Liu et al. Journal of Neuroinflammation (2018) 15:347

https://doi.org/10.1186/512974-018-1388-x Journal of Neuroinflammation

RESEARCH Open Access

Fluoxetine attenuates neuroinflammation in ®=
early brain injury after subarachnoid

hemorrhage: a possible role for the

regulation of TLR4/MyD88/NF-kB signaling
pathway

Fu-yi Liu, Jing Cai, Chun Wang, Wu Ruan, Guo-ping Guan, Hai-zhou Pan, Jian-ru Li, Cong Qian, Jing-sen Chen,
Lin Wang and Gao Chen’

Abstract

Background: Neuroinflammation is closely associated with functional outcome in subarachnoid hemorrhage (SAH)
patients. Our recent study demonstrated that fluoxetine inhibited NLRP3 inflammasome activation and attenuated
necrotic cell death in early brain injury after SAH, while the effects and potential mechanisms of fluoxetine on
neuroinflammation after SAH have not been well-studied yet.

Methods: One hundred and fifty-three male SD rats were subjected to the endovascular perforation model of
SAH. Fluoxetine (10 mg/kg) was administered intravenously at 6 h after SAH induction. TAK-242 (1.5 mg/kg), an
exogenous TLR4 antagonist, was injected intraperitoneally 1 h after SAH. SAH grade, neurological scores, brain
water content, Evans blue extravasation, immunofluorescence/TUNEL staining, quantitative real-time polymerase chain
reaction (QRT-PCR), and western blot were performed.

Results: Fluoxetine administration attenuated BBB disruption, brain edema, and improved neurological function after
SAH. In addition, fluoxetine alleviated the number of Iba-1-positive microglia/macrophages, neutrophil infiltration, and
cell death. Moreover, fluoxetine reduced the levels of pro-inflammatory cytokines, downregulated the expression of
TLR4 and MyD88, and promoted the nuclear translocation of NF-kB p65, which were also found in rats with TAK-242
administration. Combined administration of fluoxetine and TAK-242 did not enhance the neuroprotective effects of
fluoxetine.

Conclusion: Fluoxetine attenuated neuroinflammation and improved neurological function in SAH rats. The potential
mechanisms involved, at least in part, TLR4/MyD88/NF-kB signaling pathway.
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Background

Subarachnoid hemorrhage (SAH) is a severe subtype
of stroke with high mortality and morbidity; 25% of
SAH patients died within 2 days, and cognitive and
functional deficits present in about 20% of SAH survi-
vors [1, 2]. In recent years, the importance of early
brain injury has been concerned by researchers. Initial
clinical severity after SAH has been shown to be the
most important predictor for clinical outcomes in pa-
tients [3]. In addition, alleviating early brain injury has
been reported to exert neuroprotective effects in SAH
model [4-6].

Neuroinflammation is a well-recognized consequence
of SAH and considered as an important contributor for
early brain injury, cerebral vasospasm, and delayed
brain injury after SAH [7, 8]. In addition, neuroinflam-
mation is closely associated with functional outcome in
SAH patients [9, 10]. Toll-like receptors (TLRs) belong
to a large family of pattern recognition receptors that
play a key role in inflammatory responses [11]. Of all
the TLR family members, TLR4 is widely expressed in
the central nervous system, including microglia, neu-
rons, astrocytes, endothelial cells [12]. After stimulation
of TLR4 with ligands, the MyD88-dependent pathway
activates NF-kB, which produces pro-inflammatory cy-
tokines mediators such as tumor necrosis factor
(TNF-a) [13]. Thus, therapies target TLR4 signaling
pathway, and subsequent neuroinflammation may offer
potential treatment to protect against neuroinflamma-
tion after SAH.

