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Abstract

Background: Understanding the interdependencies among inflammatory mediators of tissue damage following
traumatic brain injury (TBI) is essential in providing effective, patient-specific care. Activated microglia and
elevated concentrations of inflammatory signaling molecules reflect the complex cascades associated with
acute neuroinflammation and are predictive of recovery after TBI. However, clinical TBI studies to date have
not focused on modeling the dynamic temporal patterns of simultaneously evolving inflammatory mediators,
which has potential in guiding the design of future immunomodulation intervention studies.

Methods: We derived a mathematical model consisting of ordinary differential equations (ODE) to represent
interactions between pro- and anti-inflammatory cytokines, M1- and M2-like microglia, and central nervous system
(CNS) tissue damage. We incorporated variables for several cytokines, interleukin (IL)-1p3, IL-4, IL-10, and IL-12, known to
have roles in microglial activation and phenotype differentiation. The model was fit to cerebrospinal fluid (CSF)
cytokine data, collected during the first 5 days post-injury in n =89 adults with severe TBI. Ensembles of model fits
were produced for three patient subgroups: (1) a favorable outcome group (GOS =4,5) and (2) an unfavorable
outcome group (GOS = 1,2,3) both with lower pro-inflammatory load, and (3) an unfavorable outcome group (GOS =
1,2,3) with higher pro-inflammatory load. Differences in parameter distributions between subgroups were ranked
using Bhattacharyya metrics to identify mechanistic differences underlying the neuroinflammatory patterns of patient
groups with different TBI outcomes.

Results: Optimal model fits to data showed different microglial and damage responses by patient subgroup. Upon
comparison of model parameter distributions, unfavorable outcome groups were characterized by either a prolonged,
pathophysiological or a transient, sub-physiological course of neuroinflammation.

Conclusion: By developing a mathematical characterization of inflammatory processes informed by clinical data, we
have created a system for exploring links between acute neuroinflammatory components and patient outcome in
severe TBI.
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Background

The debilitating impact of traumatic brain injury (TBI) af-
fects the lives of an estimated 10 million athletes, soldiers,
and civilians every year around the world [1]. Despite
shared physical, social, and economic burdens, these indi-
viduals experience unique patterns of brain damage and
physiological responses following injury [2, 3]. Potent anti-
inflammatory treatments have generally been unsuccessful
for such a diverse patient population [4—6]. This issue of
heterogeneity renders TBI treatment an immense clinical
challenge due to known variability in the (1) patient popu-
lation, (2) initial injury severity, (3) secondary injury mech-
anisms, and (4) emergent co-pathologies [3, 6, 7].

Neuroinflammation has long been identified as a sec-
ondary injury mechanism following TBI and is emerging
as a major contributor to chronic neurological pathologies
and outcome [2, 5]. Recent work has investigated the
multifaceted role of neuroinflammation post-TBI [3, 6, 8,
9] in attempts to elucidate heterogeneity in the response
that drives different patient outcomes. Resident central
nervous system (CNS) microglia, which are immediately
activated after traumatic insult and propagate the innate
neuroinflammatory response, are implicated with injury-
induced neuroinflammation as multi-dimensional re-
sponders. Research guided by previous macrophage stud-
ies suggests that microglia are selectively polarized via
cytokine signaling to a spectrum of functional phenotypes
ranging from a classic pro-inflammatory M1-like state to
an anti-inflammatory M2-like state. Each phenotypic state
has its respective role in the neuroinflammatory sequence
including phagocytosis of damaged and dysfunctional neu-
rons, neurogenesis, tissue repair and restoration, and im-
mune regulation [2, 5, 10]. Distinguishing these functional
phenotypes in humans by in vivo imaging techniques
(such as positron emission tomography) is still in its in-
fancy [11]. Alternative methodologies are warranted to
complement these technological advancements and to
characterize the temporal progression of microglial activa-
tion and functionality post-injury.

Characterizing the temporal dynamics of interdepend-
ent inflammatory cytokine cascades following injury is a
critical step toward understanding the interplay between
physiological neuroprotection and pathological neurotox-
icity with respect to acute neuroinflammation and micro-
glia activity [9, 12]. Mechanistic mathematical modeling
can be an effective framework for this goal because it pro-
vides a representation of the simultaneous evolution of
inflammatory mediators. Ordinary differential equation
(ODE) models, in particular, have been commonly used to
investigate the time-dependent interactions in complex
inflammatory networks [13—-17]. Equations are derived
to represent specific biological mechanisms and fit to
time courses of clinical variables. This methodology
can facilitate the exploration of inflammatory mediator
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interactions, indicators of patient prognosis, and thera-
peutic influences.

In the current study, we derived an ODE model that in-
corporates information about cerebrospinal fluid (CSF)
biomarkers and their role in regulating both microglial
behavior and subsequent secondary tissue damage. We
present model fits to clinical CSF cytokine data, and quali-
tative projections of microglial and tissue damage states.
From these results, we derived ensembles of model param-
eters associated with distinct patient clusters with favorable
and unfavorable scores on the Glasgow Outcome Scale
(GOS) at 6 months post-injury. We propose this modeling
framework as a tool to suggest differences in underlying
mechanisms that potentially contribute to the temporal di-
versification of acute neuroinflammatory patterns after in-
jury. We demonstrate these mechanistic computational
modeling results as proof-of-concept data that can provide
key qualitative insights, to be complemented by subse-
quent experimental testing of model predictions, toward
the design of personalized intervention strategies for TBI.

Materials and methods

Study protocol/TBI participants

This study was approved by the Institutional Review Board
at the University of Pittsburgh. We utilized clinical, demo-
graphic, and CSF inflammatory biomarker data from n = 89
individuals with severe TBI who were between 16 and
75 years of age and had admission Glasgow Coma Scale
(GCS) scores < 8 with positive findings on head computed
tomography. Participants were excluded under the follow-
ing circumstances: a penetrating TBI, documented pro-
longed cardiac/respiratory arrest at the time of injury,
evidence of brain death in the first 3 days of injury, or an
Abbreviated Injury Scale (AIS) score =5 in a non-head
region. Based on International Classification of Disease
(ICD)-9 codes reported at the time of acute care discharge,
no individuals in this study had a history of or concurrent
malignant neoplasms (implicating cancer) at the time of in-
jury. Individuals with TBI received care consistent with The
Guidelines for the Management of Severe Head Injury [18].

CSF sample collection and processing
CSF samples (1 = 567) were collected up to twice daily via
extraventricular drain, as close to the hours of 7 AM and
7 PM as possible, for up to 5 days after injury as a part of
routine care. In some instances, it was not possible to ob-
tain CSF samples due to conflicts with clinical care, minimal
CSF output, or removal from the intensive care unit (ICU).
Neuroinflammatory markers were measured using
Luminex™ bead array assays (Millipore, Billerica, MA).
These markers included interleukin (IL)-1f, IL-4, IL-5,
IL-6, IL-7, IL-8, IL-10, IL-12, tumor necrosis factor alpha
(TNF-a), soluble vascular adhesion molecule-1 (sVCAM-
1), soluble intracellular adhesion molecule-1 (SICAM-1),
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and soluble Fas (sFAS). All inflammatory markers were
considered in principal component and cluster analyses,
as reported previously [19]. However, only a subset of
these markers (IL-1B, IL-4, IL-10, and IL-12) was utilized
in the mathematical model to represent hallmark pro-
and anti-inflammatory mediators of microglia activity
and brain tissue integrity [2, 20].

