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A novel small molecular NLRP3
inflammasome inhibitor alleviates
neuroinflammatory response following
traumatic brain injury
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Abstract

Background: Neuroinflammation is an essential player in many neurological diseases including traumatic brain
injury (TBI). Recent studies have identified that inflammasome complexes are responsible for inflammatory
responses in many pathological conditions. Inflammasomes are intracellular multiprotein complexes which regulate
the innate immune response, activation of caspase-1, production of pro-inflammatory cytokines IL-1β and IL-18, and
induction of cell death (pyroptosis). Among inflammasome family members, the nucleotide-binding domain
leucine-rich repeats family protein 3 (NLRP3) is the most extensively studied and its activation is induced following
TBI. As a novel target, drug development targeting the formation and activation of NLRP3 inflammasome is a
prospective therapy for TBI. We have recently developed a small molecule JC124 with specificity on NLRP3
inflammasome. In this study, we explored the therapeutic value of JC124 for TBI treatment.

Methods: Adult male Sprague-Dawley rats were subjected to a moderate cortical impact injury. Following TBI,
animals received 4 doses of JC124 treatment with the first dose starting at 30 min, the second dose at 6 h after TBI,
the third and fourth doses at 24 or 30 h following TBI, respectively. Animals were sacrificed at 2 days post-injury.
Brain tissues were processed either for ELISA and western blotting analysis for inflammatory response, or for
histological examination to assess degenerative neurons, acute inflammatory cell response and lesion volume.

Results: We found that post-injury treatment with JC124 significantly decreased the number of injury-induced
degenerating neurons, inflammatory cell response in the injured brain, and cortical lesion volume. Injured animals
treated with JC124 also had significantly reduced protein expression levels of NLRP3, ASC, IL-1 beta, TNFα, iNOS,
and caspase-1.

Conclusion: Our data suggest that our novel NLRP3 inhibitor has a specific anti-inflammatory effect to protect the
injured brain following TBI.
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Introduction
Traumatic brain injury (TBI) is a major health problem
worldwide. Currently, there is no effective treatment.
Following TBI, the primary injury induces irreversible
and untreatable brain damage. The subsequent secondary
injury plays a profound role in the evolution of injury and
clinical prognosis. Thus, preventing/treating the additional
tissue damage caused by secondary brain insults is the
major focus of therapies for TBI. Among secondary injur-
ies following TBI, neuroinflammation is a prominent
event that significantly exacerbates brain tissue damage
causing functional deficits. To date, abundant studies have
shown that targeting neuroinflammation is a promising
strategy for TBI treatment.
Inflammation is mediated by inflammatory cells and

inflammatory cytokines/chemokines they released.
Among TBI-induced pro-inflammatory cytokines,
interleukin-1β (IL-1β) plays a pivotal role in triggering
TBI-induced inflammatory cascade [1]. Another cyto-
kine, interleukin-18 (IL-18) has been known as a potent
inflammatory mediator that initiates/amplifies many in-
flammatory processes [2]. The brain is particularly sensi-
tive to IL-1β and IL-18 signaling because multiple neural
cell types in the CNS express receptors for these cyto-
kines [3, 4]. Recent studies have found that release of
IL-1β and IL-18 is mediated by inflammasomes [5].
Inflammasomes are intracellular multiprotein complexes
which regulate the innate immune response, activation
of caspase-1, production of pro-inflammatory cytokines
such as IL-1β and IL-18, and induction of cell death
(pyroptosis) [6, 7]. The inflammasomes share a similar
structure and are typically formed by a cytosolic
pattern-recognition receptor, an adaptor protein, and an
effector component (caspase-1) [6]. Among the known
inflammasomes, the nucleotide-binding domain
leucine-rich repeats family protein 3 (NLRP3) is the
most extensively studied and widely implicated regulator
of caspase-1 activation, the maturation and production
of IL-1β and IL-18 [7]. Activation of NLRP3 is induced
by multiple stimuli, including reactive oxygen species,
mitochondrial damage, ATP, and potassium ion efflux
from injured cells following tissue damage [7]. NLRP3
inflammasome which consists with the NLRP3 scaf-
fold, the apoptotic speck-containing protein (ASC)
adaptor and caspase-1, has been reported to associate
with neuroinflammation in Alzheimer’s disease (AD)
[8–10], Huntington’s disease [11], and pneumococcal
meningitis [12]. Increased formation of NLRP3
inflammasome complex in the injured cerebral cortex
has been reported following TBI [13], and
inflammasome-induced cell destruction is considered
to be responsible for post-TBI amplification of the
initial tissue damage [14]. As a novel target in neuro-
inflammation signaling pathway, drug development

targeting the formation and activation of inflamma-
somes is a prospective therapy for TBI.
In this study, we explored the potential of a novel

