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Abstract

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition with no known etiology or cure. Several
possible contributing factors, both genetic and environmental, are being actively investigated. Amongst these,
maternal immune dysregulation has been identified as potentially involved in promoting ASD in the offspring. Indeed,
ASD-like behaviors have been observed in studies using the maternal immune activation mouse model. Furthermore,
recent studies have shed light on maternal dietary habits and their impact on the gut microbiome as factors possibly
facilitating ASD. However, most of these studies have been limited to the effects of high fat and/or high sugar. More
recent data, however, have shown that elevated salt consumption has a significant effect on the immune system and
gut microbiome, often resulting in gut dysbiosis and induction of pro-inflammatory pathways. Specifically, high salt
alters the gut microbiome and induces the differentiation of T helper-17 cells that produce pro-inflammatory cytokines
such as interleukin-17 and interleukin-23. Moreover, elevated salt can also reduce the differentiation of regulatory T
cells that help maintaining a balanced immune system. While in the innate immune system, high salt can cause over
activation of M1 pro-inflammatory macrophages and downregulation of M2 regulatory macrophages. These changes
to the immune system are alarming because excessive consumption of salt is a documented worldwide problem.
Thus, in this review, we discuss recent findings on high salt intake, gut microbiome, and immune system dysregulation
while proposing a hypothesis to link maternal overconsumption of salt and children’s ASD.
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Introduction

According to the United States (US) Center for Disease
Control and Prevention (CDC), autism spectrum dis-
order (ASD) is a group of neurodevelopmental disorders
characterized by significant challenges in social and
communication behaviors, usually appearing in early
childhood and persisting throughout the individuals’ life
[10]. ASD is typically recognized in children between 1
and 2 years of age, where differences in communication,
social interaction, and social learning are first observed
[55]. The WHO (World Health Organization) reports
that currently 1 in 160 children worldwide are diagnosed
with ASD [52]. Though this figure is likely an
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underestimation of the real prevalence of ASD, as in
many developing countries, these statistics are not fully
known. Nevertheless, based on the epidemiological stud-
ies conducted by the WHO for the last 50 years, it is
concerning that the prevalence of ASD diagnosis has in-
creased so rapidly. In 2017, approximately 1% of the
world population was estimated to be affected by ASD
[74].

Despite the growing number of ASD cases, the eti-
ology of the disease is still unknown. The current con-
sensus is that ASD is likely caused by the combination
of genetic, environmental, and neurodevelopmental fac-
tors [44]. Early studies however focused on genetic pre-
disposition. For instance, studies found that similarities
between monozygotic twins reach 90% for ASD, as com-
pared with less than 10% for dizygotic twins and siblings,
and approximately 0.6—1.0% occurrence in the general
population [1, 49]. Nevertheless, it quickly became
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evident that both environmental and epigenetic factors
needed to be considered. Amongst these factors, the
presence of altered gut microbiome and dysregulated
immune system have been documented in ASD patients
[4, 76, 94]. In fact, more recent studies have provided
further evidence for the association between maternal
immune dysregulation and children’s ASD. For example,
induction of immune response by injecting lipopolysac-
charide or synthetic virus in pregnant rodents resulted
in ASD-like neurodevelopmental abnormalities in the
offspring [17, 64]. Similarly, from human studies, it was
reported that the risk of ASD in the offspring increased
approximately 30% in mothers diagnosed with rheuma-
toid arthritis (RA), a common disease caused by dysreg-
ulation of the immune system [74].

As environmental factors, dietary habits such as high
consumption of fat or salt (which can alter the maternal
gut microbiome) have emerged as potentially related
with ASD in the offspring [14]. Several recent studies
have shown a correlation between high salt intake, gut
dysbiosis, immune dysregulation, and cognitive dysfunc-
tion [9, 28, 45]. Although, a causal relation between par-
ental high salt consumption and offspring ASD has not
been fully demonstrated yet, there is substantial evidence
to support this notion.