Demographic and clinical variables

Demographic and clinical variables were collected via
in-person interview and electronic medical record ab-
straction. The variables reported include age, sex, body
mass index (BMI), injury severity scale (ISS) score,
best GCS score in 24 h, and length of stay in acute care.
The functional capacity of patients was assessed using
the GOS at 6 months to measure long-term global re-
covery. Individuals received the following GOS scores
accordingly: (1) dead, (2) vegetative state, (3) severe dis-
ability, (5) moderate disability, and (5) good recovery [21].

Statistical analysis

Patient demographic, clinical, and inflammatory data
were statistically analyzed using SAS version 9.4 (SAS
Institute Inc., Cary, NC). Descriptive measures included
mean, median, standard error of the mean (SE), and
interquartile range (IQR) for continuous variables and
percentages for categorical variables. Bhattacharyya sta-
tistics were calculated using STATA version 14 (Stata-
Corp, College Station, TX). Statistical significance was
set as p < 0.05 in this study.

Principal component and cluster analysis

Principal component analysis (PCA) previously reported
by R.G. Kumar et al. identified sets of inflammatory
markers that contribute the greatest variance to acute
CSF inflammatory profiles (days 0-5 post-TBI) [19]. In-
dividuals were assigned a score for each significant prin-
cipal component (PC) based on their levels of the
inflammatory markers that contribute to that particular
PC. A non-hierarchical k~-means cluster analysis was then
conducted on the scores for significant PCs for all individ-
uals, characterizing patient subpopulations with similar
acute neuroinflammatory profiles post-TBIL. This analysis
yielded two major cluster groups that were distinguished
by distinct CSF inflammatory profiles for days 0-3 post-
TBIL Within clusters 1 and 2 identified by R.G. Kumar et al.
[19], we grouped individuals in each cluster based on GOS
scores. Unfavorable and favorable outcome groups were
defined as individuals exhibiting a 6-month GOS=1,2,3
(dead/vegetative state/severe disability) or a 6-month
GOS = 4,5 (moderate disability/good recovery), respectively.
These clustering techniques produced the following pa-
tient groups: an unfavorable outcome group with a rela-
tively high inflammatory load (cluster 1), a favorable

Page 3 of 19

outcome group with a lower inflammatory load (cluster
2A), and an unfavorable outcome group with a similar
lower load (cluster 2B).

Ordinary differential equation model development

We built upon the initial statistical work described above
by R.G. Kumar et al. [19], which identified patient sub-
groups with distinct acute neuroinflammatory profiles, by
using mathematical modeling techniques to investigate
potential mechanisms in post-TBI neuroinflammation that
may underlie the observed patient heterogeneity. A system
of ODEs was derived to represent the temporal dynamics
of four cytokines (IL-1B, IL-4, IL-10, and IL-12), which
were determined from the literature to constitute the min-
imal set needed to represent the range of roles played by
cytokines in regulating both microglial responses and sub-
sequent secondary CNS tissue damage time courses [2,
20]. The equations consist of terms that represent bio-
logical processes—such as production, inhibition, satur-
ation, or decay of particular inflammatory mediators—and
capture changes in those inflammatory mediator levels
over time. ODE models provide a framework for repre-
senting multiple interactions and dependencies between
mediators post-injury.

To guide the derivation of the ODE model, a simplified
conceptualization of microglial contributions to acute neu-
roinflammation post-TBI was formed (Fig. 1). This theoret-
ical model was limited to a core set of mediators previously
identified as having distinct roles in microglial behavior.
The corresponding reduced mathematical model, much in
the spirit of previous reduced ODE models that have been
proven to be useful in the analysis of acute inflammatory
responses [13—17], aimed to characterize acute neuroin-
flammatory and microglial dynamics through seven
differential equations for the following biological vari-
ables: M1-like microglia (M1), M2-like microglia (M2),
IL-1B (IL1), IL-12 (IL12), IL-10 (IL10), IL-4 (IL4), and
secondary tissue damage (D). The differential equations
include 52 parameters with direct biological interpreta-
tions, as shown in Table 1. The following sections detail
the acute neuroinflammatory processes post-TBI that
are encompassed within our ODE model and a priori
information that guided its derivation.

Microglial activation from resting state

Since the contemporary concept of resting microglial acti-
vation to a classic pro-inflammatory M1-like or an alter-
native anti-inflammatory M2-like state is still evolving,
our model focuses on influences from the CNS cytokine
microenvironment that likely affect microglial dynamics
following TBI. Resting microglia (), the brain’s resident
immune cells, continually sample the local microenviron-
ment, surveying for any deviation from homeostasis [22,
23]. Following TBI, resting microglia polarize into two
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broad activation states, M1- or M2-like, in response to
early cellular mediators released by injured cells [23, 24].

The terms Rm1 and Rm2 below describe the cytokine-
based cues for the activation of resting microglia into M1-
and M2-like microglia, respectively. The numerator in the
equation for Rm1 is a mathematical expression known as
a Hill function that tends to a constant value as IL1 and
IL12 become large. This term represents the saturating
promotion of M1 microglial polarization by the initiator
molecule IL-1p and pro-inflammatory molecule IL-12.
Both the denominator of the Rm1 expression and the full
Rm?2 expression are based on the action of anti-inflamma-
tory agents, IL-10 and IL-4, which accumulate at the site
of injury, limiting further M1 polarization and driving
microglia differentiation to the M2 state:

(KL + Ko IL12)™
bfl" + (k;ﬂILl + knlz'Ile)x"

1+ <1L10+1L4)2

Rml =

Aol

(kpa-IL4 + ky10-IL10)™
yi + (kpa-IL4 + ky10-IL10)*

Rm2 =

Together, these terms shape how the brain’s resting
microglia reserve is allocated to undergo M1- or M2-like
activation based on cytokine cues from the local

environment [23, 25, 26]. For modeling purposes, we as-
sume that resting microglia (mr) are produced at a con-
stant rate s,,, and decay at a constant rate 1,,, and that
the overall level of activation rapidly equilibrates to
changes in Rml and Rm2. That is, we set to zero the
right-hand side of the ODE:

dmr

T Smr—Rml-mr—Rm2-mr-u,, -mr (1)

and solve for mr to derive the quasi-steady-state
expression:

Smr
mr =~ . (2)
Rml + Rm2 +u,,,

Microglial polarization dynamics

Although recent conceptual reviews have suggested that
there may be an activation spectrum of microglial states
[2, 9, 10, 22, 23], for simplicity we consider the two ex-
tremes of characteristic M1 and M2 states. In addition to
the activation of resting microglia described in “Microglial
activation from resting state” subsection, and basic decay
or cell death rates, levels of microglia in these states are
influenced by the repertoire of neuroinflammatory reac-
tions occurring post-TBI. These processes cause cytokine
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Table 1 Biological interpretations of ODE model parameters for
acute neuroinflammation
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Table 1 Biological interpretations of ODE model parameters for
acute neuroinflammation (Continued)

Parameter  Description Parameter  Description
Resting microglia W, Half-activation constant
Smr Source of resting microglia (mr) Gn Hill coefficient
Urnr Decay rate of mr oo Threshold-like factor for IL10 inhibition of cytokine release
M1-like activation Kenio Rate of IL10 release by Th2 cells
kn Rate of M1 activation by /L1 Kina Rate of IL4 release by Th2 cells
knio Rate of M1 activation by /L12 Kon1o Rate of IL10 release by M2
b, Half-activation constant Kons Rate of IL4 release by M2
X, Hill coefficient Unio Decay rate of /L10
oo Threshold-like factor for /L4 and /L10 inhibition of M1 Una Decay rate of /L4
polarization

M2-like activation

ks Rate of M2 activation by /L4
Knio Rate of M2 activation by IL10
Y Half-activation constant