Fluoxetine is one of the serotonin selective reuptake
inhibitors. Since the least toxicity and side effects, flu-
oxetine has been widely prescribed depression and
anxiety disorders [14]. Neuroprotective effects of flu-
oxetine have been demonstrated in different neuro-
logical diseases [15-18]. Fluoxetine has been shown
to exert a capacity to regulate neuroinflammation [19,
20]. Our recent study also demonstrated that fluoxet-
ine inhibited NLRP3 inflammasome activation and
subsequent necrotic cell death in early brain injury
after SAH [18]. Importantly, recent studies also dem-
onstrated that fluoxetine inhibits TLR4 activation and
subsequent NF-«B signaling pathway in vivo and in
vitro [21-24]. In the present study, we investigated
the effects of fluoxetine in neuroinflammation and the
potential TLR4/MyD88/NF-kB signaling pathway in
early brain injury after SAH.

Methods

Study design

Experiment 1

Male SD rats were randomly divided into four groups:
sham, sham+fluoxetine, SAH+vehicle, and SAH+fluoxet-
ine group. Fluoxetine was purchased from Selleck and
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dissolved in sterile 0.9% NaCl. Fluoxetine (10 mg/kg) or
vehicle was injected intravenously at 6 h after SAH in-
duction as previously described [18]. SAH grade and
neurological scores were measured in all groups. Brain
edema (n =6/group), Evans blue extravasation (n =6/
group), immunofluorescence/TUNEL staining (n=>5/
group), quantitative real-time polymerase chain reaction
(qRT-PCR) (1 =5/group), and western blot (1 = 6/group)
were performed.

Experiment 2

Male SD rats were randomly divided into four groups:
SAH+vehicle, SAH+TAK-242, and SAH+fluoxetine,
SAH+fluoxetine+TAK-242 group. TAK-242 (1.5 mg/kg),
an exogenous TLR4 antagonist, was injected intraperito-
neally 1h after SAH as previously described [25]. Neuro-
logical scores, Evans blue extravasation (n=6/group),
qRT-PCR (n =5/group), and western blot (n = 6/group)
were performed.

SAH model

Male Sprague-Dawley (SD) rats were purchased from
SLAC Laboratory Animal Company (Shanghai, China)
and housed in a controlled humidity and temperature
conditions. The endovascular perforation model was
performed to induce rat SAH as previously described
[26]. Briefly, we isolated the left carotid artery and its
branches under anesthesia of pentobarbital (50 mg/kg).
Then, we divided the external carotid artery (ECA) and
advanced a 4-0 monofilament suture until resistance was
felt. Subsequently, we punctured the vessel and induced
SAH. The sham rats underwent the same procedure
without puncturing.

SAH grade and neurological scores

SAH grade and neurological scores were blindly
assessed at 24 h after SAH as previously described [27].
Briefly, the basal cistern was divided into six segments.
Each part was blindly obtained a grade from 0 to 3
judging by the amount of the blood clot in subarach-
noid space. Then, the rats have received a total score
ranging from 0 to 18. Neurological scores were blindly
evaluated with a modification of the Garcia scoring sys-
tem [28]. This scoring system has six parts as follow:
spontaneous activity, spontaneous movements of all
limbs, movement of forelimbs, climbing wall of the wire
cage, reaction to touch on both side of trunk, and re-
sponse to vibrissae touch. Then, the rats have received
a total score ranging from 3 to 18. In this study, rats
with SAH grade <9 were excluded.

Brain edema and blood-brain barrier disruption
Brain edema and blood-brain barrier (BBB) disruption
were evaluated at 24 h after SAH as previously described
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[29]. Brain water content and Evans blue leakage were
used to assessing brain edema and BBB disruption.
Briefly, under deep anesthesia, rats were sacrificed.
Then, brains were removed and divided into the left
hemisphere, right hemisphere, cerebellum, and brain-
stem. The left hemispheres were weighed immediately to
get the wet weight and dried at 105 °C for 3 days to ob-
tain dry weight. Brain water content was calculated as
[(wet weight-dry weight)/wet weight] x 100%. Evans blue
dye (2%, 5 ml/kg) was administrated via the left femoral
vein and circulated for 1h. Under deep anesthesia, rats
were sacrificed by cardiac perfusion. Then, we removed
and separated the brain to get the left hemispheres im-
mediately. Subsequently, we weighted the brain samples
and homogenized with 3 ml of 50% trichloroacetic acid,
then centrifuged at 15000 g for 30 min. The supernatant
was mixed with an equal volume of trichloroacetic acid
with ethanol. After overnight incubation (4°C), the
samples were centrifuged again (15,000g, 30 min) and
measured by spectrofluorophotometer (excitation wave-
length 620 nm and emission wavelength 680 nm).

