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Abstract

Background: Traumatic brain injury remains a significant cause of death and disability in the USA. Currently, there
are no effective therapies to mitigate disability except for surgical interventions necessitating a need for continued
research into uncovering novel therapeutic targets. In a recent study, we used a rodent model of penetrating
traumatic brain injury known as penetrating ballistic-like brain injury (PBBI) to examine the role of innate immunity
in post-traumatic secondary injury mechanisms. We previously reported that the inflammasome, a multiprotein
complex composed of apoptosis-associated speck-like protein containing card and caspase-1, plays a role in
secondary cell death mechanisms after PBBI, including inflammatory cell death (pyroptosis).

Methods: In the current study, we used flow cytometry analysis to evaluate activated microglia and CD11b-positive
leukocytes after PBBI and assessed inflammasome activation and pyroptosis of specific cellular populations.
Sprague-Dawley male rats underwent PBBI or sham-operated procedures and ipsilateral cortical regions processed
for flow cytometry and cellular analysis. Flow cytometry results were compared using one-way ANOVA followed by
Tukey's multiple comparisons.

Results: At 48 h following PBBI, there was an increase in activated microglia and infiltrating leukocytes compared to
sham controls that were associated with increased caspase-1 activity. Using a florescent probe to identify caspase-1
activity and a fluorescent assay to determine cell viability, evidence for pyroptosis in CD11b+ cells was also
determined. Finally, while post-traumatic treatment with an anti-ASC antibody had no effect on the number of
activated microglia and infiltrating leukocytes, antibody treatment decreased caspase-1 activity in both resident
microglia and infiltrating leukocytes and reduced pyroptotic CD11b+ cell death.

Conclusions: These results provide evidence for inflammasome activation in microglia and infiltrating leukocytes
after penetrating traumatic brain injury and a role for pyroptotic cell death in the pathophysiology. In addition to
inhibiting neuronal cell death, therapeutic treatments targeting inflammasome activation may also provide
beneficial effects by reducing the potentially detrimental consequences of activated microglia and infiltrating
CD11b+ leukocytes following penetrating traumatic brain injury.
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Background

Penetrating traumatic brain injury (PTBI) includes all
traumatic brain injuries that are not the result of a blunt
mechanism [1-3]. PTBI remains one of the most devas-
tating and lethal forms of trauma, and the prognosis is
generally poor [1, 4—6]. The underlying cell death mech-
anisms contributing to tissue loss following PTBI are
multifactorial and incompletely understood [7-10]. Sev-
eral reports have suggested that cells in the injury core
undergo a variety of cell death mechanisms, including
necrosis and apoptosis [9, 11-15]. Recently, we used a
rodent model of penetrating ballistic-like brain injury
(PBBI) [8, 14] that recapitulates cranial gunshot wound
pathology and reported that progressive tissue loss fol-
lowing PTBI involves inflammasome activation resulting
in initiation of the pyroptosis [16], a form of inflamma-
tory cell death [17-21].

As part of the pyroptotic process, damaged neural cells
form specks that are composed of apoptosis speck-like
staining protein containing a caspase recruitment domain
(ASC) and caspase-1 [22, 23]. ASC specks are released from
cells undergoing pyroptosis into the extracellular space
resulting in cleavage of pro-interleukin-1p (pro-IL-1p) into
its active form [24]. ASC specks may be also taken up by
phagocytic cells around the injury periphery, including the
infiltrating leukocytes and the resident-activated microglia
[25]. The precise cell types undergoing pyroptosis after
PTBI remain unclear although previous studies have pro-
vided evidence that this type of cell death can occur in neu-
rons and inflammatory cell populations under a variety of
conditions [20, 26—29].