According to the WHO, much of the world population
consumes more salt than the recommended amount [13,
69]. In fact, in the US alone, the average salt intake is al-
most twice the recommended amount [37]. It is a matter
of concern as more than two thirds of the consumed salt
come from foods that people eat in large quantities, such
as bread, cured meats, canned foods, and fried foods
[37]. Moreover, this diet rich in salt became a worldwide
well-established cause of morbidity and mortality due its
ability to cause hypertension, cardiovascular diseases,
and kidney failure [81]. In addition, high salt diet can
also drive an imbalance in the immune system, by indu-
cing reactive T helper-17 (Th17) cells [45]. A recent
study reported that consumption of elevated dietary salt
not only induces the proliferation of pro-inflammatory
immune cells, but also decreases the functional ability of
regulatory immune cells to suppress it [9]. Further stud-
ies indicated that this Th17 axis dysregulation caused by
high salt diet happens via gut dysbiosis [96]. Addition-
ally, the imbalance in the immune system due to high
salt diet was shown to promote cognitive dysfunction in
mice, via a nitric oxide (NO)-dependent mechanism
[28]. Specifically, high salt diet increased Th17 cell pro-
liferation in the small intestine of mice, leading to an in-
crease in the plasma level of a pro-inflammatory
interleukin (IL)-17. High levels of IL-17 suppressed the
production of the endothelial vasodilator NO. Decreased
NO production resulted in reduced cerebral blood flow
which contributes to cognitive impairment. These
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specific findings support the idea that high salt diet can
influence the alteration of gut microbial composition
and ultimately cause host-immune dysregulation [28].

In summary, several lines of evidence support a con-
tributing relationship between maternal elevated salt
consumption and offspring ASD. In this review, we dis-
cuss these recent findings and put forward a novel hy-
pothesis that links dietary choices, specifically elevated
salt, with the alarming increase in ASD diagnosis.

Gut dysbiosis and immune system dysregulation
in ASD patients

Humans and other animal species (including insects) are
the hosts of a range of microorganisms. The skin, intes-
tines, reproductive organs, and nasal and oral cavity of
the human body are colonized by trillions of microor-
ganisms that can survive in extreme condition and share
a commensal relationship with the host [41, 67]. Among
all organs, the intestines, also known as gut, are the big-
gest reservoir of these commensal microorganisms,
which are collectively called the gut microbiome [6, 48].
Though the gut microbiome includes archaea, fungi,
protozoa, helminths, and viruses, it is dominated by al-
most 2000 species of bacteria [62, 79]. Studies show that
a healthy human between 20 and 30 years of age and
weighing 70 kg (154 1b) carries around 39 trillion of bac-
terial cells while the human cell count is around 30 tril-
lion [80].

Increasing evidence shows that the gut microbiome
changes over the individual’s lifetime [93, 100]. The
newborn microbiota for instance is low in diversity and
dominated by two major phyla: Proteobacteria and
Actinobacteria [73]. By the time the individual reaches
adulthood, the microbiota becomes diverse with the
dominance of phyla Firmicutes and Bacteroidetes [73].
Moreover, the adult microbiome is so distinct between
different people that it could be seen as an alternative
fingerprint [70, 88]. More recent studies have identified
that a healthy adult human gut microbiota population
is mostly comprised of three enterotypes (i.e., bact-
eriological classification based on gut microbiota eco-
system), namely, Prevotella, Ruminococcus, and
Bacteroides [73, 100]. Based on this defined gut micro-
organism population any pathological change is called
gut dysbiosis [66, 67].

Though it was previously assumed that most of the
gut microflora colonization happens within the first 2
years after birth by the influence of surrounding envir-
onment, recent studies show that the gut microflora of a
newborn child is very similar to the mother’s [93]. The
presence of maternal bacterial DNA in the amniotic
fluid, placenta, meconium, and fetal membranes sup-
ports the notion that before and right after birth, the
child’s gut microbiota is mostly dominated by maternal
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microbes which later changes due exposure to diverse
environmental conditions [86, 91]. Additionally, recent
findings have shown that breast milk contains several
microbes that can be very influential on the offspring’s
gut and overall health [35].