Quantitative real-time polymerase chain reaction

The left basal cortical specimen (about 50—100 mg) in the
face of the blood clot was collected for PCR detection at
24 h after SAH (as shown in Additional file 1: Figure S1).
The total mMRNA was then extracted using TRIzolTM Plus
RNA Purification Kit (#12183-555, Invitrogen, China).
Then, we determined the quantity of the purified RNA
using UV absorbance at 260 nm. Subsequently, 1ug of
purified RNA from each sample was reverse-transcribed
to cDNA. Superscript™ III First-Stand Synthesis SuperMix
for qRT-PCR (#11752-050) was used to synthesize cDNA.
The specific sequence of primers used was described as
follows: TNF-a: sense primer 5-GGT CCC AAC AAG
GAG GAG AAG TTC-3', antisense primer 5'-CCG CTT
GGT GGT TTG CTA CGA C-3'; IL-1B: sense primer
5-CGT GGG ATG ATG ACG ACC TGC-3’, antisense
primer 5-GGA GAA TAC CAC TTG TTG GCT
TAT-3’; IL-6: sense primer 5-GAC AGC CAC TGC
CTT CCC TAC TT-3', antisense primer 5'-CAG AAT
TGC CAT TGC ACA ACT CT-3’; CD86: sense primer
5'-CAT CTA AGC AAG GAT ACC CGA AAC-3’, and
antisense primer 5'-GAG ATA GGC TGA TGG AGA
CAC TGA A-3'. PCR amplification was performed with a
program of 95 °C for 1 min, followed by 40 cycles of 95 °C
for 155, and 63 °C for 25s. The relative mRNA level of
each target gene was calculated using the 27VVT methods
as previously described [30].

Immunofluorescence staining

Immunofluorescence staining was performed at 24 h after
SAH as previously described [29]. Briefly, rats were deeply
euthanized and perfused with 4% paraformaldehyde in
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0.1-mM phosphate-buffered saline (PBS, PH7.4). Brain
samples were immersed in 30% sucrose until sinking to
the bottom; 18 um-thick slices were cut with a cryostat.
The primary antibodies were polyclonal goat anti-Iba-
1(1:500, ab5076, Abcam), monoclonal mouse anti-NeuN
(1:500, ab104224, Abcam), and polyclonal rabbit anti-
MPO (1:300, ab65871, Abcam). Alexa Fluor 594 donkey
anti-goat IgG (1:500, Invitrogen) and donkey anti-mouse
(1:500, Invitrogen) were used as secondary antibody.
Terminal deoxynucleotide transferase-deoxyuridine tri-
phosphate (dUTP) nick end labeling (TUNEL) was per-
formed following the manufacturer’s protocol (Roche,
Switzerland). Finally, the slices were covered by DAPI and
observed under a fluorescence microscope. All procedures
were conducted by two investigators blind to the experi-
mental condition.

To quantify Iba-1-positive, MPO-positive, TUNEL-
positive cells, we selected at least three sections per rats
with similar areas of ipsilateral cortex (Additional file 1:
Figure S1) and three fields with a magnification of x 200
or x 400 per section. For quantification of Iba-1-positive
and MPO-positive cells, the numbers from these fields
were averaged and expressed as positive cells per square
millimeter for each mouse. For quantification of apop-
totic neurons, the percentage of TUNEL-positive neu-
rons was calculated as follows: (number of TUNEL-
positive neurons/total number of neurons)x 100%.
Tissue sections were analyzed by an observer who was
blinded to the experimental cohorts.

