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Abstract

Background: Cerebral amyloid angiopathy (CAA) is a common cerebral small vessel disease of the aged and a
prominent comorbidity of Alzheimer’s disease (AD). CAA can promote a variety of vascular-related pathologies
including neuroinflammation, cerebral infarction, and hemorrhages, which can all contribute to vascular cognitive
impairment and dementia (VCID). Our understanding of the pathogenesis of CAA remains limited and further
investigation of this condition requires better preclinical animal models that more accurately reflect the human
disease. Recently, we generated a novel transgenic rat model for CAA (rTg-DI) that develops robust and progressive
microvascular CAA, consistent microhemorrhages and behavioral deficits.

Methods: In the current study, we investigated perivascular pathological processes that accompany the onset and
progressive accumulation of microvascular CAA in this model. Cohorts of rTg-DI rats were aged to 3 months with
the onset of CAA and to 12 months with advanced stage disease and then quantitatively analyzed for progression
of CAA, perivascular glial activation, inflammatory markers, and perivascular stress.

Results: The rTg-Dl rats developed early-onset and robust accumulation of microvascular amyloid. As the disease
progressed, rTg-Dl rats exhibited increased numbers of astrocytes and activated microglia which were accompanied
by expression of a distinct subset of inflammatory markers, perivascular pericyte degeneration, astrocytic caspase 3
activation, and disruption of neuronal axonal integrity.

Conclusions: Taken together, these results demonstrate that rTg-DI rats faithfully mimic numerous aspects of
human microvascular CAA and provide new experimental insight into the pathogenesis of neuroinflammation and
perivascular stress associated with the onset and progression of this condition, suggesting new potential
therapeutic targets for this condition. The rTg-DI rats provide an improved preclinical platform for developing new
biomarkers and testing therapeutic strategies for microvascular CAA.
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Background

Cerebral amyloid angiopathy (CAA) is a prominent cere-
bral small vessel disease characterized by the deposition of
fibrillar amyloid beta peptide (AP) within small arteries
and arterioles of meninges and cortex as well as the brain
capillaries [1, 2]. Sporadic CAA is common in the elderly
brain and is present in > 50% of individuals over the age of
80years [3]. It has been reported that greater than 80%
Alzheimer’s disease (AD) patients present CAA pathology
in varying levels [1-4]. Further, early-onset, familial forms
of CAA result from specific mutations within the A pep-
tide including the Dutch E22Q and Iowa D23N variants
[5-7]. Clinically, CAA can promote cerebral infarction, in-
tracerebral hemorrhages (ICH), and microbleeds [1, 2, 8,
9]; all of which can contribute to vascular cognitive im-
pairment and dementia (VCID).

There are two prominent forms of CAA. When re-
stricted to the meningeal and intracortical cerebral arteri-
oles, this is referred as CAA type-2 [1, 10]. In CAA type-1,
the deposition of AP is present on the capillary walls and
observed in approximately half of AD cases [10]. In con-
trast to larger-vessel CAA type-2, CAA type-1 results in fi-
brillar amyloid penetrating the surrounding brain
parenchyma, referred to as dyshorric amyloid, which fur-
ther promotes a strong perivascular neuroinflammatory
response [1, 10-12]. It is suggested that the early perica-
pillary Ap impairs the perivascular drainage pathway,
which leads to the disruption of AP clearance resulting in
more AP deposition on capillary walls [1]. Further, CAA
type-1 is often correlated with impaired cognition and
rapidly progressive dementia [13-15]. Although CAA
type-1 shows high clinical relevance, its contributions to
neurodegenerative diseases is still unclear. Therefore, a
better understanding of the mechanisms involved in CAA
pathogenesis may be helpful in the design of therapeutic
approaches targeting this condition.

Recently, we generated a novel transgenic rat model
(rTg-DI) that produces low levels of human familial CAA
Dutch/Iowa E22Q/D23N mutant AP in the brain [16].
The rTg-DI rat model shows many pathologic aspects of
human small vessel CAA type-1, including similar vascu-
lar AP structure, glial activation, and microhemorrhages,
accompanied by behavioral deficits [16]. In order to gain a
better understanding of the mechanisms underlying CAA
pathology, we investigated perivascular pathological pro-
cesses that accompany CAA type-1 in the rTg-DI rat
model. Here we show that rTg-DI rats exhibit early-onset
and progressive accumulation of capillary fibrillar AP par-
alleled with increasing numbers of perivascular glial cells.
Furthermore, accumulating vascular amyloid promoted
expression of a subset of inflammatory markers, which
was accompanied by loss of perivascular pericytes, induc-
tion of cellular caspase 3, and axonal pathology. Collect-
ively, this work demonstrates that the rTg-DI model
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faithfully recapitulates multiple aspects of human CAA
type-1 and provides further insight into emerging CAA
type-1 pathologies, which may offer new targets in devel-
oping appropriate therapeutic interventions.