NLRP3 inflammasome inhibitor for TBI therapy. We
have recently developed a specific NLRP3 inflammasome
inhibitor, JC124, through structural optimization of gly-
buride, an FDA approved anti-diabetic drug (sulfonyl-
urea) that has been shown to inhibit NLRP3
inflammasome formation [15]. However, the high dose
required for glyburide’s in vivo NLRP3 inhibition causes
lethal hypoglycemia. Through rational design, our novel
compound JC124 has shown selective inhibition of
NLRP3 inflammasome formation and activation of
caspase-1, and reduction of IL-1β both in vitro and in
vivo [16]. In a mouse acute myocardial infarction model,
JC124 treatment blocked inflammasome formation and
reduced myocardial infarct size significantly while exhib-
ited no hypoglycemia effects that clearly demonstrated
its target engagement and in vivo activities [17, 18].
Treatment of AD transgenic mice with JC124 also sig-
nificantly improved multiple AD pathologies including
inflammatory responses [19]. In this proposal, we inves-
tigated the therapeutic effects of JC124 following TBI in
a rat focal contusion injury model. We speculate that
NLRP3 inflammasome generated following TBI plays an
important role in the progression of brain tissue damage,
and targeting NLRP3 inflammasome with our novel
compound will have a protective effect.

Materials and methods
Animals
A total of 31 male 3–4-months-old Sprague-Dawley rats
(Envigo, NJ) weighing approximately 300 g were in-
cluded in this study. Animals were housed in the animal
facility, with a 12-h light/dark cycle, water and food pro-
vided ad libitum. All procedures were approved by our
Institutional Animal Care and Use Committee.

Surgical procedures
Animals were subjected to a moderate controlled cor-
tical impact injury (CCI). Briefly, adult rats were anes-
thetized in a plexiglass chamber with 5% isoflurane,
intubated and ventilated with 2% isoflurane in a gas mix-
ture (30% O2, 70% N2), and fixed on a stereotaxic frame.
After a midline incision and skull exposure, a 4.9 mm
craniotomy was trephined on the left parietal bone half
way between the lambda and bregma sutures. A moder-
ate CCI was induced using an electromagnetic impact
device (Leica, Germany) with a 3 mm impactor tip with
a velocity of 3.5 m/s, dwell time 0.5 s, and the depth at
2.5 mm. This injury intensity produces a focal cortical
contusion without damaging the hippocampus. Sham
animals went through the same aesthetical procedures
and received skin incision only. After the injury, the skin
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incision was sutured, 2% lidocaine hydrochloride jelly
and antibiotic ointment were applied topically. The ani-
mal was returned to a warm cage. Injured animals were
subsequently randomized into drug and vehicle treat-
ment groups, and subsequent analysis was done blinded.
Animal numbers for each study were determined by past
experience and power analysis using SYSTAT software
with the power set at 0.80, alpha at 0.05, sigma at 0.97,
and mean differences set at 1.95 for a two-way ANOVA.
JC124 was administrated i.p. at the dose of 100mg/kg ac-
cording to our published study showing the efficacy of
JC124 in a mouse acute myocardial infarction model [17],
with the first dose given at 30min post-injury, the second,
third, and fourth dose given at 6, 24, and 30 h after TBI,
respectively. The treatment time points were selected as
TBI induces upregulation of pro-inflammatory cytokines
such as IL-1β, IL-6 rapidly within 48 h after injury [20,
21]. Control animals were treated with an equal volume of
vehicle solution (10% DMSO in PEG-100).

Tissue preparation
Animals were sacrificed at 2 days post-injury. The rat
was deeply anesthetized with an overdose of isoflurane
inhalation, and the blood was drawn with a transcardial
puncture. For ELISA and western blotting study, animals
were subsequently perfused with 150-ml ice-cold
phosphate-buffer saline (PBS) (N = 5 for each group).
The brains were quickly dissected on ice, ipsi- and
contra-lateral cerebral cortex, and hippocampus were
dissected separately and homogenized with RIPA buffer
(Stock 10X RIPA, EMD Millipore, MA) containing 10%
TritonX-100,10% SDS solution, Protease inhibitor, 0.5M
EDTA. Homogenates were centrifuged at 14000 rpm for
25min, and supernatants were collected and stored at −
80 °C until use. The total protein concentration was de-
termined by BCA method (Pierce, Rockford, IL). For
histology, animals were perfused with 150 ml PBS
followed by 150 ml 4% paraformaldehyde in PBS (N = 4
for sham, N = 6 for TBI-vehicle and TBI-JC124 treated
groups). The brains were dissected and post-fixed in 4%
paraformaldehyde for 48 h at 4 °C and then cut coronally
at 60 μm with a vibratome throughout the rostrocaudal
extent of the brain. Sections were collected in 24-well
plates filled with PBS plus 0.05% sodium azide and
stored at 4 °C until use.

ELISA
The level of pro-inflammatory cytokines IL-1β and IL-18
in the serum and the cortical brain tissue lysate were es-
timated using ELISA kits (IL-1β Rat ELISA Kit
#ab100767, Abcam, MA, USA; IL-18 Rat ELISA kit #
KRC2341, Novex by life technologies, USA) following
manufacturer’s instructions. Limits of detection for the
ELISA kits were IL-1β = 68.6–5000 pg/ml and IL-18 =

15.6–1000 pg/ml. TNFα was measured in the ipsilateral
cortical and hippocampal tissue lysates (TNFα Rat
ELISA kit #ab100785, Abcam, MA, USA).