Zn Hill coefficient

Microglial phenotype switch

Tha Relative effectiveness of /L4 in driving M1 to M2
differentiation

Thio Relative effectiveness of /L10 in driving M1 to M2
differentiation

m, Half-activation constant

gn Hill coefficient

Microglial decay

U Decay rate of M1
Hmz Decay rate of M2
Cytokine release by Th2 cells

Kibase Baseline rate of Th2 cytokine release

Kenio Relative effectiveness of IL12 in inhibiting the Th1 pro-
inflammatory response and promoting Th2 anti-
inflammatory response

In Half-activation constant

Ch Hill coefficient

Pro-inflammatory cytokines

Kig1base Baseline rate of M1 pro-inflammatory cytokine release

ked Relative effectiveness of tissue damage (D) in promoting
pro-inflammatory cytokine production

Vp Half-activation constant

h,, Hill coefficient

Kon1 Relative rate of IL1 release

Kpn12 Relative rate of IL12 release

Uni Decay rate of IL1

Hni2 Decay rate of IL12

Anti-inflammatory cytokines

Kiizbase Baseline rate of M2 anti-inflammatory cytokine release

kc4 Relative effectiveness of /L4 in promoting anti-inflammatory
cytokine production

Tissue damage

Qnis Rate of /L12 induction of damage
Qp; Rate of /L1 induction of damage
Ymi Rate of damage clearance by M1
Yz Rate of damage clearance by M2
[ Rate of damage production by M1

levels to fluctuate and, in turn, drive microglia phenotype
switching [22, 27]. We introduce a Hill function Rms to
represent contributions of anti-inflammatory mediation
by IL-4 and IL-10 toward shifting neurotoxic M1-like
microglia into a neuroprotective and reparative M2-like
microglia state:

(Tn4'IL4 + T,,,w-[LlO)g”

Rms = .
iy 4 (TpaIL4 + T,10-IL10)%"

The majority of cells maintain M2-like status once cel-
lular debris has been cleared from the initial injury and
regenerative processes are initiated; therefore, we do not
include switching from the M2 to the M1 phenotype.
The equations describing the M1- and M2-like microglia
population changes thus take the form:

amM1
el Rm1-mr—Rms-M1-p,,,-M1 (3)
am?
7 Rm2-mr + Rms-M1-p,,-M2. (4)

Pro-inflammatory processes

M1-like microglia are the major agents of pro-in-
flammatory cytokine secretion in the model, with a
release rate that we describe using a term Rp. In
addition to a baseline level of pro-inflammatory cytokine
release, this term includes the promotion of M1 pro-
inflammatory cytokine secretion by IL-12. Also in-
cluded in the numerator of Rp is the effect of dam-
aged tissue, with level D, which releases damage-
associated molecular patterns (DAMPs) that augment
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pro-inflammatory pathways and recruit other immune
cells. Anti-inflammatory mediators, IL-10 and IL-4, act
as inhibitors of this positive feedback loop between
pro-inflammatory cytokines and delayed tissue damage
[27, 28], as represented in the denominator of Rp, which
overall takes the form:

kmibase-M1 + M1 ( (IL12 + ked-D)" )

Vi 4+ (IL12 + ked-D)"

1+ (IL10+IL4)2

Aool

Rp =

The release rates of pro-inflammatory cytokines,
IL-1B and IL-12, by M1 as described in Egs. (5)—(6) are
both dependent on this pro-inflammatory cytokine pro-
duction term (Rp), each modulated by its own scaling
factor:

dIL1
- Kpni-Rp—ph,1-IL1 (5)
dIL12

At = P"lz'Rp_ﬂHIZ'Ile (6)

T-helper cell involvement

The proposed ODE model is microglia-based; how-
ever, T-helper (Th) cells have considerable influence
on neuroinflammatory cascades post-TBI because they
synthesize and secrete cytokines relevant to microglial
activation and to the M1 — M2 phenotype transition
[29]. Therefore, a term Rt was designated to account
for indirect influences of Type 2 Th (Th2) cells on the
production of IL-4 and IL-10:

(IL4 + kymro-IL12)
ktbuse + Cn Cn
& — 19 + (ILA + koo IL12)

(o)
Qoo

These Th2 cell interactions are crucial in resolving the
pro-inflammatory M1-like state by allowing for transi-
tion to anti-inflammatory M2-like conditions. As pro-in-
flammatory IL-12 accumulates in the local environment,
Th2 cells are signaled to produce IL-4, which initiates
M1 polarization to M2 [22] as captured in Egs. (3)—(4).
Another pertinent aspect of these reactions is the
self-regulatory nature of IL-10, which is produced by
Th2 in the presence of IL-4. IL-10 suppresses T cell re-
sponses (represented mathematically by its appearance
in the denominator of Rf) and, in turn, its own produc-
tion [30]. This autocrine inhibitory signaling protects
cells against unregulated anti-inflammatory processes in
the return to health.
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Anti-inflammatory processes

The rate of synthesis and secretion of anti-inflammatory
cytokines by M2-like microglia is represented by the
term Ra. IL-4 serves the dual role of driving additional
microglial polarization toward the M2 phenotype and
inducing anti-inflammatory cytokine production [28].
Negative feedback by IL-10 (as described in “T-helper cell
involvement” subsection) is crucial to the resolution of
cytokine production [30], and is thus represented in the
denominator of the anti-inflammatory cytokine produc-
tion term:

kniap, -M2—|—M2< (kedIL4)™ )

wi + (kcd-IL4)%
2
1L10
1+ (E)
Th2 and M2 contributions to anti-inflammatory cyto-

kine production, together with baseline decay of cyto-
kines, are combined to give the following ODEs:

Ra =

dIL10

7 = kml()'Rt + kpnlo'Ra—//lnm'ILlo (7)
dalL4
e Kina-Rt + Kppa-Ra—p,,,-IL4. (8)

Secondary tissue damage

While the acute neuroinflammatory response is designed
to be neuroprotective, certain processes cause adverse
secondary injury reactions, particularly if they are sus-
tained or exaggerated [22, 31]. If unregulated, M1-like
microglia can compromise healthy tissue through un-
selective phagocytosis and lead to progressive neurode-
generation. Also, pro-inflammatory positive-feedback
loops may induce a prolonged, detrimental inflamma-
tory cycle in which inflammatory processes overwhelm
anti-inflammatory constraints. The potentially dam-
aging effects of pro-inflammatory cytokines lie in their
promotion of additional pro-inflammatory pathways, as
opposed to direct tissue damage [14, 23].

In our model, damage (D), which evolves according to
the ODE (9), represents a qualitative secondary tissue
damage level, serving as a proxy for long-term outcome
among individuals with TBI. Equation (9) incorporates
factors that contribute to further neurodegeneration in-
cluding exacerbated pro-inflammatory pathways by IL-
1B and IL-12, which are inhibited by IL-10, and M1-like
microglia that release neurotoxic chemicals and may
unselectively phagocytize healthy tissue [32, 33]. Add-
itionally, neuroprotective features of microglia are cap-
tured in Eq. (9) to represent processes that mitigate
further tissue damage. M1-like microglia are essential
to tissue recovery via their role in host defense
mechanisms (pro-inflammatory cytokine, chemokine,



Vaughan et al. Journal of Neuroinflammation (2018) 15:345

and reactive oxygen species release) that recruit im-
mune cells to the site of injury, antigen-presenting
capabilities, and limited phagocytic activity [22, 33].
M2-like microglia act to alleviate damage by clearing
dysfunctional neurons and cellular debris, promoting
neurogenesis and remyelination, as well as suppress-
ing destructive inflammatory processes [34, 35], as
represented in the negative terms in Eq. (9):

dD a1 IL12 + ay-IL1

Ay ()]

+ ran M-y, -M1-D=y,,-M2-D. (9)

Parameter optimization

Our ODE model (Egs. (3)-(9)) includes a large number
(52) of parameter values, mostly representing rate con-
stants, half-activation, or saturation levels, and exponents
that affect sensitivity to changes in levels of evolving quan-
tities. These parameter values were constrained by previ-
ous literature and biological requirements (e.g., positivity),
but many have not been measured experimentally. Our
approach was to tune parameter values through param-
eter optimization methods to produce outputs consistent
with observed clinical inflammatory biomarker trajectories
while remaining within the constraints that we imposed.
Optimization was performed over the 45 parameters listed
in Table 1, as well as over initial condition values for M1,
M2, IL1, 1112, IL10, IL4, and D. Model integration and
parameter optimization were performed using Matlab
(MathWorks, Natick, MA).