Western blot

Western blot was performed at 24 h after SAH as previ-
ously described [26]. Under deep anesthesia, rats were
sacrificed by cardiac perfusion with 0.1 M PBS, then brains
were removed and the left basal cortical specimens in the
face of the blood clot were obtained. The nuclear proteins
were prepared by the NE-PER nuclear extraction reagents
(Thermo, Rockford). Briefly, the ipsilateral cortex was ho-
mogenized and centrifuged for 10 min (1000g, 4 °C). Total
protein was determined by BCA Protein Assay Kit (Beyo-
time, Shanghai, China). An equal amount of protein (60
pg) was suspended in loading buffer (denatured at 95°C
for 5min) and loaded on an SDS-PAGE and transferred
to nitrocellulose membranes. Then, we blocked the mem-
branes with a nonfat dry milk buffer for 2 h, followed by
incubation overnight with the following primary anti-
bodies: polyclonal rabbit anti-NF-kB p65 (1:1000,
ab16502, Abcam), monoclonal mouse anti-TLR4: (1:200,
sc-293,072, Santa Cruz Biotechnology), polyclonal rabbit
anti-MyD88 (1:1000, ab2064, Abcam), monoclonal rabbit
anti-MMP9 (1:5000, ab137867, Abcam), polyclonal rabbit
anti-ZO-1 (1:2000, ab96587, Abcam); polyclonal goat
anti-claudin-5 (1:500, sc-17,668, Santa Cruz Biotechnol-
ogy), monoclonal rabbit anti-occludin (1:50000, ab167161,
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Abcam). The membranes were then incubated with horse-
radish peroxidase-conjugated secondary antibody for 1h
at room temperature. Blot bands were detected by X-ray
film and quantified using Image J software (NIH).

Statistical analysis

Data were presented as mean * SD. For the data satisfy-
ing normal distribution, comparisons between groups
were performed by one-way ANOVA as appropriate. For
the data satisfying non-normal distribution, comparisons
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between groups were performed by Kruskal-Wallis test
or Mann-Whitney test. Differences were considered sig-
nificant at p<0.05. All statistical analyses were per-
formed using GraphPad Prism and SPSS software.

Results

Physiological parameters, mortality, and SAH grade
During the surgical procedures, no significant difference
was observed in all physiological parameters including
the mean arterial pressure, arterial PH, PO,, PCO,, and
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Fig. 1 The effects of fluoxetine on mortality, SAH grade, neurological scores, Evans blue extravasation, and brain edema. a The quantification of
mortality. b The quantification of SAH grade. n = 28/group. ¢ The quantification of Evans blue extravasation. *p < 0.05 vs sham. *p < 0.05 vs SAH
+vehicle. n = 6/group. d The quantification of brain water content. **p < 0.01 vs sham. #p < 0.05 vs SAH-+vehicle. n = 6/group. e The quantification
of neurological score. *p < 0.05 vs sham. *p < 0.05 vs SAH+vehicle. n = 28/group

B 201
o 154
3 1T T
o0
= 10
<
wn
5-
c L] L] L L
(9
S & & &
S x‘z Q&'
RS S
X S &
= ®
D
~ 81.0-
s
£ 8054 wdk
2
g T
80.0-
ﬂ_: #
£ 7954 T
£
[+
& s B
79.0 T T T T
L
S & & &
0 XAQJ QQA’
& &L
& ® $
o S




Liu et al. Journal of Neuroinflammation (2018) 15:347

blood glucose levels (data not shown). None of the rats
died in the sham and sham+fluoxetine group. In experi-
ment 1, the mortality of SAH+vehicle and SAH+fluoxet-
ine group were 28.2% (11/39, Fig. la) and 24.5% (9/37,
Fig. 1a), respectively. In experiment 2, the mortality of
SAH+vehicle, SAH+TAK-242, SAH+fluoxetine, and SAH
+fluoxetine+TAK-242 group were 29.2% (7/24), 22.7% (5/
22), 22.7% (5/22), and 19.0% (4/21), respectively. SAH
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grade was blindly evaluated in our study. However, there
is no significant difference between SAH groups (p > 0.05,
Fig. 1b).