Western blotting
Ipsilateral hippocampal tissue lysate was processed for
Western Blotting. For each sample, 20 μg of protein was
loaded in each well of 4–12% SDS-PAGE Criterion Gel
TGX stain-free gel (Bio-Rad, Hercules, CA, USA). The
gel was activated in the UV light using the Chemidoc
MP imaging system (Bio-Rad, USA) for 45 s before blot-
ting, and then blotted to PVDF membrane. The transfer
of protein was done using Trans-Turbo Blot transfer sys-
tem (Bio-Rad, USA). The stain-free image of the blot
was obtained after transfer for normalization of the blot.
The transferred membranes were then blocked for 1 h in
5% milk made in TBST at room temperature and incu-
bated with primary antibodies. The following primary
antibodies were used: NLRP3 (1:800; ab214185, Abcam,
MA, USA), ASC (1:1000; AL177, AdipoGen, CA, USA),
caspase-1 P10 (1:500; sc-56,036, Santa Cruz, CA, USA),
iNOS (1:1000; ab3523, Abcam, MA, USA), Arginase-1
(1:1000; sc-20,150, Santa Cruz, CA, USA), and IL-1 beta
(1:1000; ab2105, Abcam, MA, USA). After the primary
antibody incubation, membranes were thoroughly
washed 5 times, 5 min each with 5% milk in the TBST.
The membranes were then incubated with the appropri-
ate secondary antibodies for 1 h at room temperature.
The secondary antibodies used were horseradish
peroxidase-conjugated anti-rabbit, anti-mouse, or
anti-goat IgG (1:5000; Cell Signaling, MA, USA). The
membranes were then washed 5 times and developed
with the Clarity Western ECL Substrate (Bio-Rad, USA)
and the chemiluminescent images were captured using
the ChemiDoc MP imaging system (Bio-Rad, USA). The
analysis of the images was done using the Image Lab 6.0
software (Bio-Rad, USA). The stain-free image of blots
was used for the total protein normalization against the
chemi-luminescent images. The normalized volume in-
tensity was plotted as densitometry values in the form of
histograms as published before [22].

FJB staining
To specifically assess degenerating neurons following in-
jury, 60-μm-thick coronal brain sections were processed
for Fluoro-Jade B (FJB) staining following our published
protocol [23]. Briefly, for each brain, 4 sequential cor-
onal sections with 480 μm apart at the level of hippo-
campus from 2.56 mm to 5mm of the bregma level were
mounted on superfrost plus slides and air dried. The
sections were first treated with 1% NaOH in 80% etha-
nol for 5 min and then were hydrated in graded ethanol
and distilled water. They were then incubated in 0.06%
potassium permanganate solution for 10 min, followed
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by a quick rinse and incubation with 0.0004% FJB (His-
to-Chem, Inc., Jefferson, AR) plus 0.0004% DAPI (Sig-
ma-Aldrich, St. Louis, MO) solution for 20 min. The
slides were then dried, immersed in Citra Solv (Citra
Solv, Danbury, CT), and cover-slipped.

Immunohistochemistry
To assess inflammatory cell response, we used anti-
bodies OX6 and ED1 to stain inflammatory cells. OX6
stains MHC class II antigens expressed on antigen pre-
senting cells including infiltrating macrophages, acti-
vated microglia and leukocytes, whereas ED1 stains
lysosomes in infiltrating macrophages and activated
microglia [24]. For each brain, every eighth section at
the level of hippocampus from 2.56mm to 5mm of the
bregma level were processed for OX6 or ED1 immuno-
staining following our previously published protocol
[25]. Briefly, the sections were washed with PBS and en-
dogenous peroxidase was blocked using 3% H2O2. Fol-
lowing an overnight serum blocking with 5% normal
horse serum in PBS, sections were incubated with mouse
anti-OX6 (1:500, Serotec, UK) or mouse anti-ED1 anti-
body (1:500, Chemicon) in PBST (PBS with 0.4% Triton)
plus 5% normal horse serum at 4 °C for 48 h with agita-
tion on shaker. After rinsing with PBST, sections were
incubated with biotin-conjugated anti mouse-IgG (1:200,
Jackson Laboratory) overnight at 4 °C and then incu-
bated with ABC complex for 2 h at room temperature
before visualized with 5.5 diaminobenzidine (DAB). Sec-
tions were mounted on glass slides, lightly counter-
stained with 0.1% cresyl violet, and coverslipped.

Lesion volume assessment
To measure the cortical lesion volume, 60-μm-thick se-
quential coronal sections space between 480 μm span-
ning the entire rostrocaudal extent of the injured cortex
were mounted on slides and stained with hematoxylin
and eosin (H&E). Cortical lesion size was measured with
ImageJ program by outlining the injured brain area. Le-
sion volume was calculated using the areas, distance be-
tween sections, and section thickness.