For each patient group, the model was fit to com-
puted CSF cytokine averages over the first 5 days follow-
ing TBI in 6-h increments. A moving-average smoothing
procedure was applied to the cytokine data to diminish
the effect of outliers and short-term fluctuations in the
data. Specifically, we defined overlapping 12-h bins, each
shifted by 6 h relative to the previous bin, consisting of
data from 0 to 12, 6-18, 12—-24 h post-TBI, and so on. For
each cytokine, all values that occurred during the time
range encompassed by a bin were averaged together.

Initial parameter estimates were guided by available
values reported in the literature [14, 16]. The Nelder-
Mead simplex method was then employed as a nonlinear
optimization algorithm to determine sets of initial condi-
tions and parameter values that best fit model outputs,
obtained by numerical integration of Egs. (3)—(9) from a
given set of initial conditions, to the averaged clinical
data [36]. This method was implemented by using the
fminsearch function in Matlab to attain optimal model
fits to cytokine data from each subcluster. The Matlab
function odel5s was used to solve the system of ODEs.
Goodness of fit to patient data was determined by
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evaluating an error function that compared the model-
generated cytokine values to mean patient cytokine
values at every 6-h mark, summing the squared differ-
ences and dividing by the squared standard deviation to
normalize. Additionally, the following microglia heuristics
were set in place: M1 > M2 prior to day 2, M2 > M1 after
day 3, and M1, M2 > 2 for the entire time course. A pen-
alty value of 100 was added to the error calculation for
each of these conditions that was violated. Empirically,
smaller penalty values did not yield enforcement of the de-
sired conditions.

Ensemble of optimal model fits

Parameter estimation techniques led to a representative
parameter set that fit cytokine data for each patient
group. This baseline parameter set was then randomly
perturbed to provide new parameter sets that would
serve as starting estimates for an additional 100 itera-
tions of subsequent parameter estimation. Perturbations
were randomly selected from a uniform distribution
from 0.5 to 1.5 times the baseline parameter set values.
The parameter optimization procedure was repeated
for each of the 100 distinct parameter sets for each pa-
tient group, yielding an ensemble of model fits. The use
of this method was intended to allow for the possibility
that diverse parameter sets could provide similar model
fits and to capture the variability in biological charac-
teristics that would naturally occur across a patient
population.

Parameter distribution analyses

The ensembles of 100 model trajectories and parameter
sets from which they were generated were compared
across patient groups to investigate relative differences
in cytokine, microglia, and tissue damage temporal dy-
namics. Statistically comparing the distributions of each
parameter value between clusters was used to elucidate
physiological mechanistic differences that potentially ex-
plain divergent clinical outcomes post-TBL

Bhattacharyya metrics

The Bhattacharyya distance (BD) was calculated as a
statistical comparison of parameter distributions be-
tween patient groups. BD quantifies the level of spread
between distributions by incorporating their means and
variances. The Bhattacharyya coefficient (BC) measures
the degree of overlap between distributions [37]. A BC
of 0 indicates that the parameter distributions are non-
overlapping, while larger values signify greater similar-
ity. Conversely, a greater BD is associated with greater
spread between parameter distributions. These metrics
were computed via the bhatt function in STATA.
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Sensitivity analysis

In differential equation modeling, the values of particu-
lar parameters may influence model output at certain
time points more than others. Among parameter distri-
butions that differed significantly in the previous statis-
tical analyses, those that exhibit most influence on
model behavior merit the most attention as potential
sources of cluster differences in acute neuroinflamma-
tory mechanisms post-TBI.

Sensitivity analyses were conducted in Matlab by per-
turbing each parameter value individually by +2% and
observing subsequent changes in model output. Model
sensitivity (S) is calculated as:

Ax(t) A

Ap  x(t)’

where Ax(t) is the difference in model outputs at time ¢,
and Ap is the difference between the perturbed and ori-
ginal parameter value. The model sensitivity is normal-
ized to account for the nominal value of the parameter p
and model output x(£).

Results

Acute neuroinflammatory profile association with long-
term clinical outcome

In previous work, R.G. Kumar et al. identified groups of
patients with similar neuroinflammatory profiles in the
acute phase with no a priori knowledge of long-term
outcome [18]. However, further analysis revealed signifi-
cant associations between cluster group assignment and
long-term outcome based on GOS score. The vast ma-
jority (93.1%) of individuals in cluster 1 experienced un-
favorable outcomes (GOS = 1,2,3), whereas members of
cluster 2 varied greatly in their recovery status 6 months
post-TBI. We thus grouped cluster 2 into cluster 2A,
consisting of the 45.5% of individuals in cluster 2 report-
ing favorable outcomes (GOS=4,5), and cluster 2B,
composed of the remaining 54.5% with unfavorable out-
comes (GOS =1,2,3). Grouping by 6-month GOS score
was not implemented in cluster 1 due to the small num-
ber of favorable outcome patients belonging to this
group (n =2). GOS scores at 6 months post-TBI (Table 2)
and clinical characteristics (Table 3) are reported for
each of these patient clusters. Those in cluster 1 were
substantially older compared to individuals in cluster 2,
and hospital length of stay was shorter, a finding likely
due (in part) to higher acute mortality rates in this pa-
tient cluster. These groupings show that (1) different
acute neuroinflammatory response profiles may lead to
similar outcomes, and (2) similar acute neuroinflamma-
tory responses may lead to disparate outcomes.
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ODE model trajectories obtained by fitting to CSF
cytokine time courses

An ODE model (Egs. (3)—(9)) for the combined tem-
poral evolution of M1- and M2-like microglia, levels of
cytokines IL-1f, IL-12, IL-10, IL-4, and a secondary tis-
sue damage variable D was derived based on
well-supported biology underlying the acute inflamma-
tory response to TBI (“Ordinary differential equation
model development” section). Parameter optimization
methods were used to find collections of the 52 model
parameters for which model trajectories best fit the aver-
aged and smoothed data for each patient group (“Param-
eter optimization” section). Ensembles of 100 model fits,
which were produced by a range of initial parameter sets
along with averaged cytokine data values, are shown for
each patient cluster in Figs. 2, 3, and 4.

Divergent responses are observable among the model
trajectories for microglia, cytokines, and tissue damage
across the three patient clusters. Cluster 1, which had
the highest inflammatory load associated with unfavor-
able outcomes, demonstrated the most prolonged and
elevated microglial expression of the three clusters.
Cluster 1 trajectories were also characterized by rela-
tively constant levels of pro-inflammatory cytokines
IL-1PB and IL-12, high initial values of IL-10, and rapid
decay of IL-4. Interestingly, two types of damage re-
sponses were observed: a more common response in
which damage rose only slowly, and a minority response
with a rapid rise in damage following by a slow increase,
a finding that likely captures heterogeneity expected in
any patient population.