Microglia play an important role in the immune system
of the central nervous system (CNS) by acting as antigen
presenting cells and surveying tissue for immunogens
[30—34]. Importantly, microglia initiate the innate im-
mune response by binding danger-associated molecular
patterns released by dead or dying cells after CNS injury
resulting in inflammasome activation [34-36]. Activated
microglia produce pro-inflammatory cytokines and un-
dergo a morphological change from resting to ameboid
phagocytic microglia [37, 38]. Traditionally, microglia acti-
vation has been categorized into two subtypes, M1 and
M2 [39-41]. The M1 phenotype is pro-inflammatory,
potentiating neuronal injury, whereas the M2 phenotype
is anti-inflammatory, pro-regenerative, and phagocytic
[40, 41]. Most recently, additional research including
transcriptomic analysis of the M1 and M2 phenotypes
has been revealed that microglial polarization is
multidimensional rather than linear and that the
different microglial activation states have considerable
overlap of gene expression [42-45]. The detailed
information regarding microglial phenotypes and
their contribution to cell death processes following
TBI is lacking.
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In the present study, we sought to extend our previous
investigations using the PBBI model [16] to clarify the
role of microglial activation and immune cell infiltration
in cell death processes following brain injury. For this
goal, we used quantitative flow cytometry analysis to de-
termine the cell-type expression pattern of inflamma-
some proteins and cells undergoing pyroptosis following
PBBI. We report significant increases in inflammasome
protein expression in microglia and infiltrating leuko-
cytes in the cerebral cortex, which leads to the pyropto-
tic cell death. In addition, treatment of traumatized
animals with a neutralizing antibody to the inflam-
masome component, ASC (anti-ASC), significantly de-
creased caspase-1 activity and pyroptosis in microglia
and infiltrating leukocytes. These studies illustrate that
microglia and infiltrating immune cells actively partici-
pate in the innate immune response after PBBI and
undergo pyroptosis contributing to cell loss after injury.

Methods

Animals

Animal procedures were approved by the University of
Miami’s Institution of Animal Care and Use Committee
and adhered to the ARRIVE guidelines and those
established by the National Institute of Health Guide for
the Care and Use of Laboratory Animals. Male
Sprague-Dawley rats (280-350g) aged 3-5months were
used for all experiments. Male rats were used in this initial
study because males are at higher risk of traumatic brain
injury (TBI) than females, with the highest male-to-female
ratio occurring in adolescence and young adulthood [46].
However, future studies with female rats will have to be
conducted to assess potential sex-dependent effects on
the inflammatory response after PBBIL. To increase sci-
entific rigor, rats were randomly assigned to each experi-
mental group (sham, PBBI + PBS, PBBI + anti-ASC) and a
power analysis was carried out to determine sample size
calculation based on prior biochemical studies in the PBBI
model [47-50].

PBBI surgery

Rats underwent PBBI or sham procedures as previously
described [16]. Rats were anesthetized with 2—-5% iso-
flurane delivered in a mixture of 70% nitrous oxide and
30% oxygen and body temperature maintained at nor-
mothermia (37 £ 1°C) by a homoeothermic heating pad.
The rat was secured in the stereotaxic device for in-
sertion of the PBBI probe. The penetrating probe
(Kadence Science, Lake Success, NY) which is made
of a 20-gauge stainless steel tube with fixed perfora-
tions along one end which are sealed by a piece of
airtight elastic tubing was secured on the probe holder. A
burr hole (diameter 4 mm) over the right frontal pole at
4.5 mm anterior-posterior and + 2 mm medial-lateral
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to bregma was created using a dental drill as previously
described [51]. The PBBI probe was next advanced into the
right hemisphere to a depth of 12 mm from the surface of
the brain. The pulse generator was activated to release a
pressure pulse calibrated to produce a rapid expansion of
the water-filled elastic tubing to induce an elliptical-shaped
balloon (diameter = 0.633 mm, duration =40 ms) to a vol-
ume equal to 10% of the total brain volume. As previously
described, this rapid inflation/deflation mimics the gener-
ation of a ballistic force shock wave, thereby creating a tem-
porary unilateral cavity in the brain [8]. After deflation, the
probe was removed and the skin incision closed with
wound clips. Sham animals received vehicle (PBS, intraven-
ous [i.v.]) injection through the jugular vein 4 h after sham
surgery. PBBI animals received either vehicle or anti-ASC
(5 mg/kg iv.) injection through the jugular vein 4h after
PBBI surgery. This dose of anti-ASC was used because it
has previously been reported to reduce inflammasome
activation in another model of TBI [52]. In this study, we
tested PBS as a vehicle since in a previous TBI study,
significant reductions in the processing of caspase-1, IL-1B,
deceased XIAP cleavage and reduced contusion volume
with anti-ASC treatment compared to IgG control of the
same isotype [53]. Also, recent studies have indicated that
immunoglobulin may actually affect inflammasome activa-
tion in some experimental settings so IgG does not appear
to be a proper control for assessing inflammasome signal-
ing. Sham surgeries consisted of the midline scalp incision,
the right frontal burr hole, without probe insertion. Follow-
ing surgery, animals were monitored to ensure they did not
develop postoperative infections or experience discomfort.

