of histone H3 lysine 27 methylation in polycomb-group silencing. Science.
2002;298:1039-43.

2. SulH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R,
et al. Polycomb group protein ezh2 controls actin polymerization and cell
signaling. Cell. 2005;121:425-36.

3. Gunawan M, Venkatesan N, Loh JT, Wong JF, Berger H, Neo WH, et al. The
methyltransferase Ezh2 controls cell adhesion and migration through direct
methylation of the extranuclear regulatory protein talin. Nat Immunol.
2015. 2015;16:505-16.

4. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods. 2001;25:
402-8.

5. lIrizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.

Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics. 2003;4:249-64.

6. Smyth GK. Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol.
2004;3:Article3.

7. Benjamin Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:289-30.

8. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, et al. The putative tumour
suppressor microRNA-124 modulates hepatocellular carcinoma cell
aggressiveness by repressing ROCK2 and EZH2. Gut. 2012,61:278-89.

9. MeiS, LiuY,Bao Y, Zhang Y, Min S, Liu Y, et al. Dendritic cell-associated
miRNAs are modulated via chromatin remodeling in response to different
environments. PLoS One. 2014:9:290231.

10. Dutta R, Chomyk AM, Chang A, Ribaudo MV, Deckard SA, Doud MK, et al.
Hippocampal demyelination and memory dysfunction are associated with
increased levels of the neuronal microRNA miR-124 and reduced AMPA
receptors. Ann Neurol. 2013;73:637-45.

11. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, et al. miR-
155 as a multiple sclerosis-relevant regulator of myeloid cell polarization.
Ann Neurol. 2013;74:709-20.

22.

23.

24.

25.

26.

27.

Page 12 of 12

Lee SR, Roh YG, Kim SK; Lee JS, Seol SY, Lee HH, et al. Activation of EZH2 and
SUZ12 regulated by E2F1 predicts the disease progression and aggressive
characteristics of bladder cancer. Clin Cancer Res. 2015;21:5391-403.

Zingg D, Debbache J, Schaefer SM, Tuncer E, Frommel SC, Cheng P, et al.
The epigenetic modifier EZH2 controls melanoma growth and metastasis
through silencing of distinct tumour suppressors. Nat Commun. 2015,6:6051.
Sun S, Yu F, Zhang L, Zhou X. EZH2, an on-off valve in signal network of
tumor cells. Cell Signal. 2016;28:481-7.

Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev
Immunol. 2015,23:683-747.

Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in
cancer. Curr Genom. 2010;11:537-61.

Niino M, Bodner C, Simard ML, Alatab S, Gano D, Kim HJ, et al. Natalizumab
effects on immune cell responses in multiple sclerosis. Ann Neurol. 2006;59:
748-54.

Dhib-Jalbut S, Marks S. Interferon-beta mechanisms of action in multiple
sclerosis. Neurology. 2010;74:517-24.

Griffith JW, Luster AD. Targeting cells in motion: migrating toward improved
therapies. Eur J Immunol. 2013;43:1430-5.

Sellner J, Koczi W, Harrer A, Oppermann K, Obregon-Castrillo E, Pilz G, et al.
Glatiramer acetate attenuates the pro-migratory profile of adhesion
molecules on various immune cell subsets in multiple sclerosis. Clin Exp
Immunol. 2013;173:381-9.

Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets,
migration patterns, and tissue residence. Annu Rev Immunol. 2013;31:137-61.
Caminero A, Comabella M, Montalban X. Tumor necrosis factor alpha (TNF-a),
anti-TNF-a and demyelination revisited: an ongoing story. J Neuroimmunol.
2011;234:1-6.

Yamaguchi J, Sasaki M, Sato Y, Itatsu K, Harada K, Zen Y, et al. Histone
deacetylase inhibitor (SAHA) and repression of EZH2 synergistically inhibit
proliferation of gallbladder carcinoma. Cancer Sci. 2010;101:355-62.
Wedepohl S, Beceren-Braun F, Riese S, Buscher K, Enders S, Bernhard G,

et al. L-selectin—-a dynamic regulator of leukocyte migration. Eur J Cell Biol.
2012,91:257-64.

Cobo-Calvo A, Figueras A, Bau L, Matas E, Mafié Martinez MA, Ledn |, et al.
Leukocyte adhesion molecule dynamics after natalizumab withdrawal in
multiple sclerosis. Clin Immunol. 2016;171:18-24.

Jilek S, Mathias A, Canales M, Lysandropoulos A, Pantaleo G, Schluep M,

et al. Natalizumab treatment alters the expression of T-cell trafficking marker
LFA-1 a-chain (CD11a) in MS patients. Mult Scler. 2014;20:837-42.

Qing Z, Sandor M, Radvany Z, Sewell D, Falus A, Potthoff D, et al. Inhibition of
antigen-specific T cell trafficking into the central nervous system via blocking
PECAM1/CD31 molecule. J Neuropathol Exp Neurol. 2001;60:798-807.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patients
	Initial cohort
	Validation cohort
	Treated cohort

	Sample collection and determination of mRNA expression levels of EZH2, TLN1, and VAV1 by real-time PCR
	Determination of microRNA expression levels by real-time PCR
	EZH2 immunophenotyping
	Monoclonal antibodies
	Characterization of EZH2 expression by CSF cells
	Intracellular cytokine staining
	Flow cytometry analysis
	EZH2 expression in EAE mice
	EZH2 expression in human brain tissue
	Samples
	Immunohistochemistries
	Immunostaining assessment

	EZH2 blocking and gene expression microarrays
	Statistical analysis

	Results
	EZH2 expression is decreased in multiple sclerosis patients
	Expression levels of miR-124 are increased in multiple sclerosis patients
	EZH2 expression is increased in treated multiple sclerosis patients
	EZH2 is expressed by circulating CD4+ and CD8+ T cells with effector memory and central memory phenotypes respectively
	EZH2-positive T cells migrate to the CNS during EAE and multiple sclerosis
	EZH2 blocking downregulates T cell adhesion molecules

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