The gut microbiome shares a commensal relationship
with the host by deriving nutrients from the gut cells
and in turn performing several functions for the host’s
physiology [6]. Importantly, besides metabolizing several
large macronutrients, the gut microbiome shapes both
the innate and adaptive immune systems of the host
[41]. In addition, gut microbes have been found to con-
trol brain development and function and thus to influ-
ence the host’s behavior [61, 90].

ASD and gut dysbiosis

Extensive studies conducted in the last few years have
shown the important role that the gut microbiome has
in influencing the development of the nervous system.
In doing this, the gut microbiome is in the unique pos-
ition of modulating behavior, not only in normal condi-
tions but also when neurological disorders, including
ASD, arise [23, 61, 90]. Consequently, several studies
have shown that gastrointestinal disease symptoms such
as diarrhea and constipation are commonly observed in
ASD patients, many of which also show abnormal be-
havioral patterns such as aggression, anxiety, and ten-
dency to self-injury [15, 94]. Furthermore, an important
correlation between changes in gut bacteria composition
and personality was recently reported. Individuals who
were less careful and diligent tended to have lower abun-
dance of Proteobacteria [43]. Moreover, ASD patients
have significantly higher intestinal permeability which
causes leakage of lymphocytes and pro-inflammatory cy-
tokines into the circulatory system. Those inflammatory
molecules eventually reach the brain and cause immune
activation there [3, 4]. As gut dysbiosis is responsible for
the increased permeability of the intestine epithelial
cells, this evidence supports the idea that there is an im-
portant effect of gut dysbiosis on immune dysregulation
and possibly on ASD [72].

Along the gut microflora of the ASD patient, the ma-
ternal gut microbiome has also been found to be influ-
ential in the development of ASD in the offspring.
Animal studies using the maternal immune activation
(MIA) mouse model have shown that administration of
the antibiotic vancomycin to MIA-subjected pregnant
dams prevented the deleterious effects of MIA on the
offspring. Specifically, offspring from antibiotic-treated
female mice did not show the brain structural abnormal-
ities or ASD-like behavioral phenotype observed in the
offspring of untreated MIA-exposed mice [14]. Further
evidence came from a recent study showing that orally
administering a commercially available probiotic formula
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to pregnant dams prior to MIA induction prevented
ASD-like behavior when compared to the offspring from
MIA females ( [95]). Taken together, these recent find-
ings point towards a strong relation between ASD and
either their own, and/or their maternal gut microbial
dysbiosis.

ASD and immune dysregulation

Substantial evidence from both human and animal
studies has linked ASD with the patient’s own immune
system imbalance. For instance, several studies have
found abnormalities in both innate and adaptive im-
munity in ASD patients, including elevated levels of
Th-1 and Th-2 cytokines [19, 36]. Such imbalance in
inflammatory pathways could contribute to a poten-
tially dysfunctional blood-brain barrier and consequent
compromised brain function [89]. Multiple studies
comparing serum immunoglobulins as well as pro-
inflammatory cytokine levels have shown that ASD pa-
tients have increased levels of IL-1B, IL-6, IL-8, and
IL-12p40 [5], together with increased tumor necrosis
factor alpha (TNF-a) and interferon gamma (IFN-y)
levels [19]. These higher cytokine levels were associ-
ated with communication deficits and aberrant be-
haviors, in fact higher TNF-a plasma levels were
correlated with more severe ASD symptoms. Other
studies have demonstrated that increased levels of
IL-17A in children affected with ASD positively correl-
ate with the severity of ASD symptoms [2]. Taken to-
gether, the increase in proinflammatory cytokines
(such as IL-6, IL-12, and IFN-y), and the decrease in
anti-inflammatory cytokines (such as IL-10 and TGE-
B1) suggests a possible state of overactive immunity in
ASD patients [33]. A recent meta-analysis of 38 studies
including 2487 participants (1393 patients with ASD
and 1094 control subjects) provided evidence for a sig-
nificantly higher concentration of pro-inflammatory
cytokines IFN-y, IL-1f, IL-6, and TNF-a in autistic
patents compared with age-matched control subjects.
Including meta-regression analyses also indicated sig-
nificant interaction of latitude, age, and gender [77].
Furthermore, not only the levels of pro-inflammatory
molecules were found to be altered in ASD patients,
but also properties of cells isolated from ASD patients
retained altered responses. In an in vitro study com-
paring the cytokine response to stimulation by toll-like
receptor (TLR) ligands showed a striking pro-
inflammatory response in cultured monocytes isolated
from ASD patients compared with those from age-
matched controls ([27]).