Flow cytometry

At 48 h post-surgery, all rats were anesthetized with a
high dose of 2-5% isoflurane for 5min and perfused
transcardially with ice-cold PBS for 6 min. The ipsilateral
cerebral cortex was dissected on ice and placed in
ice-cold Hank’s Balanced Salt Solution. The methods
used for flow cytometry have been recently described for
cerebral cortical and hippocampal analysis [54, 55].
Briefly, cortical brain tissue was mechanically dissociated
into a single-cell suspension by passage through a
40-um cell strainer (Falcon, Madison, WI) and lysed
with ACK buffer (Life Technologies, Grand Island, NY).
Cells were labeled for caspase-1 activity using a
FAM-FLICA assay (Immunochemistry Technologies,
Bloomington, MN) following the manufacturer’s instruc-
tions. The FLICA Caspase-1 Reagent (FAM-YVAD-FMK)
forms an irreversible covalent bond with the fluoromethyl
ketone (FMK) to the cleaved active form of caspase-1
(Immunochemistry Technologies). The carboxyfluores-
cein (FAM) optimally excites at 488-492 nm and has a
peak emission at 515-535 nm. The LIVE/DEAD Fixable
Near-IR Dead Cell Stain was used for cell viability
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(L10119, 1pL/mL, Life Technologies). Following a
non-specific block with cluster of differentiation (CD)16/
CD32 antibody, cells were labeled for surface markers
CD45 Alexa 647 (202212, 1.25 ug/mL, BioLegend) and
CD11b v450 (53-4321-80, 1pg/mL, eBioscience).
CD45 and CD11b were used to distinguish between CD45,,,,
“resting” microglia (CD45),,,, CD11b+), CD45;,termediate-
activated microglia (CD45;,, CD11b+), and CD45ygp-
infiltrating myeloid-lineage cells (CD45y;g,, CD11b+).
Activated microglia increase their expression of CD45
compared to steady state surveying microglia while infil-
trating leukocytes, including macrophages, monocytes,
and neutrophils, express the highest amounts of CD45
[56, 57]. Cells were then fixed with BD Cytofix/Cytoperm
Fixation/Permeabilization Kit (554714, BD Biosciences).
Gates were established using antibody isotype controls
(provided by manufacturers) and fluorescence minus one
controls. The samples were acquired on Beckman Coulter
CytoFLEX S using CytExpert 2.0 as acquisition software.
The resulting FCS files were analyzed with Kaluza 1.5A
(Beckman Coulter) software.

Scientific rigor and statistical analysis

Rats were randomly assigned to each experimental
group including sham operated, PBBI + PBS, and PBBI
+ anti-ASC (n =5 per group). Samples were coded prior
to flow cytometry, and the codes were broken after
analysis with Kaluza and prior to statistical analysis.
Statistical analyses were performed using Prism 6 (Graph-
Pad Software, Inc., La Jolla, CA, USA). All measures were
expressed as mean * standard error of the mean with p <
0.05 considered significant in all statistical tests. Flow
cytometry results were compared using one-way ANOVA
followed by Tukey’s multiple comparisons.

Results

PBBI induces an increase in activated microglia and
infiltrating leukocytes, and anti-ASC treatment has no
significant effect on numbers of activated microglia or
infiltrating leukocytes

Flow cytometry analysis of cortical tissue was used to
separate populations of resident microglia and infiltrat-
ing cells including neutrophils and macrophages as
previously described [55]. Cells were labeled with CD11b
which is a surface marker for neutrophils, macrophages,
and microglia. Additionally, cortical cells are labeled
with CD45 which is a cell surface marker for leukocytes.
The cells that were positive for CD11b but not for CD45
indicated included resident microglia, and those that
were positive for both CD11b and CD45 indicated
infiltrating neutrophils and monocytes, including macro-
phages. Forty-eight hours after PBBI, density plots
showed increased markers of microglial and infiltrating
leukocytes in all animals compared to sham-operated
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animals. Microglia in sham cortices expressed a low
amount CD45 (CD45,,,,, CD11b+), as evidenced as tight
cell clusters on the graph with very few cells in the
CD45;,; and CD45y,q, range (Fig. 1).