Trajectories for cluster 2A, which was associated with
favorable patient outcomes, showed a more rapid micro-
glial decay than cluster 1, with a noticeably faster decay
of Ml-like than M2-like microglia. Somewhat surpris-
ingly, levels of pro-inflammatory cytokines IL-1p and
IL-12 grew over time, with higher IL-12 levels than were
observed for cluster 1. On the anti-inflammatory side,
IL-10 levels were lower in cluster 2A compared to clus-
ter 1, while IL-4 levels were slower-decaying than for
cluster 1, and in some cases even increased, presumably
helping to suppress D values.

Model projections for cluster 2B, characterized by
lower inflammatory loads than cluster 1 yet unfavorable
outcomes, showed the most elevated levels of tissue
damage and the most transient microglial response of
the three clusters. Additional features of cluster 2B tra-
jectories included a significant rise in IL-12 levels near
the end of the simulations, IL-10 levels that started high
but decayed rapidly, and an abrupt decay of IL-4. These
factors suggest that there may be a significant pro-in-
flammatory contribution which is exacerbated by transi-
ent anti-inflammation to the high levels of D arising for
cluster 2B.



Vaughan et al. Journal of Neuroinflammation (2018) 15:345

Table 2 Six-month Glasgow Outcome Scale score by cluster group

6-mo. GOS score, n (%) Cluster 1 Cluster 2A Cluster 2B
1 14 (48.28) 11 (34.38)
2-3 13 (44.83) 21 (65.63)
4-5 2 (6.90) 28 (100)

Comparison of parameter distributions between clusters
Optimal model fits to patient data were achieved by tun-
ing biological parameters that appear in our set of differ-
ential equations (Egs. (3)—(9)) describing the time course
of acute neuroinflammation post-TBI. The resulting dis-
tributions of values for each parameter were compared
to identify those parameters with the most significant
variation across patient clusters (“Parameter distribution
analyses” section). Each model parameter has a corre-
sponding biological interpretation (Table 1), and the
neuroinflammatory role of each identified parameter was
considered in order to understand its contribution to
the relative temporal dynamics of cytokines, microglia,
and tissue damage that differentiate long-term outcome.
Table 4 shows a summary of the most dissimilar param-
eter distributions between clusters, based on Bhattachar-
yya metrics of overlap (BC) and spread (BD). Parameter
distribution differences were ranked by ascending over-
lap (BC) and descending spread (BD). We report and
discuss the most disparate parameter distributions that
were selected under the following criterion: BC<0.38,
and BD > 0.97.

In conjunction with Bhattacharyya tests applied to
compare parameter distributions between clusters, a
parameter sensitivity analysis was implemented through
Matlab to ensure that the significantly different param-
eters under consideration also significantly influence
model behavior (“Sensitivity analysis” section). Model
sensitivities to values of all parameters reported in
Table 4 exceeded our sensitivity threshold of 2. An add-
itional file provides the ranges and averages of each dis-
similar parameter distribution by pairwise cluster
comparisons (see Additional file 1).

Table 3 Clinical and demographic associations with cluster group
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Cluster 1 vs. cluster 2A

Cluster 1 and cluster 2A were the most dissimilar groups
in this analysis, differing in acute neuroinflammatory
marker levels and 6-month GOS score. Differences in
the degree of acute neuroinflammation post-TBI are ap-
parent in the disparate parameter distribution differ-
ences shown between clusters in Fig. 5. A more
aggressive and sustained course of inflammation is evi-
dent for cluster 1 as reflected in greater release rates of
IL-1B (kpn1) and IL-12 (k,,10) from activated M1-like
microglia and slower decay rates of M1 (4;4) and IL-10
(#n10) during acute injury. The level of a.., is greater in
cluster 1 than in cluster 2A, which points to an ineffect-
iveness of IL-10 at inhibiting pro-inflammation in cluster
1 patients, also consistent with the elevated inflamma-
tory load in cluster 1.

Cluster 1 vs. cluster 2B

While clusters 1 and 2B both reported unfavorable out-
comes at 6 months, individuals in these clusters
expressed different acute neuroinflammatory loads. Fig-
ure 5 depicts the most dissimilar parameter distributions
between these clusters, which potentially explain mal-
adaptive features of the inflammatory response in each
cluster. Cluster 2B exhibits a more transient inflamma-
tory response with greater decay rates of M1- (¢,s;) and
M2-like (4pr2) microglia, as well as IL-10 (u4,,50). This
finding suggests that the acute inflammatory profile of
cluster 2B individuals does not sustain microglial signal-
ing and anti-inflammatory control for an adequate
amount of time to achieve an effective, balanced inflam-
matory response.

In contrast, cluster 1 demonstrates a stronger early
pro-inflammatory response driven by elevated produc-
tion of IL-1pB (k,,,1) and IL-12 (k1) by M1, with greater
sensitivity to accumulating IL-12 and D levels (larger #,,)
leading to exacerbated pro-inflammatory pathways.
Negative feedback is also apparent, as mean levels of
IL-10 are significantly greater in cluster 1 to counterbal-
ance greater pro-inflammatory cytokine production
rates. Despite greater IL-12 production rates by cluster 1

Cluster 1 Cluster 2A Cluster 2B p value

(n=29) (n=128) (n=32)
Age, Mean (SE) 46.09 (3.26) 3129 (2.70) 3259 (2.64) 0.0026
Sex, Men (%) 23 (71.88) 25 (89.29) 27 (84.38) 0.1949
BMI, Mean (SE) 26.14 (0.90) 27.71 (1.06) 2699 (1.15) 0.5391
ISS score, Mean (SE) 3281 (1.72) 3330 (1.27) 34.53 (1.50) 0.5804
GCS score (best in 24 h.), Median (IQR) 6 (5-7) 7 (6-9.25) 6.5 (5-7) 0.1703
Length of stay in acute care (days), Mean (SE) 1749 (1.77) 21.68 (1.64) 2509 2.21) 0.0088

Italic signifies statistical significance at a=0.05
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Fig. 2 Cluster 1 ensemble of model trajectories for days 0-5 post-TBI. Dots represent moving-average data (see “Parameter optimization” section)

than those observed in cluster 2B, its decay is also more
rapid (4,12), potentially resulting in inadequate signal-
ing to Th2 cells to increase anti-inflammatory cytokine
production and counter the excessive pro-inflammatory
presence.

Cluster 2A vs. cluster 2B

Cluster 2A and 2B, which were initially one inflamma-
tory profile group from previous PCA and cluster ana-
lysis, were investigated separately to determine which
neuroinflammatory pathways drove differential outcomes
at 6 months. Figure 5 highlights dissimilar parameter dis-
tributions between these clusters that potentially explain
the disparity in their inflammatory programs post-TBIL.
Once again, the rapid decay of M2 in cluster 2B patients
(ar) is evident. This effect translated into fast decreases
in anti-inflammatory levels, which is coupled with a less
effective inhibition of pro-inflammatory effects by IL-10
(@es2). Cluster 2B also features a greater production of
IL-12 than cluster 2A (k,,12). Together, these factors imply
that cluster 2B individuals exhibit short-lived, less potent
M2 responses yielding neuroinflammatory behavior that
does not sufficiently impact the acute tissue damage
post-TBI.

CSF biomarker levels by cluster

R.G. Kumar et al. found considerable differences between
clusters 1 and 2 in terms of steroid hormones [18]. Mo-
tivated by previous work showing the existence of three
patient groups with significantly different cortisol tra-
jectories over the first 6 days post-injury [38], we inves-
tigated CSF cortisol level differences between patient
groups (Table 5) to supplement our inflammatory marker
comparisons. In post-hoc analyses, we found that cluster 1
had higher cortisol levels than both cluster 2A and 2B
over the full time course (p <0.001 for all comparisons).
For days 0-3, cluster 2A had significantly lower levels of
cortisol compared to cluster 2B (p =0.002). However,
transitioning into day 4-6, differences in average cortisol
levels were no longer significant between cluster 2A and
2B (p = 0.340).