Another line of evidence for immune system comprom-
ise in ASD is the finding of maternally originated anti-
bodies against neuronal and glial proteins (also termed
anti-brain antibodies) that have been documented in ASD
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patients [18, 83, 84]. The presence of such anti-brain anti-
bodies in ASD patients was associated with cognitive and
behavioral dysfunctions [68]. These maternal antibodies
are clearly different from the autoantibodies that have also
been reported in children with ASD ([26, 32].). It is im-
portant to note that no direct evidence has been provided
that antibodies from an affected mother have been trans-
mitted to a fetus (through the placenta) and that these
have caused ASD [33]. Findings from a combination of
animal and human studies have shown an association be-
tween maternal antibodies and ASD in the progeny [11].
For example, exposing pregnant Rhesus monkeys to IgG
antibodies from human mothers of ASD children resulted
in atypical stereotyped behaviors compared to controls
injected with IgG from mothers of typically developing
children [53]. Similarly, injecting serum antibodies from a
mother of children with ASD into pregnant mice resulted
in altered behavior and sociability in the offspring com-
pared with offspring of mice injected with serum from
mothers of healthy children [22, 82]. Recent studies aim-
ing at discovering how these maternal antibodies function
have shown clear differences in their binding properties
when comparing maternal antibodies from samples from
ASD and typically developing children [25]. More specific-
ally, these studies have found that mothers of children
with ASD have autoantibodies that are able to bind to a
more diverse set of peptides, with specific combinations of
peptides not observed in antibodies from mothers of typ-
ically developing children.

Parental and familial dysfunctional immune system
have also been previously correlated with ASD. For in-
stance, approximately 37% of surveyed ASD children re-
ported maternal or first-degree familial autoimmune
disorder whereas only 6% of the control group showed
this condition [16]. Further studies showed that families
with autoimmune disorders such as type-1 diabetes, RA,
autoimmune thyroid diseases, and systemic lupus erythe-
matosus (SLE) have a higher chance of having children
diagnosed with ASD [58, 87]. Some studies have sug-
gested that the presence of anti-brain antibodies in the
pregnant mother causes developmental alterations in the
child’s brain [12]. This idea received experimental
support in a mouse model where the administration of
anti-brain antibodies to pregnant dams resulted in ASD-
like behavioral abnormalities in their offspring [82]. For
these reasons, in recent years, there has been an increase
in ASD research devoted to use MIA as animal model.
Thus, it has been reported that injection of poly(I:C)
synthetic virus in pregnant dams at their embryonic day
12.5 (E12.5) increases the maternal serum IL-6 which in
turn causes ASD-like phenotype in the offspring [85].
More recently, another study showed that MIA results
in the elevation in the maternal serum IL-17 level which
also causes ASD-like behavior in the offspring. This
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study reported that in fact maternal IL-17 level was the
causal factor for the offspring’s ASD as the administra-
tion of an IL-17 neutralizing antibody prevented the oc-
currence of ASD. Additionally, this study also found IL-
17 receptors in the fetal brain [17]. These findings shine
light on the possibility that maternal IL-17 could bind to
these specific receptors in the fetal brain during the de-
velopmental phase of the nervous system, then initiating
a signaling cascade (s) that may lead to structural and
behavioral abnormalities [98].

