## CORRECTION

**Open Access** 

# Correction to: Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by upregulated levels of IDO/Treg and partly dependent on FasL/Fas pathway



Xiao-Li Li<sup>1</sup>, Heng Li<sup>1</sup>, Min Zhang<sup>1</sup>, Hua Xu<sup>1,2</sup>, Long-Tao Yue<sup>3</sup>, Xin-Xin Zhang<sup>4</sup>, Shan Wang<sup>1</sup>, Cong-Cong Wang<sup>1</sup>, Yan-Bin Li<sup>1</sup>, Ying-Chun Dou<sup>5</sup> and Rui-Sheng Duan<sup>1\*</sup>

### Correction to: J Neuroinflammation https://doi.org/10.1186/s12974-016-0475-0

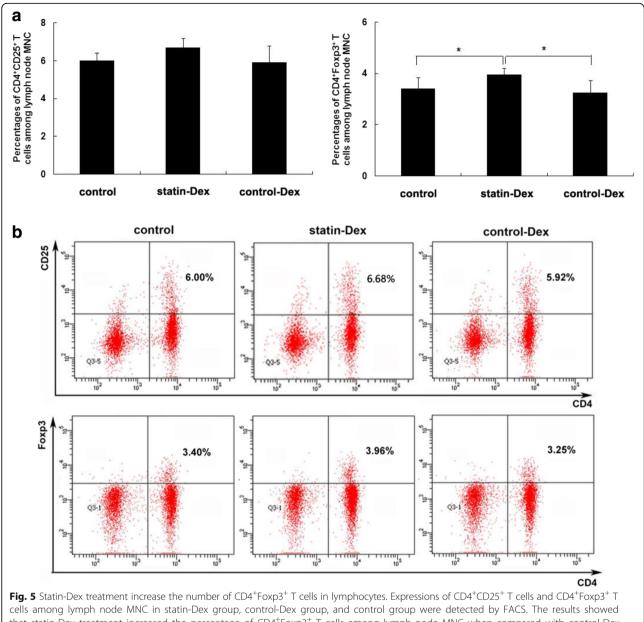
After the publication of the original article [1], it came to the authors' attention that there was an error in the originally published version of Fig. 5b. The image of  $CD4^+CD25^+$  T cells of the statin-Dex group was unintentionally replaced with the image of  $CD4^+CD25^+$  T cells from the control group. The correct version of Fig. 5b is published in this Erratum.

#### Author details

<sup>1</sup>Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China. <sup>2</sup>Department of Neurology, The Central Hospital of Taian, Taian 271000, People's Republic of China. <sup>3</sup>Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China. <sup>4</sup>School of Basic Medical Sciences, Jining Health School, Jining 272000, People's Republic of China. <sup>5</sup>College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China.

#### Published online: 06 June 2019

#### Reference


 Li X-L, Li H, Zhang M, Xu H, Yue L-T, Zhang X-X, Wang S, Wang C-C, Li Y-B, Dou Y-C, Duan R-S. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. J Neuroinflammation. 2016;13:8 https://doi.org/10.1186/s12974-016-0475-0.

\* Correspondence: ruisheng\_duan@yahoo.com <sup>1</sup>Department of Neurology, Shandong Provincial Qianfoshan Hospital,

Shandong University, Jinan 250014, People's Republic of China Full list of author information is available at the end of the article



© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



cells among lymph node MNC in statin-Dex group, control-Dex group, and control group were detected by FACS. The results showed that statin-Dex treatment increased the percentage of CD4<sup>+</sup>Foxp3<sup>+</sup> T cells among lymph node MNC when compared with control-Dex and PBS treatments, while there was no difference for the percentage of CD4<sup>+</sup>CD25<sup>+</sup> T cells. Meanwhile, we did not observe difference in the percentages of CD4<sup>+</sup>CD25<sup>+</sup> T cells and CD4<sup>+</sup>Foxp3<sup>+</sup> T cells between control-Dex group and control group (**a**, **b**). The results are expressed as mean  $\pm$  SD (n = 5 rats per group) (\*p < 0.05)