Methods

Animals

The generation of rTg-DI transgenic rats was recently
described [16]. These rats modestly express human
Swedish/Dutch/Iowa mutant ABPP under the control of
the neuronal-specific Thyl.2 promoter. The deposition
of vascular fibrillar mutant Dutch/Iowa AP peptide be-
gins at around 3 months of age with a progressive in-
crease in the amounts of primarily soluble and insoluble
pools AB40 in the brain with age. Heterozygous rTg-DI
rats and non-transgenic, wild-type rats at 3 and 12
months of age were used in the present study. All work
with animals was in accordance with the United States
Public Health Service’s Policy on Humane Care and Use
of Laboratory Animals and was approved by the Univer-
sity of Rhode Island Institutional Animal Care and Use
Committee (IACUC).

Brain tissue preparation

Animals were euthanized with CO, at specified ages.
The rat brain was surgically removed and bisected in the
mid-sagittal plane. One hemisphere was snap-frozen in
liquid nitrogen for mRNA and protein analyses. The
other hemisphere was either fixed in 4% paraformalde-
hyde or fixed in 70% ethanol followed by xylene treat-
ment and embedding in paraffin or snap-frozen in
optimal cutting temperature medium (OCT 4585, Fisher
Healthcare) directly.

Immunohistochemistry
For glial cell analysis, paraffin-embedded brains were sa-
gittally sectioned at 10 um, or for stereological analysis
at 50 um, thickness using a microtome, deparaffinated
and rehydrated. Then sections were incubated with pro-
teinase K (0.2 mgmL™") for 5min at room temperature.
Sections were then blocked in Superblock blocking buf-
fer (37518, ThermoFisher) containing 0.3% Triton X-100
at room temperature for 30 min and incubated with in-
dividual primary antibodies at the following dilutions
overnight: rabbit polyclonal antibody to collagen IV (1:
250, SD2365885, Invitrogen), goat polyclonal antibodies
to glial fibrillary acidic protein (GFAP, 1:250, ab53554,
Abcam), or ionized calcium-binding adapter molecule 1
(Iba-1, 1:250, NB100-1028, Novus). Mouse monoclonal
antibody to OX6 MHCII (1:200, Abcam) was used to
identify cells in the brain that potentially represent mac-
rophagic microglia.

For the pericyte staining, the fresh-frozen OCT dir-
ectly embedded tissues were used. Sections were fixed in
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acetone for 10 min, then air dried for 30 min followed by
PBS rehydration for 5min at room temperature. Sec-
tions were blocked in Superblock blocking buffer for 30
min then incubated with goat polyclonal antibody to
platelet-derived growth factor receptor beta (PDGFRp, 1:
250, gov0415021, R&D) and rabbit polyclonal antibody
to collagen IV overnight.

For fluorescence staining, after the overnight incubation,
sections were washed with PBS for three times, then incu-
bated with Alexa Fluorescent 594- or 488-conjugated sec-
ondary antibodies (1:1000). Fluorescent staining for
fibrillar amyloid was performed using either thioflavin S
(123H0598, Sigma-Aldrich) or Amylo-Glo (TR-300-AG,
Biosensis Inc.), as described by the manufacturer. Nuclear
staining was performed with 4',6-diamidino-2-phenylin-
dole (DAPI, 10236276001, Sigma-Aldrich).

Quantitative measures of CAA pathologies

The percent area of capillaries covered with amyloid was
quantified using a set of sections that were stained with
thioflavin S and immunolabeled with antibody to colla-
gen IV. A series of non-overlapping images covering the
cortex, hippocampus, and thalamus were captured and
analyzed by the Image ] software. For each field, the sum
area of thioflavin S was divided by that for the total col-
lagen IV immunoreactive capillary area x 100 to yield
the percent area of microvascular amyloid.

The numbers of astrocytes and microglia, and peri-
cytes in capillaries of the cortex, hippocampus, and thal-
amus at each 3 and 12 months of age were determined
using stereological principles [17]. The density of micro-
glia and astrocytes was quantified in the regions of the
cortex, thalamus, and hippocampus of rTg-DI and age-
matched WT rats. The total numbers of microglia and
astrocytes were estimated using the Stereologer software
system (Systems Planning and Analysis). Every tenth sec-
tion cut at 50 um was selected and generated 10-15
sections per reference space in a systematic-random
manner. Immunopositive cells were counted using the
optical fractionator method with the dissector principle
and unbiased counting rules [17]. Criteria for counting
cells required that cell bodies exhibited positive GFAP
or Iba-1 immunostaining, for astrocytes or microglia
respectively.