High salt diet, gut dysbiosis and immune
dysregulation

Excessive salt intake is a major worldwide public health
issue. First, it is well known that consumption of ele-
vated dietary salt can lead to several cardiovascular dis-
eases. According to the WHO, the top two major causes
of death globally are ischemic heart disease and stroke,
which can be caused by consuming too much salt [63].
Second, salt consumption indeed exceeds the recom-
mended level almost everywhere where there is a record
of it, with very little difference between countries [69].
On average, salt consumption currently reaches 9-12 g
per day whereas the WHO recommends a daily salt in-
take of less than 5 g per day (2014). Indeed, approxi-
mately 2.5 million of deaths worldwide could be
prevented each year by reducing the daily salt intake
([13]; 2014). Third, most of the excess of salt in food is
added during the manufacturing process. In the USA,
more than 70% of daily sodium, a major component of
salt, comes from processed foods, 14% naturally occurs
in the food ingredients and only 5% is being added while
cooking [37]. It is also alarming that, according to the
US CDC, the foods that contain the highest levels of salt
are the foods that we consume more often, such as a
variety of highly processed items (e.g., canned foods,
pizza, cured meats, popcorns, chips).

The cellular effects of excessive salt on innate im-
munity are portrayed in Fig. 1. The mononuclear
phagocyte system (MPS) cells of the innate immune
system, such as, macrophages or dendritic cells of the
skin interstitium respond to extracellular hypertonicity
caused by excessive salt. Macrophages secrete vascular
endothelial growth factor-C in response to the exces-
sive presence of sodium (Na*) [51]. Further, excessive
salt can also dysregulate how macrophages are acti-
vated, thus disrupting the immune system homeostasis
[102]. For example, hypertonic conditions created by
higher salt concentration increase pro-inflammatory
macrophages (M1) and activate inflammasomes that
lead to the production of IL-1p [40, 60]. High salt con-
centration also activates the mitogen-activated protein
kinase (MAPK) pathway in the M1 macrophages and
increases the production of several chemokines and
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Fig. 1 Effect of high salt on innate immunity. A high salt condition increases pro-inflammatory macrophages (M1) and activates inflammasomes

that lead to the production of interleukin (IL)-1(3. It also activates the MAPK pathway and increases the production of several chemokines and
cytokines. High salt can also reduce the activity of alternative (cell repairing), non-inflammatory macrophages M2 (which produce regulatory

cytokines such as IL-10) by dysregulating their AKT/mTOR signaling pathway

cytokines [102]. Moreover, high salt can also reduce the
activity of the cell-repairing non-inflammatory M2
macrophages. This alternative pathway produces anti-
inflammatory cytokines such as IL-10 by dysregulating
AKT/mTOR signaling pathway [9].

High salt intake can also influence the adaptive immune
system (Fig. 2). First, the increased level of IL-1f has the
potential to increase the differentiation of Th-17 cells [60].
Moreover, several in vitro and in vivo studies have reported
that high salt can induce the differentiation of Th17 cells as
well as the production of IL-17 from naive CD4+ T cells by
activating several signaling pathways [9, 45, 47]. Growing
Th17 cells in conditions mimicking the salt concentration
found in the interstitium of a high salt fed animal (ie, in
medium containing < 80 mM sodium chloride) demon-
strated that high salt increases the phosphorylation of the
intracellular signaling molecule MAPK14 and the transcrip-
tion factor NFAT5 (nuclear factor of activated T cells 5).
Furthermore, high salt also upregulated the serum
glucocorticoid-regulated kinase 1 (SGK1) [9, 45]. Activated
SGK1 phosphorylates forkhead box protein O1 (FOXO1)
[99]. In normal conditions, unphosphorylated FOXO1 pro-
teins bind to the IL-23 receptor (IL-23R) promoter and
suppresses its transcription. Phosphorylated FOXO1 how-
ever cannot bind to the IL-23R promoter, therefore

allowing increased IL-23R transcription and IL-23 produc-
tion, which is a strong stimulus for Th17 cell differentiation
[45]. The phosphorylated FOXO1 protein can also induce
the expression of a transcription factor of Th17 cell differ-
entiation named retinoic acid-receptor-related orphan re-
ceptor yt (RORyt) [9, 45, 47]. Along with this, feeding high
salt diet to mice subjected to experimental autoimmune en-
cephalomyelitis (EAE), a mouse model of Multiple Sclerosis
(MS), showed significant worsening of their condition [45,
99]. These findings agree with the effect of high salt diet on
Th-17 production as MS is strongly associated with in-
creased Th-17 differentiation [24]. Further, increased salt
intake in MS patients was associated with exacerbation of
the disease progression [29].