Cell quantification
The number of FJB+, OX6+, or ED1+ cells in the ipsilat-
eral cortex and dentate gyrus of the hippocampus was
quantified from each section using ImageJ program. For
FJB staining, sections containing the hippocampus were
examined with an Olympus fluorescent microscope
using a × 20 objective lens, and images were captured.
For OX6- or ED1-stained sections, an Olympus light
microscope was used with a × 20 objective lens, and im-
ages were captured. The number of FJB+, OX6+, or ED1
+ cells in the ipsilateral cortex and hippocampal dentate
gyrus (granular cell layer and hilus regions) was counted

separately by a blinded observer with the ImageJ auto-
mated counting program. The number of counted cells
from four sections per brain was averaged and expressed
as the number of cells per square millimeter.

Statistical analysis
The data generated was analyzed using the GraphPad
Prism 7.0 software. A one-way ANOVA followed by
Tukey’s post hoc test for the multiple comparison or the
Student t test was utilized, with p value less than 0.05
considered statistically significant. Data are presented as
mean ± SEM in all figures.

Results
JC124 treatment abolishes TBI-enhanced protein
expression of NLRP3 and its adaptor protein ASC in the
injury brain
Inflammasomes are essential players in mediating in-
flammatory response. Recent studies have found that
NLRP3 inflammasome is activated in the peri-injury cor-
tex following TBI in a rat weight drop model [13], and a
mouse CCI model [26]. Using western blotting analysis,
we assessed the protein expression levels of NLRP3 and
its adaptor protein ASC in the injured ipsilateral hippo-
campus in our rat CCI model at 2 days following a mod-
erate injury. The rabbit anti-NLRP3 antibody that we
used recognizes a 120 kDa band size, whereas the rabbit
anti-ASC antibody recognizes a 24 kDa band size (Fig. 1a,
c). Densitometry analysis obtained from the mean value
of two independent experiments and normalized with
the total protein loaded revealed a significantly enhanced
expression level of both NLRP3 and ASC in the injured
vehicle group in comparison to sham (Fig. 1b, p < 0.05;
Fig. 1d, p < 0.01). In injured animals which received
JC124 treatment, the injury-enhanced expression of both
NLRP3 and ASC was completely blocked (Fig. 1 b,d, p <
0.01). This data suggests that in agreement with other
reported studies, TBI induces activation of NLRP3
inflammasome in the injured brain. Moreover, our novel
compound JC124 totally abolishes injury-induced activa-
tion of NLRP3 indicating its specificity which further
validates our previous reports [17, 18].

JC124 treatment reduces the number of degenerative
neurons, activation of caspase-1 in the injured brain, and
the cortical lesion volume following TBI
TBI causes significant neuronal degeneration in the re-
gion directly underneath the injury impact in areas in-
cluding cortex, hippocampus, and thalamus, and causes
tissue damage. As NLRP3 inflammasome induces activa-
tion of caspase-1 and induction of cell death; in this
study, we assessed the effect of our NLRP3 inhibitor on
neuronal degeneration following TBI using FJB staining.
We found that at 2 days following a moderate focal
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cortical impact injury, extensive FJB+ degenerative neu-
rons were observed in the ipsilateral cortical regions and
the hippocampus particularly in the dentate gyrus hilus
and granular cell layers (Fig. 2). Compared to the injured
vehicle-treated animals, injured animals which received
JC124 treatment, the extent of FJB+ cells were signifi-
cantly reduced in all three regions (Fig. 2). Quantifica-
tion analysis showed in all three regions assessed
including injured ipsilateral cortex, hilus, and DG granu-
lar cell layer (GCL), JC124-treated animals had signifi-
cantly less FJB+ cells as compared to the vehicle-treated
groups (Fig. 2, p < 0.01, p < 0.05 and p < 0.01, respect-
ively). No FJB+ cells were found in sham animals. Mod-
erate CCI injury causes a focal tissue damage at the
impact site. We found that the cortical tissue damage in
injured animals treated with JC124 was significantly less
severe compared to injured vehicle-treated animals when
lesion volume was assessed (Fig. 3, p < 0.05).
To assess caspase-1 activation following TBI, we mea-

sured its protein expression levels in the injured hippo-
campus using western blotting analysis. The caspase-1
antibody we used detects the full-length pro-caspase-1
at 50 kDa and the cleaved active caspase-1 at 10 kDa
(caspase-1 p10) (Fig. 4a). We found that the
pro-caspase-1 was expressed at a low level in sham ani-
mals, the expression level was much higher in the in-
jured animals in both vehicle and JC124-treated groups.
Densitometry analysis obtained from the mean value of

two independent experiments and normalized with the
total protein loaded revealed a significantly increased
pro-caspase-1 expression in both injured groups in com-
parison to sham level (Fig. 4b, p < 0.01, TBI + veh. vs
sham; p < 0.05, TBI + JC124 vs sham). No difference was
found in the injured-vehicle-treated group with
JC124-treated group. The expression of caspase-1 p10
was observed in all groups including sham and two in-
jury groups. Densitometry analysis showed that com-
pared to sham, caspase-1 p10 was significantly higher in
the injured vehicle group (Fig. 4c, p < 0.01), whereas the
injured JC124-treated group was at lower level (Fig. 4c,
p < 0.05). The difference between injured vehicle group
and JC124 treated group was also different from the ve-
hicle group had significantly higher expression level
(Fig. 4c, p < 0.01).