Following PBBI, cells in vehicle and anti-ASC treated
cortices were gated into three populations: surveying
microglia (CD45),,, CD11b+), activated microglia
(CD45;,, CD11b+), and infiltrating CD11b+ leukocytes
(CD45y,ig1, CD11b+). Although, there were significantly
less surveying microglia in the vehicle and treated ani-
mals 48 h after PBBI compared to sham animals. How-
ever, there was no significant difference between vehicle
and treated groups. The CD45 and CD11b expression
pattern of surveying microglia (CD45),,, CD11b+) in ve-
hicle and treated cortices differed from the expression
pattern of surveying microglia (CD45,,, CD11b+) in
sham cortices showing that the cells were less tightly
clustered indicating that the microglia increased their
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expression of both CD45 and CD11b after injury when
compared to sham. Conversely, there were significantly
more activated microglia (CD45;,, CD11b+) in vehicle
and treated animals 48 h post-PBBI compared to sham
animals. Treatment with anti-ASC did not significantly
change the number of activated microglia when compared
to vehicle. Compared to sham, the number of infiltrating
CD11b+ leukocytes (CD45y;g,, CD11b+) also significantly
increased in vehicle and treated animals 48 h after injury.
Similar to the number of activated microglia (CD45y,,,
CD11b+), the number of infiltrating leukocytes (CD45ygp,
CD11b+) did not significantly change after treatment with
an inhibitor of ASC. These results indicate that PBBI
increases the number of activated microglia (CD45;,,
CD11b+), recapitulating stereology results from a previous
study [16], and the number of infiltrating leukocytes
(CD45ygh, CD11b+). However, anti-ASC treatment did
not alter the number of either type of cell.
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Fig. 1 Representative flow cytometry density plots from the ipsilateral cortex of a sham, b PBBI injured (vehicle), and c PBBI treated with anti-ASC.
d Quantification of the number of surveying microglia, activated microglia, and infiltrating CD11b+ leukocytes at 48 h post-surgery. PBBI significantly
increased the number of activated microglia and infiltrating CD11b+ leukocytes 48 h after injury. There was no change in either the number of
infiltrating CD11b+ leukocytes or the number of microglia after treatment with anti-ASC. Data are presented as mean =+ standard error of the mean.
Statistical significance was determined with one-way ANOVA followed by Tukey's post hoc test. ****p < 0.0001. ns, no significance. n =6 per group
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Caspase-1 activity increases in activated microglia and
infiltrating leukocytes 48 h after PBBI and decreases after
treatment with anti-ASC

To determine the role of ASC on caspase-1 activity in
microglia and infiltrating leukocytes in PBBI, PBBI ani-
mals were treated with anti-ASC, a biological inhibitor
of adaptor protein ASC, and flow cytometry was con-
ducted to measure caspase-1 activity before and after
treatment. A FAM-FLICA florescent probe, which only
binds to cleaved and activated caspase-1, was used to
measure caspase-1 activity in cells isolated from the cor-
tices. Using the established gates for CD45 and CD11b,
caspase-1 activity significantly increased in the activated
microglia (CD45;,, CD11b+) and infiltrating CD11b+
leukocytes (CD45y;gn, CD11b+) in vehicle animals 48 h
after PBBI (Fig. 2). While there was a moderate increase
in caspase-1 activity in surveying microglia, the increase
was not significant. Inhibition of ASC, in the treated
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animals, resulted in a decrease in caspase-1 activity in
the activated microglia population (CD45;,, CD11b+)
and the infiltrating leukocytes population (CD45yg,
CD11b+). These results suggest that PBBI increases
caspase-1 activity in activated microglia and infiltrating
CD11b+ leukocytes and that inhibition of ASC decreases
caspase-1 activity in these cells. Therefore, inflamma-
some protein ASC contributes to inflammasome activa-
tion and caspase-1 activity in microglia and infiltrating
leukocytes in PBBI.