Fluoxetine attenuated BBB disruption, brain edema, and
neurological deficits

SAH induction increased the amount of Evans blue ex-
travasation, indicating the disruption of BBB (p <0.01,
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Fig. 1c). Similarly, SAH also increased the ratio of brain
water content, indicating brain edema (p < 0.01, Fig. 1d).
In addition, neurological scores were lower in the SAH
+vehicle group than in the sham rats, indicating neuro-
logical impairments (p <0.01, Fig. 1e). The BBB disrup-
tion and brain edema were significantly attenuated by
fluoxetine administration (p <0.01, Fig. 1c and p < 0.05,
Fig. 1d). Fluoxetine treatment also improved neuro-
logical function compared with the SAH+vehicle group
(p <0.05, Fig. 1e).

Fluoxetine downregulated MMP-9 expression and
decreased the degradation of tight junction proteins

Rats in SAH+vehicle group had high levels of MMP-9
than control rats (p<0.01, Fig. 2a, b), and rats
post-treated with fluoxetine had a lower MMP-9 expres-
sion (p<0.01, Fig. 2a, b). The protein levels of tight
junction proteins, including occludin, claudin-5, and
Z0O-1, were significantly decreased in the SAH+vehicle
group when compared with the sham group (p<0.01,
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Fig. 2 a, c—e), whereas fluoxetine treatment significantly
upregulated their protein levels (p < 0.05, Fig. 2c, e, and
p <0.01, Fig. 2d).

Fluoxetine decreased the expression of pro-inflammatory
cytokines

qRT-PCR results showed the mRNA levels of pro-in-
flammatory cytokines TNF-«, IL-1B, IL-6, and CD86
were significantly increased in the SAH+vehicle group
compared with the sham group (p<0.01, Fig. 3a—d),
while fluoxetine administration significantly reduced the
mRNA levels of TNF-a (p<0.01, Fig. 3a), IL-1p (p<
0.05, Fig. 3b), IL-6 (p < 0.01, Fig. 3c), and CD86 (p < 0.01,
Fig. 3d).

Fluoxetine reduced Iba-1-positive microglia/macrophages,
neutrophil infiltration, and neuronal apoptosis

A significant increase of Iba-lpositive cells was
detected in SAH+vehicle group compared with the
sham group (p <0.01, Fig. 4a, b), whereas fluoxetine
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significantly decreased the number of Iba-1 positive cells
(p<0.01, Fig. 4a, b). MPO-positive cells markedly in-
creased in the ipsilateral cortex after SAH when compared
with the sham group (p <0.01, Fig. 5a, b), while adminis-
tration of fluoxetine significantly reduced the number of
MPO-positive cells after SAH (p <0.01, Fig. 5a, b). The
percentage of TUNEL-positive neurons was significantly
higher in the SAH+vehicle group than the control group
(»<0.01, Fig. 6a, b), whereas fluoxetine administration
significantly decreased the percentage of TUNEL-positive
neurons (p < 0.01, Fig. 6a, b).

Fluoxetine attenuated TLR4 and MyD88 and reduced the
nuclear translocation of NF-kB p65

The protein levels of TLR4 and MyD88 were signifi-
cantly increased in the cortex in the SAH+vehicle group
as compared with the sham group (p <0.01, Fig. 7a—c).
The protein levels of TLR4 and MyD88 in SAH+fluoxet-
ine group were significantly lower than those of SAH
+vehicle group (p <0.01, Fig. 7a—c). We also examined
the nuclear levels of NF-kB p65, an indicator of the acti-
vation of the NF-kB signaling pathway. The protein
levels of NF-kB p65 were significantly increased in the
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A

SAH+vehicle group as compared with the sham group
(p<0.01, Fig. 7a, d). The protein levels of NF-kB p65 in
SAH+fluoxetine group were significantly lower than
those of SAH+vehicle group (p < 0.01, Fig. 7a, d).