Discussion

A set of differential equations was derived in this study to
model acute neuroinflammatory phenomena following se-
vere TBI, intended to represent dynamic time-dependent
interactions within and to generate hypotheses about
the complex communication network between resident
microglia and neuronal tissue via circulating cytokines.
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Fig. 3 Cluster 2A ensemble of model trajectories for days 0-5 post-TBI. Dots represent moving-average data (see “Parameter optimization” section)
collected from patients, while bars represent standard error of the mean

Microglia are potent effector cells in post-TBI neuroin-
flammation; however, there is limited early clinical infor-
mation collected regarding their activation, polarization,
and functional plasticity. Therefore, we leveraged cytokine
dynamics in our model to generate predictions on the state
of neuroinflammation, microglia phenotype distributions,
and tissue integrity in the acute injury recovery phase (day
0-5). This mechanistic model was generated on a founda-
tion of a priori information regarding core cytokine inter-
actions established empirically in the field of TBI.
Neuroinflammation, although a main contributor to sec-
ondary damage post-TBI is an inherent set of host defense
mechanisms aimed to protect and restore tissue integrity
[2, 39, 40]. While studies aim to label particular aspects of
this response neurotoxic or neuroprotective, this is ul-
timately a context-dependent consideration. The spatial
and temporal regulation of select neuroinflammatory
mechanisms may potentially preserve positive physio-
logical function and endogenous tissue homeostatic ef-
forts [3]. Modulating the coordinated balance of pro- and
anti-inflammatory cytokines, timely activation of M1 and
M2 microglia, and appropriate feedback signaling may

provide an adequate amount of pro-inflammation with
relatively less secondary tissue damage ensuing [41, 42].
Our ODE modeling techniques provide a platform that re-
capitulates the relative levels of evolving inflammatory me-
diators observed with TBI patient data and projects time
courses of microglia activation and tissue damage that are
mechanistically consistent with these data, thereby pre-
dicting the extent to which secondary TBI pathologies
may be arising in these clinically observed scenarios.

In this study, we stratified patient subgroups based on
long-term neurological outcome from patients that ex-
hibited distinct day 0-3 neuroinflammatory profiles [18].
Leveraging this methodology allowed model fits to be
generated for each patient cluster and respective out-
come, providing insight on potential differences in their
acute neuroinflammatory programs that may contribute
to disparate 6-month outcomes.

Assessing neuroinflammatory status via cytokine
trajectories

Initial statistical work by our group applied principal
component and cluster analysis to identify variability in
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Fig. 4 Cluster 2B ensemble of model trajectories for days 0-5 post-TBI. Dots represent moving-average data (see “Parameter optimization” section)
collected from patients, while bars represent standard error of the mean

acute neuroinflammatory biomarkers among individ-
uals following TBI [18]. These analyses suggested sets
of cytokines that demonstrate similar acute expression
patterns and may contribute to similar courses of in-
flammation and tissue recovery, helping to justify the
inclusion of a small number of specific cytokines in
our current modeling work. In this study, we sought
to utilize cytokine dynamics to infer the neuroinflamma-
tory state and subsequent microglial activation profile of
each patient cluster.

This methodology is a progressive direction in the TBI
field in that relative concentrations of cytokines can be
tracked and used to inform hypotheses regarding early
injury severity patterns and patient prognosis. While
studies have shown that absolute levels of acute anti-in-
flammatory mediators are predictive measures of initial
brain damage and complications, such as intracranial
pressure [43], our model illustrates the relative relation-
ships and time courses of mediators to provide a more
comprehensive view of neuroinflammation post-TBIL
The model was designed on the premise that cytokines
are expressed simultaneously following injury, collect-
ively contribute to microglial polarization profiles, and
may serve as useful biomarkers patterns to gauge the

level of neuroprotection or neurotoxicity in the local
microenvironment [3, 41, 44].

Novelty of modeling TBl-induced neuroinflammation
mathematically

In extension to cytokine measurement studies that
characterize neuroinflammation post-TBI, this modeling
framework is a novel method of investigating (1) temporal
dynamics of inflammatory mediators, (2) interdependent
cytokine pathways and feedback interactions, and (3) cyto-
kine influences on differential microglia expression and
tissue damage responses. Differential equations are well
suited for representing post-TBI neuroinflammation be-
cause the relative concentration changes of inflammatory
mediators can be modeled with respect to time. This ini-
tial report serves as a proof-of-concept that implementing
mechanistic modeling can further our understanding of
inflammatory network dynamics, kinetics, and phenotypic
polarization.

While early delivery of anti-inflammatory agents has
been an intuitive strategy for containing post-TBI neuroin-
flammation, the lack of consistent success suggests there
is more to consider for this approach. Suppressing a single
neuroinflammatory mechanism does not facilitate healthy
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Table 4 Sensitive parameters with most disparate distributions
between each cluster pair

Parameter Bhattacharyya Metrics

BC BD
Cluster 1 vs. Cluster 2A
oor 0 n/a
Kon12 0 n/a
Han 0 n/a
Hn1o 0 n/a
Ko 02 161
Cluster 1 vs. Cluster 2B
Hn 0 n/a
Hn1o 0 n/a
Kon12 0.01 n/a
h, 0.134 201
Kot 02 161
Unz 0209 1.56
Hn2 0.245 141
Cluster 2A vs. Cluster 2B
oo 0 n/a
Ui 0.045 3.1
v, 03 12
koni2 0379 0971

Only parameters with model sensitivities exceeding a sensitivity threshold of 2
were included

tissue recovery due to complex interdependencies of neu-
roinflammation [3, 39]. There has been a shift of perspec-
tive in the TBI field that acknowledges not only the dual
role of neuroinflammation post-TBI, but also the dichot-
omy of roles such as perpetuating damage and maintain-
ing homeostasis by individual mediators, including
cytokines and microglia phenotypes [9, 45]. The utility of
ODE modeling in this context is to elucidate the benefit
or detriment of particular mediators relative to
time-post-injury and expression of other local mediators.
Model simulations performed on patient-specific data
from different outcome groups produced quantitative
projections of cytokine dynamics and qualitative predic-
tions of microglia and tissue damage dynamics. The en-
sembles of parameters, which were tuned to generate
optimal fits for each patient cluster, were statistically
compared to generate hypotheses regarding differences
in the neuroinflammatory regimes of each cluster. These
analyses are a contribution to ongoing attempts to
characterize the functional roles and heterogeneous ef-
fects of microglia and related cytokines in acute TBI
neuroinflammation [9, 46]. This report presents the first
computational model in the field that aims to model the
temporal evolution and M1/M2 phenotypic balance of
microglia. In the following sections, we discuss the
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inflammatory trends, unique parameter differences, and
additional clinical considerations for each respective pa-
tient cluster and long-term outcome.

Unfavorable outcome groups (clusters 1 and
2B)—maladaptive features of neuroinflammation

R.G. Kumar et al. had identified a group of individuals
(cluster 1) with relatively high day 0-3 CSF inflamma-
tory loads, almost all of which experienced poor long-
term outcomes [18]. After subgrouping cluster 2 individ-
uals by 6-month GOS score, we identified another poor
outcome group yet with a relatively lower acute inflam-
matory load (cluster 2B). We hypothesized that the dis-
parity in acute neuroinflammatory profiles could drive
differential, yet both detrimental, courses of inflamma-
tion post-TBI that hinder recovery.