JC124 treatment reduces IL-1β expression both
systemically and focally in the brain
IL-1β is a pro-inflammatory cytokine, which is the con-
version product of caspase-1. Following TBI, increased
IL-1β expression in the injured brain at both protein and
mRNA levels was universally reported in different TBI
models [27]. To examine the specificity and efficacy of
our NLRP3 inflammasome inhibitor, using ELISA, we
assessed the systemic level of IL-1β in serum samples
and focal level in the injured cortex. Using western blot-
ting method, we also measured its expression in the

Fig. 1 JC124 treatment blocks TBI-induced activation of NLRP3 inflammasome in the injured brain. Representative western blotting images
showing the 120 kDa band of NLRP3 (a) and 24 kDa band of ASC (c) detected in the ipsilateral hippocampal lysate from sham, TBI-vehicle, and
TBI-JC124 animals. Quantification analysis showed significantly higher level of NLRP3 (b) and ASC (d) in the injured vehicle group compared to
sham (p < 0.05, p < 0.01, respectively). In injured JC124-treated group, the injury-induced upregulation of both NLRP3 (b) and ASC (d) was
significantly reduced compared to vehicle group (p < 0.01), and the expression level for both proteins was similar to sham
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ipsilateral hippocampus. ELISA data showed that at 2
days post-injury, there was a significant increase of
IL-1β both systemically in the serum and focally in the
cortex in the injured vehicle group compared to the
sham group (Fig. 5a, b, p < 0.01). Notably, the injured
animals treated with JC124 showed significant reduction
of IL-1β in both serum and injured cortex compared to
the injured vehicle group (Fig. 5a, b, p < 0.01), and the
expression level was similar to the sham group (Fig. 5a,
b). For western blotting, the rabbit IL-1β antibody that
we used recognizes a 35 kDa band size (Fig. 6). We
found that the expression level of 35 kDa IL-1β was de-
tected in all three groups in the ipsilateral hippocampus,
with injured vehicle group showing significantly higher
IL-1β expression than the sham and the injured
JC124-treated group (Fig. 6, p < 0.01 and p < 0.05 re-
spectively). No difference was found between the injured
JC124-treated group and the sham.
As activation of IL-18 is also triggered by NLRP3

inflammasome, using ELISA we also measured the ex-
pression level of IL-18 in serum and in the injured cor-
tex. No significant difference was found between sham
and two injured groups in our TBI model (data not
shown), similar to what have been reported in other
studies [28].

JC124 treatment reduces inflammatory response
NLRP3 inflammasome regulates the production of
pro-inflammatory cytokines IL-1β and IL-18 which lead
to subsequent inflammatory cascades. To assess the ef-
fect of our novel NLRP3 inhibitor JC124 on neuroin-
flammatory cell response, we used markers, OX6, and
ED1 to stain inflammatory cells (infiltrating macro-
phages and activated microglia). OX6 or ED1 staining
was absent in sham animals. In the injured groups at 2
days post-injury, OX6 or ED1 positive cells were appar-
ent in the injured brain in the ipsilateral cortex and
hippocampus (Fig. 7). Using ImageJ program, we
counted the number of OX6- or ED1-positive cells in
the peri-lesion cortex and the dentate gyrus of the
hippocampus. Compared to injured vehicle-treated ani-
mals, the number of OX6+ cells was significantly re-
duced in the injured animals received JC124 treatment
in the peri-lesion cortex (Fig. 7, p < 0.05). A trend of re-
duction of OX6+ cells was observed in the DG of the
hippocampus (Fig. 7, p = 0.06). For ED1 staining, no sig-
nificant difference was found in the number of ED1+
cells between the vehicle and JC124-treated groups in
both the cortex and the DG (data not shown).
As IL-1β induces an inflammatory response by regulat-

ing other inflammatory mediators, to test whether

Fig. 2 JC124 treatment reduced TBI-induced degenerative neurons. Representative images of ipsilateral cortex and dentate gyrus (DG) taken from
FJB stained coronal sections from TBI-vehicle and TBI-JC124 animals. Quantification analysis showed in all three regions assessed including
ipsilateral cortex, hilus, and DG granular cell layer, significantly less FJB+ cells were found in JC124-treated group as compared to the vehicle-
treated group (p < 0.01, p < 0.05, and p < 0.01, respectively). Bar = 100 μm for cortex, bar = 400 μm for DG
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blocking activation of the NLRP3 inflammasome by
JC124 treatment can effectively downregulate the down-
stream inflammatory mediators, we assessed the protein
expression levels of TNFα and iNOS. Using ELISA, we
measured TNFα protein levels in the ipsilateral cortex
and hippocampal lysates. We found that the expression
level of TNFα in both the cerebral cortex and hippocam-
pus was increased at 2 days following TBI in the injured
vehicle group compared to sham (Fig. 8, p < 0.05, p <
0.01, respectively), whereas treatment with JC124 signifi-
cantly downregulated this injury-enhanced TNFα ex-
pression in both brain regions to near sham level (Fig. 8,
p < 0.05). Using western blotting analysis, we assessed
protein expression levels of iNOS, a pro-inflammatory
M1 phenotype marker and Arginase-1, an anti-inflam-
matory M2 phenotype marker, in the ipsilateral hippo-
campus. We found that iNOS protein expression was
significantly increased in both injured vehicle and
JC124-treated groups as compared to the sham animals
(Fig. 9, p < 0.01 and p < 0.05, respectively). However, in-
jured animals with JC124 treatment had reduced iNOS
expression compared to injured vehicle group (Fig. 9,
p < 0.05). Arginase expression at 2 days post-injury in
the ipsilateral hippocampus was slightly higher in the in-
jured vehicle groups compared to sham and JC124