The density of pericytes was calculated using a set of
brain sections labeled with antibodies to PDGFRp for
pericytes and collagen IV to identify capillaries/micro-
vessels and Amylo-Glo to reveal deposited fibrillar amyl-
oid. The number of pericyte cell bodies and the length
of capillaries were calculated in the BZ-X Analyzer soft-
ware. Then, the pericyte coverage in each area was
calculated by the total number of pericytes divided the
sum length of capillaries.
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Real-time quantitative PCR

Rat brains at each age were collected and snap-frozen in li-
quid nitrogen. The brains were first homogenized within
Trizol (162711, Invitrogen), then the total RNA was ex-
tracted by using the Direct-zol RNA MiniPrep kit
(ZRC200796, ZYMO research) according to the manufac-
turer’s protocol. Total RNA concentrations were measured
using Nanodrop (Nanodrop one, Thermo Scientific). cDNA
was synthesized with the High Capacity cDNA Reverse
Transcription Kit (00289994, Applied Biosystems) following
manufacturer’s guidelines. Quantitative PCR (qPCR) were
performed in the Step One Plus Real-time PCR system (Ap-
plied Biosystems) using the Tagman primers (CD86, Rn005
71654_m1; CD68, TREM2, Rn01512170_m1; Rn01495634.
gl; GFAP, Rn00566603_ml; TGFf1l, Rn00572010_ml;
TNFa, Rn01525859_gl; IL1B, Rn00580432_ml; IL10,
Rn01483988_g1; IL6, Rn01410330_m1; IL17, Rn01757168_
ml; C3, Rn00566466_ml; C1q,Rn00595250_m1; C4b, Rn
01774112_mH; Clinh, Rn01485600_m1; MMP9, Rn0057
9162_ml; MMP2, Rn01538170_ml; Actb, Rn00667869_
m1). Obtained mRNA expression levels were normalized to
Actin-beta.

Identification of pro-apoptotic cells

The numbers of pro-apoptotic cells were determined
using stereological principles as described above. Sec-
tions of 3-month and 12-month wild-type and rTg-DI
rat brains were immunolabeled with a rabbit antibody
for active-caspase 3 for identifying the pro-apoptotic
cells (1:250, AF835, Novus), mouse monoclonal antibody
66. 1[18] (1:250) to label fibrillar amyloid and stained
with DAPI for nuclear labeling for counting the total
number of cells. The ratio of caspase 3-positive cells to
total cell number in cortex, hippocampus, and thalamus
were calculated using the BZ-X Analyzer software. To
identify the caspase 3-positive cell types, the brain sec-
tions were double immunolabeled with antibody to cas-
pase 3 and with antibodies to NeuN, GFAP, or Iba-1 to
identify neurons, astrocytes, or microglia, respectively.

Analysis of axonal pathology

Axonal integrity was evaluated by immunolabeling the
brain sections from 3 and 12-month-old wild-type and
rTg-DI rats with SMI312 mouse monoclonal pan axonal
neurofilament marker (1:200, 837904, Biolegend). Tissue
sections were stained with thioflavin S to identify micro-
vascular fibrillar amyloid deposits.

Statistical analysis

Statistical analysis was performed using the Graphpad
Prism software. Results are shown as mean value with
standard deviation (SD) of the mean. The statistical dif-
ferences between pairs of data sets were analyzed by ¢
test at the 0.05 significance level.
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Results

Progressive accumulation of microvascular amyloid is
accompanied by increased numbers and activation of
glial cells