PBBI increases caspase-1 activity and pyroptosis in
CD11b+ cells after PBBI, and anti-ASC decreases the
number of CD11b+ cells undergoing pyroptosis

To determine the role of ASC in pyroptosis and
caspase-1 activity in CD11b+ cells after PBBI, animals
were treated with anti-ASC and flow cytometry was
conducted to measure cell viability and caspase-1
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Fig. 2 Representative flow cytometry scatter plots of infiltrating CD11b+ leukocytes and microglia expressing caspase-1 activity from the
ipsilateral cortex of a sham, b PBBI injured (vehicle), and ¢ PBBI treated with anti-ASC. d Quantification of the number of “resting” microglia,
activated microglia, and infiltrating CD11b+ leukocytes 48 h after PBBI. Forty-eight hours after injury, PBBI significantly increased the number of
activated microglia and infiltrating CD11b+ leukocytes expressing caspase-1 activity. Treatment with an antibody inhibiting ASC significantly decreased
the amount of caspase-1 activity in both activated microglia and infiltrating CD11b+ leukocytes. Data are presented as mean + standard error of the
mean. Statistical significance was determined with one-way ANOVA followed by Tukey's post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001.

~

B Vehicle

Infil CD11b leu

0
<
8 104+
Act microglia
Microglia
o_
T T T
0 104 108
CD11b
50=
Il Sham
Vehicle
@ 404 W Treated
‘S‘ wxr
o
g T
3 30
e}
8 2o —
K]
‘6 T
'_
® 104 T
0=
Microglia  Act microglia Infil CD11b leu




Lee et al. Journal of Neuroinflammation (2019) 16:27

activity. In addition to the FAM-FLICA florescent probe,
a florescent probe against amine residues of proteins
(LIVE/DEAD) was used to determine cell viability [58].
The LIVE/DEAD assay is membrane impermeable and
binds to amines of membrane proteins when the cell
membrane is intact resulting in low levels of florescence.
Dead or dying cells become porous membrane and allow
the LIVE/DEAD to permeate the cell, thereby increasing
the florescence of the cells. Plotting the CD11b+ cells using
FLICA florescence and LIVE/DEAD florescence establishes
four quadrants of gates: live CD11b+ cells that do not ex-
press caspase-1 activity (FLICAj,,, LIVE/DEAD,,,), live
CD11b+ cells that express caspase-1 activity (FLICAp;gh,
LIVE/DEAD,,,), necrotic CD11b+ cells (FLICA,,,, LIVE/
DEADyg), and pyroptotic CD11b+ cells (FLICAp;gh,
LIVE/DEADy,) (Fig. 3 top row). Using these gates,
caspase-1 activity in live cells and pyroptosis was found to
be increased in all CD11b+ cortical cells 48 h after PBBI
(Fig. 3 bottom row). There was no significant difference in
caspase-1 activity in live CD11b+ cells after inhibition of
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ASC, but treatment with anti-ASC significantly decreased
pyroptosis in CD11b+ cells. These results indicate that
PBBI increases cell death by pyroptosis in the cortex, sup-
porting the immunoblot results of pyroptosome formation
and gasdermin-D (GSDMD) expression seen in previous
studies [16] (Fig. 3), and that inhibition of ASC decreases
pyroptotic cell death. Therefore, inflammasome adaptor
protein ASC contributes to the pyroptosis of CD11b+ cells.

PBBI increases caspase-1 activity and pyroptosis in
infiltrating leukocytes and activated microglia after PBBT,
and anti-ASC treatment decreases the number of
infiltrating leukocytes that undergo pyroptosis

To determine the role of ASC in pyroptosis and
caspase-1 activity in microglia and infiltrating CD11b+
leukocytes in PBBI, animals were treated with an inhibi-
tor of ASC and flow cytometry was conducted to deter-
mine cell viability and caspase-1 activity. Using the
pyroptotic cell gate (FLICAy;,,, LIVE/DEADy,) and
caspase-1 activity live cell (FLICAp;g,, LIVE/DEAD),)