Similarly, high salt consumption can affect regulatory T
(Treg) cells. Treg cells downregulate the effector T cell
proliferation and induction [8]. Though Treg cells func-
tion as suppressors, they are also involved in the pro-
duction of pro-inflammatory cytokines such as IFN-y and
IL-17. High salt consumption has been shown to induce a
6-fold increase in IFN-y secretion from Treg cells; this
overproduction of IFN-y in turn decreases the suppressive
function of Treg cells [21]. Further, in vitro and in vivo
data showed that activated SGK1 caused by high salt con-
sumption can regulate CD4+CD25hiCD127loFoxp3+Treg
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Fig. 2 Effects of high salt on the adaptive immune system. High concentration of salt increases the phosphorylation of the intracellular signaling
molecule MAPK14 in the naive CD4+ T cell, which also activates the transcription factor NFAT5. High salt also upregulates serum glucocorticoid-
regulated kinase 1 (SGK1). Activated SGK1 phosphorylates forkhead box protein O-1 (FOXOT1). Phosphorylated FOXO1 cannot bind to the IL-23
receptor (IL-23R) promoter which allows increased transcription of IL-23R as well as increased production of IL-23. Increased IL-23 level is a major
stimulus for Th-17 cell differentiation. The phosphorylated FOXO1 protein also induces the expression of retinoic acid-receptor-related orphan
receptor yt (RORyY), a transcription factor of Th17 cell differentiation Additionally, activated SGK1 and deactivated FOXO1 decrease the expression
of FOXP3 which eventually reduces the differentiation of Treg cells. High salt also increases the INF-y production from Treg cells, which decreases

I FOXP3

Tregcell

cells which results in functional loss of modulatory ability
[39]. Moreover, the excessive differentiation of Th17 cells
caused by high salt is associated with cognitive dysfunc-
tion and memory impairment by causing a reduction in
cerebral blood flow due to reduced endothelial NO pro-
duction [28].

Recent studies have indicated that the immune dysreg-
ulation caused by high salt diet is mediated by gut dys-
biosis [60, 78]. For instance, mice fed with excessive
amounts of salt (4—8% for 4—8 weeks) showed significant
changes in their gut microbial composition [56]. This
high salt regimen specifically reduced several species of
genera Lactobacillus, Oscillibacter, Clostridium XIVa,
and Rothia, while increasing Parasutterella [56, 96].
Interestingly, this study also showed that the gut dysbio-
sis in the high salt diet fed mice resulted in dysregulation
of Th17 cells, which are responsible for the over produc-
tion of IL-17. In addition, the abnormal inflammation
observed in the high salt diet fed mice was reversed by
the administration of two species of Lactobacillus, e.g.,
L. murinus and L. reuteri [96].

Maternal elevated salt consumption and ASD in
the offspring

Maternal diet and gut microbiome are factors that have
been received considerable attention from ASD re-
searchers. However, among several dietary components