treated, but was not statistically significant (data not
shown). This is consistent with published studies show-
ing increased expression of M1 markers at the acute
stage following TBI whereas increased M2 markers at a
later time point post-injury [20].

Discussion
Increasing evidence suggest that inflammasomes play
key roles in regulating neuroinflammatory response fol-
lowing TBI [29]. The current study has shown that tar-
geting NLRP3 inflammasome with our small molecule
inhibitor JC124 is neuroprotective for TBI. Specifically,
post-TBI treatment with JC124 at the acute stage follow-
ing injury significantly decreased injury-induced neur-
onal degeneration and cortical tissue damage. This
protective effect is likely mediated through specific tar-
geting of TBI-induced activation of NLRP3 inflamma-
some and its downstream neuroinflammatory cascade as
demonstrated by completely blocking of TBI-enhanced
expression of NLRP3 and its adaptor protein ASC, re-
duction of downstream caspase-1 activation, reactive
oxygen species (iNOS) and pro-inflammatory cytokines
IL-1β, TNFα protein expressions. Our results suggest
that NLRP3 inflammasome is involved in the develop-
ment of secondary injury following TBI, and targeting

Fig. 3 JC124 treatment reduced the cortical tissue damage following CCI. Representative H&E stained coronal brain sections taking from the
vehicle and JC124-treated animals showing CCI-induced focal brain tissue damage at 2 days post-injury. Graph showed the quantitative data of
lesion volume measurement demonstrating less cortical tissue lose in injured animals treated with JC124 as compared to vehicle-treated
animals (p < 0.05)
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NLRP3 inflammasome is a viable strategy for TBI
treatment.
Neuroinflammation is an essential player dictating dis-

ease progression in many neurological insults including
TBI. Injury-induced neuroinflammatory response, acti-
vated by the release of host-derived proteins termed
danger-associated molecular patterns, significantly con-
tributes to the progression of secondary injury and im-
pact post-injury recovery. Recent evidence indicates a
critical role for the inflammasome complex in initiating
neuroinflammatory response after brain trauma [29].
Inflammasomes are essential intracellular multiprotein
complexes that direct the innate immune responses to
pathogenic stimuli, regulate the activation of caspase-1,
production of IL-1β and IL-18, and induction of cell
death [7]. Among known inflammasomes, the NOD-like
receptors (NLRs) family members NLRP1 and NLRP3
are the most widely studied in the brain and capable to
activate caspase-1, IL-1β, and IL-18 [7]. Thus far, activa-
tion of NLRP1 and NLRP3 inflammasomes has been re-
ported following TBI in both pre-clinical and clinical
studies [30, 31]. In a rat fluid percussive injury model,

formation of NLPR1 inflammasome complex, upregula-
tion of caspase-1, and increased IL-1β were detected at
4 h following injury [32]. In a rat weight drop injury
model, increased level of NLRP3 and its downstream
substrates including caspase-1, ASC, IL-1β, and IL-18
were detected in the peri-injury cortex at both mRNA
and protein levels from 6 h to 7 days post-injury [13]. In
a mouse cortical impact injury model, increased protein
expression of NLRP3, caspase-1, and ASC in the
peri-injury cortex was also reported at 1 to 7 days
post-injury with the peak expression at 3 days [26]. Study
has also reported that TBI led to NLRs and AIM2
inflammasome-mediated pyroptosis in brain microvascu-
lar endothelial cells in the injured cerebral cortex in a
mouse CCI model [33]. In clinic, NLRP1 and caspase-1
proteins are found in cerebrospinal fluid (CSF) in severe
adult TBI patients, and the level is correlated with prog-
nosis [34]. In pediatric patients with severe TBI, in-
creased NLRP3 but not NLRP1 was found in the CSF
and was associated with poor prognosis [31]. In a weight
drop diffuse injury model using transgenic mice lacking
NLRP3, reduced brain tissue damage and inflammatory