***¥p < 0.0001. n=5 per group
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Fig. 3 Representative flow cytometry density plots of caspase-1 activity (FLICA) versus amine reactivity (LIVE/DEAD) from the ipsilateral cortex of
sham, PBBI injured (vehicle), and PBBI treated with anti-ASC (top row). CD11b+ cells were gated for pyroptotic cells (high FLICA expression and
high LIVE/DEAD expression) and caspase-1 activity live cells (high FLICA expression and low LIVE/DEAD expression). Quantification of the number
of CD11b+ cells that are live cells expressing caspase-1 activity or cells undergoing pyroptosis 48 h post-injury (bottom row). PBBI significantly
increased the number of CD11b+ live cells expressing caspase-1 activity and the number of CD11b+ cells undergoing pyroptosis. The number of
CD11b+ cells undergoing pyroptosis significantly decreased after treatment with anti-ASC. Data are presented as mean + standard error of the
mean. Statistical significance was determined with one-way ANOVA followed by Tukey's post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001,
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gate, the CD11b+ cells were further gated into “resting”
microglia (CD45y,, CDI11b+), activated microglia
(CD45;,, CD11b+), and infiltrating leukocytes (CD45pgp,
CD11b+) (Fig. 4 a—c). Sham brains show very few pyrop-
totic cells (red) and caspase-1 active live cells (Fig. 4 a).
After PBBI, in both vehicle and treated cortices, the
pyroptotic cells and live cells with caspase-1 activity were
predominant in the infiltrating CD11b+ leukocyte gate
(CD45ygn, CD11b+) and activated microglia gate
(CD45;,, CD11b+) (Fig. 4 b, ¢). In the infiltrating CD11b+
leukocyte population, there was a significant increase in
the number of live cells with caspase-1 activity and cells
undergoing pyroptosis in the injured cortices 48 h after
PBBI (Fig. 4 d). After treatment with anti-ASC, there was
a significant decrease in the number of pyroptotic cells;
however, there was no significant change in the number of
caspase-1 active live cells. In all microglia (“resting” micro-
glia + activated microglia), there was a significant increase
in pyroptotic cells and caspase-1-activated live cells and
treatment with an ASC inhibitor decreased pyroptosis
(Fig. 4 e). Dividing the microglia into the “resting” popula-
tion (CD45),,, CD11b+) versus activated population
(CD45;,, CD11b+), it was observed that activated micro-
glia were the main source of the live cells with caspase-1
activity and pyroptotic cells in PBBI cortices (Fig. 4 f).
Treatment with an inhibitor of ASC significantly de-
creased the number of microglia undergoing pyroptosis,
specifically decreasing the number of activated microglia
undergoing pyroptosis (Fig. 4 e, f). These results suggest
that activated microglia and infiltrating CD11b+ leuko-
cytes express caspase-1 activity and undergo pyroptosis
48 h after PBBI and that treatment with anti-ASC lessens
the extent of pyroptotic cell death. Therefore, inflamma-
some protein ASC contributes to inflammasome activa-
tion and pyroptosis of activated microglia and infiltrating
CD11b+ leukocytes after PBBL

Discussion

This study provides several new findings that clarify the
underlying pathophysiology of secondary injury mecha-
nisms after severe TBI. We present evidence using flow
cytometry density plots that PBBI significantly increases
the number of activated microglia and infiltrating CD11
+ leukocytes 48 hrs after injury. Likewise, the number of
activated microglia and infiltrating CD11+ leukocytes
expressing caspase-1 was also significantly increased in
cortical inflammatory cells compared to sham-operated
animals. Using a FAM-FLICA florescent probe and
LIVE/DEAD assay, caspase-1 activity in live and pyrop-
totic cells was found to be increased in all CD11+
cortical cells after PBBT. Post-traumatic treatment with
an antibody inhibiting ASC significantly decreased the
amount of caspase-1 activity in both activated microglia
and CD11+ leukocytes and reduced the number of
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CD11+ leukocytes undergoing pyroptosis. Taken to-
gether, these new findings indicate that activation of the
inflammasome and pyroptosis contributes to the early
pro-inflammatory response to severe TBI and supports
previous findings showing pyroptosome formation and
gasdermin-D expression after PBBT [16]. In addition, it
is suggested that therapeutic interventions targeting
abnormal inflammasome activation after severe TBI rep-
resent a novel approach to limiting secondary injury
mechanisms by targeting both neuronal and inflamma-
tory cell death.