that have been studied in detail, the effect of maternal
high salt diet has not received comparable consideration.
A review of recent literature suggests a possible causal
link between maternal salt consumption and offspring
ASD. On the one hand, several lines of evidence have
shown that elevated salt intake can alter both the innate
and adaptive immunity via maternal gut dysbiosis. Such
abnormal gut microbiome result in an increased dif-
ferentiation of Th-17 cells, with concomitant hyper
production of their effector IL-17 [45]. The higher differ-
entiation of Th-17 cell as well as the presence of high
concentrations of IL-17 in the blood play a major role in
the progression of several autoimmune disorders such as
RA, SLE, MS, and autoimmune thyroid disorder [31, 38,
50, 75]. Further, several recent studies have shown that
the maternal gut microbiome present during pregnancy
and breastfeeding can be transferred to the fetus and
newborn via placental blood circulation and breast milk
[35, 93]. In contrast, administration of an IL-17 specific
antibody and a probiotic supplement to MIA pregnant
mice showed the attenuation of ASD in the offspring
which establishes a possible causal relationship between
maternal gut dysbiosis and immune dysregulation result-
ing in offspring ASD [17, 95]. Thus, we hypothesize that
there might be a potential causal relationship between
maternal high salt consumption and offspring ASD (Fig.
3). Specifically, chronic consumption of high dietary salt
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Fig. 3 Maternal high salt diet and offspring ASD. Chronic consumption of high salt causes microbial dysbiosis in the maternal gut (A), which can
then result in maternal immune system dysregulation: (a) increased differentiation of Th-17 cells and concomitant increased IL-17, (b) increased
M1 macrophage activation with related cytokines and chemokines release, and (c) decreased Treg cell differentiation and regulatory M2
macrophage activation. The altered maternal gut microbiota and increased IL-17 travel via placental circulation to the fetus (B). In the fetal
intestine, the gut microbiota and increasing IL-17 serum levels could cause a similar immune dysregulation as in the maternal side. When
circulating IL-17 reaches the fetal brain and causes the activation of IL-17 receptor A (IL-17RA), several mechanisms can be triggered: (1) IL-17
could hamper the development of the fetal blood brain barrier (BBB), (2) reduction of the proliferation of neuronal stem cells (NSC) which in turn
decreases neuro and gliogenesis, (3) dysregulation of the Act1 signaling pathway which alters the expression of ERK protein, and (4) IL-17 can
also over-activate microglia. The described changes contribute to the ASD-like phenotype observed after birth (C)

causes gut dysbiosis and dysregulation of the Th17 axis
[56, 60, 96]. Both conditions would continue during a
possible pregnancy, with the concomitant increase in
Th17 cell differentiation as well as higher level of serum
IL-17 in the pregnant female that could be transferred
through the placental blood to the fetus. When IL-17
reaches the developing fetal brain, it could affect the de-
velopment of the fetal blood-brain barrier (BBB) as it
has been reported in a mouse model that the formation
of a fully functional BBB is completed at embryonic day
15.5 (E15.5) [7]. The development of a dysfunctional
BBB may increase its permeability and thus cause the in-
filtration of effector molecules (including several cyto-
kines) into the fetal brain. Furthermore, as the altered
gut microbiome is shared from the mother to the fetal
intestine, a higher number of immune cells are differen-
tiated there and can produce excessive pro-inflammatory
cytokines [41, 93]. The altered gut microbial compos-
ition can also increase the permeability of fetal intestinal
cells and cause the infiltration of those cytokines to the
blood stream [72]. Additionally, IL-17 from the placenta
can potentially act on fetal brain cells expressing IL-17
receptors (IL-17RA) [17]. In normal conditions, IL-

17RAs have been shown to have a very low expression
[98]; however, it remains to be determined whether in
conditions of gut dysbiosis-induced fetal brain immune
activation, IL-17RA expression is upregulated. Neverthe-
less, when IL-17 binds and activates fetal IL-17RAs, this
could affect the development of the fetal brain in several
possible ways. Firstly, the activated IL-17RA may cause
neuronal death as well as inhibition of neural stem cell
(NSC) proliferation. Secondly, it may overly activate
microglia which can cause NSC apoptosis, decreased
neuronal differentiation, and increased glial cell diffe-
rentiation. Furthermore, the activation of IL-17RA can
activate Actl, the signaling molecule downstream from
IL-17RA. The activated Actl can then activate several
other signal transduction pathways including the extra-
cellular signal-regulated kinase (ERK) pathway. The ERK
pathway is associated with several essential function in
the nervous system including neuronal differentiation,
synaptic plasticity, and cognition [20, 34, 65]. Interest-
ingly, MAPK/ERK signaling pathway is hyperactivated in
ASD patients [92]. Further studies showed the increased
level of phosphorylated MAPK and phosphorylated ERK
in the prefrontal cortex area of ASD mouse model brain
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[30]. Additionally, inhibition of the phosphorylation of
ERK protein during the developmental period of mice
fetal brain was found to rescue the behavioral deficits
[71]. Thus, IL-17 RA-mediated Actl activation may
cause the increased phosphorylation of ERK in the fetal
brain hindering its development as well as behavior.

Overall, the existing evidence supports the hypothesis
that there is a possible association between maternal
elevated salt consumption and offspring ASD, although
more research is needed to validate this. The idea is
especially concerning considering the documented ex-
cessive consumption of salt and the increased preva-
lence of ASD.