Fig. 4 JC124 treatment reduced the post-injury Caspase 1 expression level. a) Representative Western blotting image showing the 50kD band of
pro-caspase 1 and 10kD band of caspase P10 fragment detected in the ipsilateral hippocampal lysate from sham, TBI-vehicle and TBI-JC124
animals. b) Quantification analysis showed significantly higher level of pro-caspase 1 in both injury groups compared to sham and a reduction in
JC124 treated group compared to vehicle group (p < 0.001 and p < 0.05, respectively). c) The expression level of caspase 1P10 fragment was
significantly higher in the TBI-vehicle group compared to sham and TBI-JC124 group (p < 0.01 and p < 0.0001, respectively)
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cell response with preserved cognitive function were ob-
served [35]. In contrast, in transgenic mice which lack
NLRP1 or ASC genes, although reduced IL-1β was ob-
served, no protective effect was found following TBI
[28]. Collectively, these studies suggest that TBI induces
activation of NLRs family members of inflammasomes
and activation of inflammasomes particularly the NLRP3
is associated with the injury progression.
Activation of the inflammasome complex is an essen-

tial step for the development of neuroinflammation in
secondary brain damage. Although the activation path-
way is not completely understood, many signals that are
related to tissue damage including TBI have been sug-
gested to trigger NLRP3 inflammasome activation in-
cluding extracellular ATP, K+ efflux, damaged
mitochondria, elevated reactive oxygen species, influx of
Ca2+, endoplasmic reticulum stress and cathepsin re-
lease [36–40]. Among these signals K+ efflux is the
best-characterized minimal stimulus for NLRP3 inflam-
masome activation [41]. Once activated, the NLRP3
inflammasome forms a molecular platform for caspase-1
activation which leads to subsequent release of IL-1β
and IL-18 and the eventual amplification of inflamma-
tory responses [7]. The brain is particularly sensitive to
IL-1β and IL-18 signaling, as both neurons and glial cells
express receptors for these cytokines [42]. IL-1β is the
conversion product of caspase-1 activation and triggers
NF-KΒ signaling that up-regulates transcription of other
pro-inflammatory genes [43]. Ample evidence indicates
that IL-1β and IL-18 are involved in the onset and devel-
opment of the inflammatory cascade following TBI [44–
47]. Elevated IL-1β is found in the CSF and brain paren-
chyma within hours after brain injury in both humans
and rodents [44, 48]. It is suggested that the damaging
effects of IL-1β is related to its effects on activating
other pro-inflammatory cytokines such as TNF-a and

Fig. 5 JC124 treatment diminished injury-enhanced focal and systemic expression of IL-1 beta. Expression level of IL-1 beta in the ipsilateral
cortex (a) and peripheral blood (b) was measured with ELISA. In both the ipsilateral cortex (left) and serum samples (right), significantly increased
expression of IL-1beta was only observed in the TBI-vehicle group (p < 0.01). TBI-JC124 group had similar expression level as sham

Fig. 6 JC124 treatment decreased post-injury expression of IL-1
beta. Representative western blotting image showing the 35 kDa
band of IL-1 beta detected in the ipsilateral hippocampal lysate from
sham, TBI-vehicle, and TBI-JC124 animals. The densitometry values in
the bar graph showed that TBI vehicle group had significantly
higher expression of IL-1 beta compared to sham and TBI-JC124
groups (p < 0.01 and p < 0.05, respectively). Compared to sham, IL-1
beta was slightly higher but not significant in TBI-JC124 group
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IL-6, leading to activation and recruitment of microglia
and leukocytes, and disruption of the BBB [42, 48]. Infil-
tration of macrophages and activation of resident micro-
glial cells further release inflammatory mediators that
are cytotoxic to neurons contributing to neurodegenera-
tion and tissue damage [49]. In our study, CCI induces
activation of cascape1, leading to upregulated expression
of proinflammatory mediators including IL-1β, TNFα,

and iNOS, as well as inflammatory cell response in the
brain causing eventual neuronal cell degeneration.
Because of the crucial role of NLRP3 inflammasomes

in controlling neuroinflammatory response and neural
tissue damage following TBI, drug development target-
ing activation of NLRP3 inflammasome could be a viable
therapeutic strategy for TBI. Thus far, studies have re-
ported varying non-specific pharmacological agents with

Fig. 7 JC124 treatment reduced the number of inflammatory cells. Representative images of OX6+ MHC class II antigen-presenting cells in the
injured cortex and the DG. Quantification analysis showed that the number of OX6+ cells was lower in the JC124-treated animals and was
significantly reduced in the cortex (p < 0.05). Lower number of OX6+ was also found in the DG with a trend towards significance
(p = 0.06). Bar = 300 μm

Fig. 8 JC124 treatment diminished TBI-elevated inflammatory cytokine TNF-alpha expression in the brain. Expression level of TNF-alpha in the
tissue lysate of ipsilateral cortex (a) and hippocampus (b) was measured with ELISA. In both the ipsilateral cortex (a) and hippocampal samples
(b), significantly increased expression of TNF-alpha was only observed in the TBI-vehicle group (p < 0.05 and p < 0.01, respectively). Injured JC124
treated group had significantly lower TNF-alpha expression as compared to vehicle treated group (p < 0.05), and was not different from sham
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function on NLRP3 inflammasome inhibition having
beneficial effect for TBI such as omega-3 fatty acids [50],
propofol [51], and resveratrol [52]. Studies also reported
that treatment with an anti-ASC neutralizing antibodies
can reduce innate immune response and significantly de-
crease contusion volume in a rat fluid percussive injury
model [32], and a NLRP3 inhibitor BAY 11-7-82
post-TBI treatment showing protective effect with re-
duced brain damage and inflammatory cells was re-
ported [53]. Recently, a small-molecule NLRP3 inhibitor
MCC950 has been shown neuroprotective effect in
stroke, cerebral hemorrhage, and TBI models [26, 54–56].
In TBI, MCC950 treatment given at 1 and 3 h following a
CCI injury in mice, reduction of caspase-1, and IL-1β was
observed accompanied with improved motor and sensory
function at 1 and 3 days post-injury [56]. When MCC 950
was given i.p. daily for the first 3 days followed by every