Although previous studies have reported NLRP3
inflammasome activation in microglia and macrophage
populations under several experimental conditions [16,
38, 59-62], few have demonstrated the specific mechan-
ism of cell death induced by inflammasome activation.
In a recent study, Lee and colleagues reported following
PTBI that neurons and microglia appeared to be the pre-
dominant cell types expressing inflammasome proteins
between 24 and 48h after injury using immunocyto-
chemistry [16]. In terms of inflammasome-mediated cell
death, Kim and colleagues demonstrated that Streptococcus
pneumoniae infection induced pyroptosis in cultured
microglia as evidenced by cleavage of caspase-1 and an in-
crease in lactate dehydrogenase release into the culture
media [27]. Pyroptosis is a caspase-1-dependent process
that results in programmed cell death [63, 64], and there is
limited information on measures of microglial and macro-
phage pyroptosis using in vivo models of TBI. Here, we
used flow cytometry to demonstrate significant caspase-1
activation and cell death in activated microglia and infil-
trating leukocytes using an established model of PTBIL. We
assessed pyroptosis by measuring various parameters
within the same cell including caspase-1 activity via the
YVAD domain of the FLICA assay and cell viability via a
LIVE/DEAD assay. Together, these findings indicate that
pyroptosis of activated microglia and infiltrating leukocytes
may act to amplify the pro-inflammatory response to
PBBI injury that may participate in the structural and
functional abnormalities seen in this penetrating brain
injury model [8, 9, 16, 65, 66].

Our flow cytometry experiments revealed an increase
in the number of activated microglia 48 h after PBBI that
corresponds to increased microglia previously assessed
by stereological counts using the same model [16].
These findings are also in agreement with published data
using other TBI models reporting increases in microglia
numbers and in human TBI in post-mortem brain
sections [33, 40, 44, 55, 67]. The increase in infiltrating
CD11b+ leukocytes, including macrophages and neutro-
phils, after PBBI is also consistent with previous reports
of increased inflammatory cell infiltration and associated
alterations in vascular permeability [47, 49]. In this
study, we used CD11d and CD45 for the flow cytometry
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analysis to differentiate endogenous microglia from infil-
trating leukocytes. While ramified parenchymal micro-
glia possess the phenotype CD11b*/CD45"", other CNS
macrophages and peripheral macrophages exhibit the
phenotype CD11"/CD45"8", Thus, while both CD11b
and CD45 can recognize various subtypes of invading
cells including leukocytes and lymphocytes that may par-
ticipate in the pathophysiology of TBI, the current strat-
egy allowed us to isolate these two major inflammatory
cell populations with flow cytometry to evaluate inflam-
masome signaling.

To reduce the detrimental consequences of pro-
inflammatory processes after TBI, various therapeutic
targets and strategies have been investigated with mixed
results [54, 68-70]. The anti-inflammatory and neuro-
protective drug NNZ-2566 has been reported to be neu-
roprotective in PBBI [49]. In that study, NNZ-2566
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treatment increased both mRNA and protein levels of
activating transcription factor-3 in multiple cell types
following PBBI and decreased the number of neutrophils
and macrophages [49]. In the current study, we investi-
gated the effects of an anti-ASC antibody that has
previously been reported to reduce abnormal inflamma-
some activation in models of brain and spinal cord in-
jury [52, 53, 71, 72]. Importantly, this experimental
treatment approach targeting abnormal inflammasome
activation after brain and spinal cord injury has also
been reported to improve behavioral outcomes and re-
duce structural damage [53, 71, 72]. Although we did
not assess behavioral or histopathological outcomes, we
report that anti-ASC treatment decreased the amount of
caspase-1 activity in both types of inflammatory cells
after PTBI while not decreasing the number of activated
microglia or infiltrating CDI11b+ leukocytes. Since

CNS cell

Injury

i

-

Extracellular Space

Microglia/

Inflammasome
Activation

-
-
i e
-
-

2 Anti-ASC

Infiltrating CD11b Leukocytes 4

ASC/Caspase-1
Specks !