Cluster 1—evidence of prolonged inflammation

Elevated inflammation and highly activated microglia
were apparent through several model parameter differ-
ences that emerged when comparing across clusters. In
comparison to cluster 2B, cluster 1 model parameters
were significantly lower for microglial (both M1 and
M2 types) and IL-10 decay rates; higher for IL-1p and
IL-12 release rates; and higher for sensitivity to pro-in-
flammatory cytokine and damage signals. This combin-
ation of parameter differences is potentially reflective of
the failure of acute neuroinflammation and microglia
activity to resolve appropriately.

The self-perpetuating cycle of inflammation displayed
in cluster 1 trajectories has been shown to be detrimen-
tal to recovery for various reasons. While initial upregu-
lation of pro-inflammatory processes is intrinsically a
host defense response essential for the phagocytosis of
cellular debris and activation of immune system [6, 46],
extended activation may hinder neurogenesis and con-
tribute to additional neuronal loss and unselective clear-
ance of healthy tissue [8, 41]. In cluster 1 microglia
trajectories, the M2 response appears to persist along
with M1 activity but is not elevated enough to keep
M1-induced secondary damage suppressed via compen-
satory pro-health mechanisms.

Of note, the mean age of cluster 1 individuals (46.09
+3.26 year) was significantly higher than both cluster
2A and 2B indicating that there may be age-related dys-
functions in microglia involved after TBI. With increas-
ing age, microglia morphology changes and functional
impairments are observed. Microglia are found in less
ramified form with altered cytokine receptor patterns
which may hinder their ability to respond appropriately
to inflammatory stimuli [33, 40, 44]. In addition to an
already elevated baseline inflammatory state in aged indi-
viduals, surveying microglia cells lean toward a “primed”
phenotype characterized by activation at a lower threshold,
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Table 5 Day 0-3 and 4-6 CSF cortisol levels (ng/mL) by cluster
group

CSF Cortisol (ng/mL)  Cluster 1 Cluster 2A Cluster 2B p-Value
Day 0-3 Mean (SE) 3334 (189) 177(1.19  2258(1.68) <0.001
Day 4-6 Mean (SE) 2307 (1.69) 1520 (144) 1529 (1.44) 0.006

Italic signifies statistical significance at a=0.05

tendency to adopt an exaggerated pro-inflammatory
phenotype, and resistance to regulatory anti-inflammatory
cues [6, 40]. In cerebral ischemia injury models, stress has
similarly been shown to contribute to microglial priming
which may exacerbate inflammatory dynamics following
brain injury [47]. Stress-related implications likely arise in
cluster 1, as acute CSF cortisol levels are significantly ele-
vated compared to the other clusters. These findings are
in line with previous work showing that exaggerated in-
flammatory responses, especially among aged individuals,
are associated with elevated acute CSF cortisol levels and
TBI mortality [19, 38].

Additionally, mean IL-10 levels in cluster 1 were signifi-
cantly higher than both cluster 2A and 2B (57.54 vs. 8.08
and 11.54 pg/mL, respectively) over the first 5 days post-
TBI. Despite increased anti-inflammatory presence, pro-
inflammatory production levels and microglia activity per-
sisted perhaps due to reduced sensitivity of microglia to
anti-inflammatory mediation [40] and insensitivity of cyto-
kine release to anti-inflammation (elevated a.., in our
model). Our findings for cluster 1 are consistent with pre-
vious studies that found associations between CSF IL-10
levels, age, and mortality rates [48, 49].

Cluster 2B—evidence of transient inflammation

In contrast to cluster 1, both M1 and M2 microglia and
IL-10 levels decrease early and rapidly in cluster 2B.
Pro-inflammatory mediator levels remain elevated but
plateau, providing little to no re-initiation of microglial
activation and polarization once the levels fall to base-
line. There is a late rise in IL-1f that appears over day 3,
possibly due to secondary tissue damage release, but the
model could not capture an elevation of such low mag-
nitude. This rise in IL-1p does, however, fit nicely to the
late IL-12 rise. The consistent pro-inflammatory expres-
sion through day 5, coupled with the rapid decreases of
IL-4 and IL-10 and greater sensitivity to IL-10 inhib-
ition of further cytokine, leads to the elevated tissue
damage in cluster 2B model ensembles.

The most elevated levels of the tissue damage term
are observed for cluster 2B. This qualitative evidence
from our modeling efforts supports the concept that
the complete suppression of the neuroinflammatory re-
sponse and microglial activity, of either phenotype, is
potentially detrimental to tissue recovery post-TBI [5,
6]. In the absence of adequate microglia activity over
the first 5 days, damage from the initial injury may not
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be addressed, leading to further damage and perpetuat-
ing other secondary injury cascades.

By PCA and cluster analysis [18], cluster 2A and 2B
were indistinguishable when considering day 0-3 neuroin-
flammatory profiles. However, when considering CSF hor-
mone data, we found that cluster 2B individuals were
characterized by significantly higher cortisol levels than
cluster 2A over the first 3 days post-TBI, consistent with
differences in cortisol trajectories group membership
found between patient groups in previous work [38].
Elevated cortisol immediately following injury poten-
tially contributes to the premature immunosuppression
observed with cluster 2B, leading to a sub-physiological
microglial response.

Favorable outcome group (cluster 2A)—neuroprotective
features of neuroinflammation

Cluster 2A model ensembles best demonstrate a benefi-
cial physiological response to TBI. Microglial activity
was present for a length of time that was neither permis-
sive nor indiscriminate in pro-inflammatory mediated
damage (as in cluster 1), or sub-physiological in minim-
izing tissue damage associated with other forms of sec-
ondary injury (as in cluster 2B). This observation is
reflected in significant parameter differences regarding
the decay of microglia and IL-10, as well as release rates
of the pro-inflammatory cytokines. Although we observe
a gradual increase in the damage expression, it is lower
in magnitude than both unfavorable outcome clusters
and appears to be well contained as it plateaus near day
5. Particularly of note, the relative ratio of M2:Ml1
microglia in cluster 2A was approximately 1:1 after the
initial injury, becoming larger than 1 as the microglial
response progressed. Conversely, M2:M1 ratios in clus-
ters 1 and 2B were nearly 1:4 initially and became even
smaller over time. These findings may support the
physiological importance of microglia, even perhaps of
the stereotypically neurotoxic M1-like phenotype, in the
acute injury phase post-TBL.

Challenges and limitations of modeling microglial
physiology

There is considerable need in the TBI field to
characterize neuroinflammation, particularly with respect
to the contributions of microglial functionality, in order
to assess acute injury progression and tailor interven-
tion strategies to enhance neuroprotection for particu-
lar patient subgroups. In this study, we implemented
CSF cytokine time courses as proxies to indicate the
state of neuroinflammation post-TBI and inform micro-
glia activation and polarization dynamics. However, the
consistent collection of informative neuroinflammatory
data is not always clinically feasible. The refinement of cere-
bral microdialysis (CMD) and CSF cytokine measurement
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methodology will contribute to ongoing efforts to cen-
trally monitor TBI-induced neuroinflammation [50].

While cytokine data was available from a large patient
cohort, more limited samples were available to contrib-
ute to each 6-h smoothed mean. Serial sampling and
cytokine data at a greater temporal resolution would im-
prove model trajectories to provide more accurate pre-
dictions of the progression of neuroinflammation post-
TBI. The inflammatory data remained oscillatory in
nature despite a smoothing procedure for averaging.
Marked changes in inflammatory mediator dynamics
were largely absent, with most levels present at con-
sistently low levels. As a result, the fits to cytokine
data did not produce noticeable fluctuations between
microglia phenotypes.