Combined administration of fluoxetine and TAK-242 did
not enhance the effects of fluoxetine in the expression of
TLR4, MyD88, nuclear NF-kB, and pro-inflammatory
cytokines, BBB disruption, and neurological function

The protein levels of TLR4, MyD88, and nuclear NF-«B
were significantly decreased in the cortex in the SAH
+TAK242, SAH+fluoxetine, and SAH+fluoxetine+TAK-
242 group as compared with the SAH+vehicle group

(p <0.01, Fig. 8a—d). There was no significant differ-
ence between SAH+fluoxetine and SAH-+fluoxetine
+TAK-242 in proteins level of TLR4, MyD88, and
nuclear NF-xB (p >0.05, Fig. 8a—d). The mRNA levels
of pro-inflammatory cytokines TNF-«, IL-1p, and IL-6
were significantly decreased in the cortex in the SAH
+TAK242, SAH+fluoxetine, and SAH+fluoxetine+TAK-
242 group as compared with the SAH+vehicle group
(p <0.01, Fig. 8e, p <0.05, Fig. 8f, and p < 0.01, Fig. 8g).
No significant difference was observed in these
mRNA levels between SAH+fluoxetine and SAH+fluoxet-
ine+TAK-242 group (p >0.05, Fig. 8e—g). Combined ad-
ministration of fluoxetine and TAK-242 prevented the
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Evans blue extravasation (p < 0.01, Fig. 8h) and improved
the neurological function (p<0.05, Fig. 8i), which was
similar with fluoxetine treatment (p > 0.05, Fig. 8h, i).

Discussion

The current study presented several novel findings:(1)
fluoxetine attenuated BBB disruption, brain edema, and
improved neurological function after SAH. (2) Fluoxet-
ine alleviated the number of Iba-1-positive microglia/
macrophages, neutrophil infiltration, and cell death. (3)
Fluoxetine reduced the levels of pro-inflammatory cyto-
kines, and the underlying mechanisms, at least in part,
involved the TLR4/MyDS88/NF-kB signaling pathway
(Fig. 9).

At present, no therapies are available to cure the
neurological deficits in SAH patients [31]; however, an
increasing number of studies show that inflammation con-
tributes to early brain injury after SAH and inhibition of

inflammation can ameliorate brain injury after SAH [10,
32-34]. One of the most important mediators in
inflammation-induced brain injury after SAH is MMP-9.
Notably, both clinical and basic studies have reported an
elevation of MMP-9 in brain tissue, serum, and cerebro-
spinal fluid after SAH [35-37]. The MMP-9 elevation is
responsible for the degradation of tight junction proteins,
which are critical in the maintenance of BBB integrity. In
the present study, we observed fluoxetine treatment allevi-
ated MMP-9 expression and degradation of tight junction
proteins (ZO-1, occludin, and claudin-5), attenuated BBB
disruption and brain edema, and improved neurological
function after SAH. The effects of fluoxetine on MMP-9
expression and subsequent BBB disruption were consist-
ent with previous reports about fluoxetine treatment in
experimental transient global ischemia and spinal cord in-
jury [38, 39]. BBB disruption facilitates infiltration of per-
ipheral inflammatory cells, including macrophage and
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neutrophils, which aggravate neuroinflammation by re-
leasing a multitude of inflammatory factors [40]. In
addition, BBB disruption also results in neuronal cell
death [38]. In the current study, we found that fluoxetine
inhibited the neutrophils infiltration and reduced neural
cell death in early brain injury after injury.

Inflammatory cytokines are important regulators in
MMP-9 activation and subsequent BBB disruption. A
previous study demonstrated that the selective inhibitor
of IL-1B blocked JNK-mediated MMP-9 activation and
improved neurological function in SAH rats [41]. IL-6
induced MMP-9 expression through the JAK-mediated
pathway in macrophages [42]. TNF-a was also reported
as an upstream regulator for MMP-9 [43]. In our study,
we found that fluoxetine downregulated these inflamma-
tory cytokines, which is in accordance with previous
studies [44, 45]. TLRs belong to a large family of pattern
recognition receptors that play a key role in innate im-
munity and inflammatory responses. Of the TLR family
members, TLR4 was of vital importance in this family.
TLR4 is activated by many endogenous ligands such as
heme, fibrinogen, heat shock proteins, all of which are