Maternal diet and epigenetic effects

Epigenetic modifications refer to molecular factors that
influence genetic activity without changing our inherited
primary DNA sequence. These epigenetic marks change
the local chromatin environment and therefore affect
DNA accessibility, regulating gene transcription and a
wide range of processes associated with the DNA [101].
Further, a multitude of studies have suggested that epi-
genetic marks are also sensitive to environmental expos-
ure. In fact, environmental factors such as nutrients,
contaminants, toxins, and others have been shown to
impact the levels and turnover of epigenetic modifica-
tions and therefore can alter gene expression patterns
possibly resulting in disease [57]. One of the most well-
known examples of epigenetic regulation is DNA methy-
lation, which generally correlates with transcriptional
silencing when located in a gene promoter [42]. Interest-
ingly, DNA methylation has been implicated in the
pathophysiology of ASD [46]. Then, if we consider high
salt diet as an environmental factor, it is relevant to
think about potential epigenetic mechanisms contribut-
ing to cause ASD in the offspring of mothers (and/or fa-
thers) that have consumed too much salt. In this
context, elevated salt has been shown to alter the DNA
methylation levels of genes related to aldosterone bio-
synthesis [59], while also influencing the activity of
histone-modifying enzymes associated with salt-induced
changes in blood pressure, such as lysine-specific
demethylase 1 (LSD-1) [97]. However, a clear connection
between epigenetic mechanisms induced by high salt
diet and ASD is yet to be observed. Further studies are
needed to improve of our understanding of the involved
mechanisms when these different pathways crosstalk.
Nevertheless, there is indirect evidence of putative inter-
section between high salt, epigenetics, and ASD, from a
wealth of literature indicating substantial epigenetic
changes in the immune system [54], in particular
changes related to autoimmune disorders. Remarkably,
as discussed earlier, there are many studies showing a
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clear association between autoimmunity disorders in
parents and ASD in their children.

Conclusions and future studies

With the growing number of patients diagnosed with
ASD, the urge to find causal factors and mechanisms
involved is also rising. While studies have shown clear
correlations between dietary habits and gut dysbiosis
with a variety of illnesses related to immune dysregula-
tion (including brain disorders), whether maternal
(and/or paternal) dysfunctional immune system in-
duced by elevated salt intake (and mediated by gut dys-
biosis) has any effect on children’s brain development
has not been explored in detail. Extensive research is
needed to first identify a causal association, and second,
to uncover the mechanisms involved in linking exces-
sive salt, gut dysbiosis/immune compromise, and ASD
in the offspring. Moreover, most of the previous re-
search involving salt intake and immune dysregulation
has been done using a mouse model and using an
amount of salt almost 16-fold higher than their daily
requirement. As the sodium metabolism in mice and
humans is different, further research is necessary to
elucidate the lower and upper limits of consumed salt
that can cause immune dysregulation in humans. If our
hypothesis (i.e., there is a causal relation between ma-
ternal salt consumption and children’s ASD) is experi-
mentally validated, several therapeutic options will be
available for the treatment and possible prevention of
the disorder. Additionally, dietary salt could be consid-
ered as a risk factor not only directly for the consumer’s
health (i.e., adults that will eventually reproduce), but
also for their progeny.

A better understanding of environmental factors (such
as dietary choices) that increase the probability of ASD,
and other neurological disorders, could have a tremen-
dous impact in determining public health policies. In the
future, implementing such interventions, specifically
during pregnancy, could reduce the burden of inad-
equate access to resources and information regarding
dietary habits.

An important research avenue to explore is to con-
tinue developing epigenetic studies. The directions to
follow are diverse but one of the most essential areas is
to provide the evidence of causality between high salt
diet, gut dysbiosis, and compromised immune system,
and the development of ASD in the offspring. So far,
multiple associations have been found amongst some of
these factors, but there is no agreement yet on a unified
theory. Further epigenetic studies, nonetheless, could
help uncovering biomarkers for a more accurate predic-
tion of risk of ASD prior to diagnosis, as well as severity
and penetrance.
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