other day until the end of experiments up to 21 days
post-injury, it can attenuate microglia-derived NLRP3
inflammasome activation and production of IL-1β, reduce
brain edema, lesion volume, inflammatory cell response, and
cell death, as well as improve neurological functions [26].
Our laboratories have recently designed and developed

a sulfonamide analog JC124 based on the structure of
glyburide. Sulfonylurea-containing compounds such as
glyburide and CP-456,773 (now named MCC950) po-
tently inhibit ATP- or hypotonicity-induced IL-1β pro-
cessing via specific inhibition of the NLRP3
inflammasome [15, 57]. These compounds specifically
inhibit the triggering step of NLRP3 activation without
affecting the NF-κB signaling-related priming step or the
activation of other inflammasomes thus is NLRP3 spe-
cific [15, 58]. The mechanism by which these com-
pounds inhibit NLRP3 activation is currently not
understood. It is likely that sulfonylurea containing com-
pounds act at downstream of K+ depletion as they do
not prevent K+ efflux and the inhibition mechanism is
not related to K+ channels. Glyburide was shown to in-
hibit the ATPase activity of NLRP3, whereas MCC950
does not affect the Ca2+ flux in cells treated with ATP
thus with different mechanism [15, 58]. Furthermore,
several other small molecule compounds have been re-
ported to target the NLRP3 inflammasome pathway
[58–60]. However, the mechanism of action or biological
targets of these compounds either act upstream of the
inflammasome complex or remain unknown. Glyburide
is used in clinic for diabetic treatment, the dose for its
NLRP3 inflammasome inhibition effects is at the risk of
inducing hypoglycemia, thus cannot be used directly as
NLRP3 inhibitor [15]. JC124 was rationally designed
based on the structure of glyburide to remove the poten-
tial hypoglycemic effects. Our studies have established
that JC124 is an active and selective NLRP3 inhibitor by
blocking ASC aggregation, activation of caspase-1, and
release of IL-1β in macrophages that constitutively ex-
press active NLRP3 [16]. Using photoaffinity-labeling
probes, we have found that JC124 directly targets
inflammasome complex without affecting its ATPase ac-
tivity, thus representing a novel mechanism (unpub-
lished data). Our studies have also demonstrated the
protective effect of this compound in a mouse acute
myocardial infarction model [18] and transgenic Alzhei-
mer’s disease models [18, 19]. In this current study, in a
rat focal brain injury model, JC124 has shown neuropro-
tective effects for TBI when given at the acute stage fol-
lowing TBI, similar to what have been reported with
MCC950 treatment [56]. Furthermore, compared to re-
ported MCC950 studies done by Xu et al. [26], MCC950
was given during the entire experimental period up to
21 days post-injury, whereas in our study, JC124 was
given only during the first 30 h post-injury when NLRP3

Fig. 9 JC124 treatment decreased the expression level of iNOs
following injury. Representative western blotting image showing the
130 kDa band of iNOs detected in the ipsilateral hippocampal lysate
from sham, TBI-vehicle, and TBI-JC124 animals. The densitometry
values in the bar graph showed that TBI induced significantly
upregulation of iNOs when compared to sham (p < 0.0001), and
JC124 treatment reduced the iNOs expression level in the injured
animals (p < 0.05)
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inflammasome activation was trigged by brain injury
suggesting the benefits of direct inhibition of the inflam-
masome complex by our novel compound.
Post-traumatic inflammation is detrimental at the early

stage but can be beneficial during the chronic stage as it
promotes both clearance of debris and regeneration. The
target of anti-inflammatory interventions for TBI is to
remove danger signals and clear debris during the acute
stage, prevent the development of chronic neuroinflam-
mation and promote regenerative immune phenotype in
the chronic stage [20]. Thus far, many anti-inflammatory
agents have shown beneficial effects in pre-clinical TBI
models; however, these effects have failed to translate
into clinic. Cautious must be taken in developing new
agents targeting neuroinflammation. More studies are
needed to evaluate NLRP3 inflammasome inhibitors in-
cluding our compound JC124.

Conclusions
TBI triggers activation of NLPR3 inflammasome at the
acute stage following injury which plays an important
role in propagation of neuroinflammatory cascades in
the brain exacerbating secondary tissue damage. We
have recently developed a novel small molecular which
specifically inhibits activation of NLRP3. In this study,
for the first time, we reported that our novel NLRP3 in-
hibitor is neuroprotective for the injured brain during
the acute stage following TBI through specific targeting
of NLPR3 inflammasome-triggered neuroinflammatory
response. Further studies examining the efficacy of this
novel inhibitor during the chronic stage of TBI will pro-
vide more information to support its further develop-
ment and translational value.
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