produced after SAH [13, 46]. In fact, patients with
aneurysmal SAH was reported to have higher TLR4
levels on peripheral blood mononuclear cells, which
were associated with more massive SAH, occurrence of
cerebral vasospasm, delayed cerebral infarction, and
worse functional recovery [47]. TLR4 interacts with two
distinct adaptor proteins, MyD88 and Toll-receptor-as-
sociated activator of interferon (TRIF), and activates two
parallel signaling pathways to initiate activation of tran-
scription factors that regulate expression of proinflam-
matory cytokines genes [12]. In addition, the TRIF-
dependent pathway induces late phase activation of
NF-kB, while the faster TLR4 route through MyD88 is
the early activation of NF-kB. Many previous studies
have demonstrated the anti-inflammatory effects of
fluoxetine in other system disorders in vivo and in vitro
[20-24, 48]. In these studies, TLR4 and downstream
NF-kB were hotspots. However, limited studies focused
on the effects of fluoxetine in the TLR4 signaling
pathway after SAH. Therefore, we examined the TLR4-
mediated MyD88 pathway in the current study. Our
results showed that the protein levels of TLR4 and
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Fig. 8 Combined administration of fluoxetine and TAK-242 did not enhance the effects of fluoxetine in the expression of TLR4, MyD88, nuclear NF-kB,
and pro-inflammatory cytokines, BBB disruption, and neurological function. a Representative western blot bands of TLR4, MyD88, and nuclear NF-kB
p65. b Densitometric quantification of TLR4. **p < 0.01 vs SAH+vehicle. n=6/group. ¢ Densitometric quantification of MyD88. **p < 0.01 vs
SAH+vehicle. n = 6/group. d Densitometric quantification of nuclear NF-kB p65. **p < 0.01 vs SAH+vehicle. n = 6/group. e The quantification of TNF-a
mRNA levels. **p <0.01 vs SAH+vehicle. n=5/group f The quantification of IL-13 mMRNA levels. *p < 0.05 vs SAH+vehicle. n = 5/group.
g The quantification of IL-6 mRNA levels. **p < 0.01 vs SAH-+vehicle. n = 5/group. h The quantification of Evans blue extravasation. **p < 0.01vs
SAH-+vehicle. n = 6/group. i The quantification of neurological score. *p < 0.05 vs sham. *p < 0.05 vs SAH + vehicle. n = 17/group

MyD88 were significantly increased in early brain injury
after SAH and fluoxetine downregulated their expres-
sion. In addition, we found that fluoxetine also reduced
the nuclear translocation of NF-kB p65, an indicator of
NEF-kB activation. What is more important is that we

also used TAK-242, a small-molecule inhibitor of the
TLR4 signaling pathway. We found that the combined
administration of fluoxetine and TAK-242 reduced the
expression of TLR4, MyD88, and nuclear NF-«B, de-
creased the mRNA levels of pro-inflammatory cytokines,
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prevented BBB disruption, and improved neurological
function after SAH. These beneficial effects of combined
administration were similar to alone fluoxetine treat-
ment. Taken together, our study indicated that TLR4/
MyD88/NF-«B signaling pathway was involved in anti-
inflammatory effects of fluoxetine in early brain injury
after SAH.

There are some limitations in our study. First, the
present study aimed at investigating the effects and po-
tential mechanism of fluoxetine in neuroinflammation in
early brain injury after SAH, the long-term study of flu-
oxetine after SAH is still needed in the future. Second,
previous studies showed anti-apoptotic effects of fluoxet-
ine, which did not deeply evaluate in the current study.

Conclusions

The current study has demonstrated that fluoxetine at-
tenuated neuroinflammation and improved neurological
function after SAH. The potential mechanisms involved,
at least in part, TLR4/MyD88/NEF-«B signaling pathway.
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Additional file 1: Figure S1. Representative pictures of brains in SAH
group showing the sample region. (TIF 372 kb)
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