There is inherent abstraction in mathematically mod-
eling biological processes. In our model, microglia sub-
types and tissue damage are qualitatively projected with
arbitrary units rather than quantified by cell count or
tissue volume. This limits the direct interpretation of
these time courses to an estimate of the M1- or M2-like
“state” of the brain following injury. Moreover, param-
eter values cannot be taken as literal rates with estab-
lished units. Although model parameters were initially
guided by existing experimental literature, scaling pro-
cedures on cytokine data and confounding factors in
experimental situations complicate the direct rate inter-
pretations. Our determination of differences between
parameter value distributions should be viewed as a
relative test of neuroinflammatory distinctions between
clusters, which integrated additional statistical metrics
to inform the degree to which the distributions differed.
Due to limitations of the statistical methodology, we in
fact de-emphasized the value of traditional hypothesis
testing alone and considered two Bhattacharyya metrics
to inform our comparative parameter analyses. Param-
eter value differences were ranked by lowest overlap
(BC) and highest spread (BD) to highlight the most dis-
similar parameter distributions between clusters.

Additionally, as a reduced model, the set of ODEs de-
rived were limited to prototypical markers of microglia
activation and acute inflammation to encompass basic
regulatory components in the inflammatory network:
initiation, propagation, phenotype switching, and inhib-
ition. The model was designed to represent recent find-
ings that IL-4 and IL-10 act as switch-like factors in
microglia polarization. However, the self-regulating and
immunosuppressive role of these anti-inflammatory me-
diators may be overemphasized in this model, based on
the relatively rapid return of microglia to baseline levels
predicted in all clusters. Inclusion of additional media-
tors may create a more comprehensive and nuanced il-
lustration of the inflammatory network that drives the
microglial response to TBI.
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In general, the understanding of microglia classifica-
tion and roles is still evolving in the neurotrauma field.
At first, a spectrum of activation states was proposed,
ranging from M1 to M2 extremes, with multi-func-
tional subtypes of M2 in between [46, 51]. Not only are
more nuanced views now being considered as alterna-
tives to these rigid phenotype classifications, a layer of
complexity has been added as simultaneous expression
of M1 and M2 phenotypic markers on the same cell
has now been observed in animal models [9]. This de-
veloping research area calls for further classification of
molecular profiles and associated functional roles of
microglia, particularly advancements that successfully
translate in vitro findings to in vivo scenarios. Macro-
phage research and dynamics have informed our ODEs
and have paved the way for much of our understanding
of phenotype polarization and functionality; however, it
is necessary to investigate these parallels in the brain
with microglia in order to extend M1 and M2 charac-
terizations explicitly. A key strength of our work is that
the modeling framework that we utilize need not be
interpreted in terms of a strict M1/M2 dichotomy. Ra-
ther, the framework allows for a flexible interpretation
of the M1 and M2 variables as cell counts, states, or
even associated microglia functions. The focus is on the
relative contribution and effects of the pre-specified cy-
tokines on the model behavior of those variables as well
as the physiological processes of pro- and -inflamma-
tory cytokine production, tissue damage, and healing
that M1 and M2 represent in our model; as long as
these elements are present and interrelated in the bio-
logical response to damage, our predictions related to
these quantities are not dependent on any specific M1/
M2 dichotomy.

More generally, our model encodes physiological in-
teractions among biological quantities thought to con-
tribute to inflammatory response dynamics as well as to
tissue damage and healing in the acute phase post-TBI.
This framework requires making assumptions about
which physiological processes contribute and in what
ways. We acknowledge that alternative sets of assump-
tions could lead to different conclusions, but we have
attempted to tailor our modeling choices to reflect
current understanding derived from previous experi-
mental, clinical, and computational work, albeit with
some simplifications to retain tractability. Nonetheless,
any experimental or clinical work aimed at predicting
outcome, such as suggesting early-warning signs for pa-
tient risk groups and targets for therapeutic interventions,
would necessarily proceed based on some theoretical
framework, typically reflecting the prevailing scientific
viewpoint, which would exert a strong impact on the
study performed. Among the advantages of the model-
ing approach used here in this report, we note that the
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underlying assumptions are clearly stated (see “Ordinary
differential equation model development” section) and the
parameter fitting process does not impose any additional
biases; rather, this modeling approach evaluates all model
parameters’ contributions to cluster differences, giving all
an equal chance to emerge as significant.

Lastly, microglia responses in the acute phase may be
a transient phenomenon overshadowed by subsequent
chronic elevations [46, 52], which have been observed as
late as 11 months to 17 years post-TBI in humans [40],
and accompanying pathologies; nonetheless, these tran-
sients may contribute to long-term influences of acute
neuroinflammation on patient outcome [18].

Stratifying patient subgroups for improved prognosis and
treatment

PCA and cluster analysis by R.G. Kumar et al. identified a
cluster of individuals (cluster 1) with elevated inflamma-
tion with respect PC1 markers. However, the outcomes of
cluster 2 individuals in this study were variable, despite
negative PC1 scores for the majority [18]. This work indi-
cates that elevations of PC1 markers (IL-5, IL-6, IL-8,
IL-10, sVCAM, sICAM, and sFAS) were predictive of out-
come for a subset of the patients in the study; however,
other predictive measures were yet to be unveiled to dis-
tinguish patient prognosis in cluster 2. In the current
study, we grouped cluster 2 patients by 6-month GOS
score to investigate differences in their inflammatory and
microglial dynamics post-TBI beyond classification of par-
ticular acute inflammatory markers. Despite having
greater cortisol levels in the first 3 days following TBI,
cluster 2B individuals were also projected to be in an im-
munosuppressed state due to early microglia decay and
greater sensitivity to IL-10 in negative feedback mecha-
nisms that control cytokine production.

Our findings on cluster 2B emphasize the important
point that microglial responses underlying poor patient
outcomes post-TBI are likely heterogeneous; in particu-
lar, poor outcomes in some patients might relate to a
sub-physiological microglial response. This interpret-
ation of results exemplifies the utility of mathematical
modeling in exploring how early patient stratification
based on inflammatory marker expression may lead to
informed understanding of acute recovery trajectories
and guide decision-making for specific immunomodula-
tory therapy types that may benefit from additional
pre-clinical evaluation.

Conclusion

This modeling approach makes both clinical and compu-
tational contributions to the growing conceptualization of
microglia pathophysiology following severe TBI. We have
integrated statistical and mechanistic modeling to investi-
gate potential sources of acute pathologies that lead to
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particular outcomes. This novel approach in TBI dem-
onstrates the feasibility of computationally extracting
predictions about intervention targets in a way that is
informed by mechanistic understanding of the under-
lying physiology. In future studies, this mathematical
modeling framework can serve as a manipulable sys-
tem, via adjustment of target parameters that are of
mechanistic importance to the neuroinflammatory sys-
tem, to simulate pharmacological intervention effects
and improve our understanding of neuroinflammatory
kinetics. Our model can also be augmented to incorp-
orate additional biological features that connect with
available data. Our results predict that the early stratifi-
cation of distinct patient subgroups based on neuroin-
flammatory differences could support personalized
therapies that modulate the microglial response, includ-
ing the balance and timing of transitions of M1- and
M2-like states, or the associated inflammation-related
processes, following TBI. Informing such computa-
tional approaches with new evidence on phenotypic
markers and specific roles of each microglia subtype, as
well as validating model predictions with additional pa-
tient data, will promote the development of TBI inter-
ventions that harness the multifaceted nature of
neuroinflammation and microglia in a way that miti-
gates secondary injury and improves patient outcome.
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