Fig. 5 Schematic of inflammasome activation and pyroptosis of microglia after PBBI and proposed effects of anti-ASC on the pathway. CNS injury

e Pyroptotic
o g’,@ ] cell death
-
Inflammasome u,
activation ]
pr M,I v
f .+ ASC

%

',’ speck %

Ly
i

i
ro-“-']p' %

N--* % procaspase-1

Je j

O
Pyroptosis " Extracellular activation
- :of caspase-1and IL-1p
N @i

¥ Secretion @D

/ / Gasdermin D

induces the formation of ASC specks in traumatized cells that are released into the extracellular space leading to maturation of IL-13. ASC specks
are taken up by endogenous microglia or infiltrating phagocytic cells resulting in further inflammasome activation and subsequent death by
pyroptosis. Anti-ASC either binds to extracellular ASC specks blocking extracellular IL-1 maturation thereby decreasing inflammasome activation
and pyroptosis of microglia and infiltrating CD11b leukocytes or binds to intracellular inflammasomes thereby leading to decreased activation
and pyroptosis of microglia and infiltrating CD11b leukocytes. Adapted from Broderick et al. [25]




Lee et al. Journal of Neuroinflammation (2019) 16:27

caspase-1 activity regulates IL-1B processing, the de-
crease in caspase-1 activity suggests that anti-ASC treat-
ment may block the initiation of the innate immune
response leading to pyroptosis [33, 40, 41]. In addition
to pro-IL-1P cleavage, caspase-1 also cleaves GSDMD, a
protein implicated in pyroptotic pore formation and a
necessary step in the pathogenesis of pyroptotic cell
death [73]. This plasma membrane pore formation leads
to the secretion of IL-1p and subsequent cell lysis
[73-75]. Using live-cell imaging of pyroptotic cell death
in HEK-293T cells and murine bone marrow-derived
macrophages, Rathkey and colleagues [76] have recently
clarified the molecular parameters by which GSDMD
becomes cleaved and inserts into cellular membranes. The
exact mechanisms by which anti-ASC antibody treatment
decreases pyroptosis of microglia and infiltrating leuko-
cytes have not been clarified, and additional studies are
required to better understand subcellular targets and
consequences on brain recovery and function after TBL
For example, strategies including a gene silencing ap-
proach targeting NLRP1, NLRP3, or GSDMD could be
used to determine how changes in these proteins affect
the formation of the inflammasome in microglia or pat-
terns of cellular vulnerability.

Based on the current findings and previous studies, it
may be hypothesized that in this severe TBI model, in-
flammatory cell pyroptosis may induce the formation of
ASC specks in traumatized cells that are released into
the extracellular space leading to maturation of IL-1f
[22, 23]. ASC specks are known to be taken up by en-
dogenous microglia or infiltrating phagocytic cells result-
ing in further inflammasome activation and subsequent
death by pyroptosis [25]. The ASC specks have been
shown to have “prionoid-like” effects and can also
propagate inflammation like IL-1f [23]. Treatment with
an anti-ASC antibody may therefore bind directly to
extracellular ASC specks blocking extracellular IL-1
maturation and decrease inflammasome activation and
pyroptosis of microglia and infiltrating CD11b leuko-
cytes (Fig. 5). Alternatively, the anti-ASC antibody may
bind to intracellular inflammasomes, thereby leading to
decreased activation and pyroptosis (Fig. 5). The recent
discovery that anti-ASC binds to ASC specks and
reduces the amount of AP monomers and oligomers
leading to decreased AP deposition [77] suggests that
inhibiting ASC may also target progressive patho-
physiological mechanisms leading to post-traumatic
neurodegenerative disorders including Alzheimer’s dis-
ease and dementia.

Conclusions

In summary, our current findings emphasize that a
severe model of PBBI induces significant increases in
cell-specific inflammasome protein expression which
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contributes to the inflammatory cell death of microglia
and infiltrating leukocytes. Treatment with an ASC
neutralization antibody decreased caspase-1 activity and
pyroptosis in microglia and infiltrating leukocytes. These
data illustrate that resident and invading inflammatory
cells actively participate in the early innate immune re-
sponse to PBBI. The persistence and mobility of these
cells may represent important secondary injury pro-
cesses that aggravate the injury process and potentially
lead to the increased vulnerability of more remote brain
regions not initially damaged by the primary injury.
Continued investigations into the role of abnormal
inflammasome activation in specific cell populations will
provide critical information regarding novel cellular and
molecular therapeutic targets to reduce the acute and
more progressive consequences of TBI.
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