rTg-DI rats exhibit progressive accumulation of cerebral
microvascular fibrillar amyloid in the cortex, hippocampus,
and thalamus (Fig. 1). The deposition of microvascular
amyloid begins at = 3 months of age in all three brain re-
gions (Fig. 1la—c). At 12 months of age, the rTg-DI rats de-
veloped extensive cerebral microvascular AP deposition,
with more than 30% and 60% of the capillaries covered by
fibrillar A in the hippocampus and thalamus, respectively
(Fig. 1g). Although the level of CAA was somewhat lower
in the cortical area, still more than 15% of the vessel surface
was covered with amyloid. These findings demonstrate that
the rTg-DI rat model consistently develops early-onset and
extensive cerebral vascular AP accumulation in the brain.
For all of the proceeding analyses, measures were per-
formed at the early-stage onset of microvascular CAA (3
months) and compared with late-stage disease with exten-
sive microvascular CAA (12 months).
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Astrocytes have been increasingly recognized as an im-
portant contributor to the neuroinflammatory and neuro-
degenerative processes in Af-related human disorders
including CAA [19]. The accumulation of cerebral micro-
vascular amyloid in rTg-DI rats similarly promotes a strong
astroglial response in several ways. For example, at 3
months of age with the onset of microvascular amyloid de-
position, there is a noticeable uptick in the numbers of as-
trocytes and the beginning of a change in appearance
compared to age-matched wild-type rats (Fig. 2a—f, o).
These early changes observed in 3 months old rTg-DI rats
were not evident in younger 1 month old animals, prior to
onset of microvascular amyloid deposition (Additional Fig.
1). As rTg-DI rats aged to 12 months and presented with
extensive microvascular CAA (Fig. 1), there was a dramatic
increase in the numbers of astrocytes in the cortical, hippo-
campal, and thalamic regions (Fig. 2j—1, o) whereas the
numbers of astrocytes in these brain regions of wild-type
rats remained fairly constant compared to 3 months of age
(Fig. 2g—i, 0). Further, a pronounced morphological alter-
ation of astrocytes was observed in rTg-DI rats. In contrast
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Fig. 1 Quantitative analysis of progressive accumulation of microvascular CAA in rTg-DI rats. a—f Brain sections from 3-month-old (a-c) and 12-
month-old (d—f) rTg-DlI rats were immunolabeled with rabbit polyclonal antibody to collagen IV to specifically detect cerebral microvessels (red)
and the thioflavin S to identify fibrillar amyloid (green). The rTg-Dl rats showed progressive cerebral microvascular fibrillar amyloid deposition in
the cortical (a, d), hippocampal (b, e), and thalamic regions (c, f). Scale bars =50 um. g Quantitation of cerebral microvascular amyloid load in
different brain regions of 3-month-old (black bars) and 12-month-old (gray bars) rTg-DlI rats. Data are expressed as means + SD of n=6-7 rTg-DI
rats per group. ***P < 0.001
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Fig. 2 Increased perivascular astrocytes in rTg-Dl rats. a-l Brain sections from 3-month-old wild-type (a-c) and rTg-DI (d-f) rats and 12-month wild-
type (g-i) and rTg-DI (j-I) rats were labeled with Amylo-Glo to detect fibrillar amyloid (blue), rabbit polyclonal antibody to collagen IV to detect
cerebral microvessels (red), and goat polyclonal antibody to GFAP to identify astrocytes (green). Scale bars = 50 um. m, n Enlarged images of the
highlighted regions of panels i and |, respectively. Scale bars = 10 um. o Quantitation of astrocyte numbers from wild-type rats (black bars) and rTg-DI
rats (gray bars) in different brain regions at 3 and 12 months of age. Data shown are mean + SD of n = 5-6 rats per group. Compared to wild-type rats
the astrocyte numbers were markedly elevated in rTg-DI rats and increased from 3 to 12 months of age in measured brain regions. ***P < 0,001

to the astrocytes present in the brains of 12-month wild-
type rats (Fig. 2m), the astrocytes surrounding microvessels
with amyloid generally showed increased cell body volume
and thickened, retracted processes (Fig. 2n).

Activated microglia have also been strongly associated
with human CAA type-1 vascular amyloid since it engages

the surrounding brain parenchyma [12, 20, 21]. We found
that in rTg-DI rats the presence of microvascular amyloid
dramatically changes the numbers and morphological state
of microglia. At 3 months of age, with onset of microvascu-
lar amyloid, the numbers of microglia sharply rose com-
pared to wild-type rats (Fig. 3a—f, 0). As the rTg-DI rats
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further aged to 12 months, presenting with more extensive
microvascular amyloid, the numbers of microglia further in-
creased in all brain regions whereas they remained constant
in wild-type rats (Fig. 3g—1, 0). In addition to these marked
increases in numbers, the microglia surrounding the micro-
vascular amyloid deposits showed a pronounced change in
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morphology. In 12-month-old wild-type rats, microglia are
sparse and exhibit a resting, surveillance phenotype with
long extended process (Fig. 3m). In contrast, the presence of
microvascular amyloid promotes a distinct change in
morphology to activated state with enlarged cell bodies and
retracted processes that are closely engaged with the
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Fig. 3 Increased perivascular microglia in rTg-Dl rats. a-1 Brain sections from 3-month-old wild-type (@a—c) and rTg-DI (d-f) rats and 12-month wild-type (g-i)
and rTg-DlI (j-1) rats were labeled with Amylo-Glo to detect fibrillar amyloid (blue), rabbit polyclonal antibody to collagen IV to detect cerebral microvessels
(red), and goat polyclonal antibody to Iba-1 to identify microglia (green). Scale bars =50 um. m, n Enlarged images of the highlighted regions of panels

g and j, respectively. Scale bars = 10 um. o Quantitation of microglia numbers from wild-type rats (black bars) and rTg-Dl rats (gray bars) in different brain
regions at 3 and 12 months of age. Data shown are mean + SD of n = 5-6 rats per group. Compared to wild-type rats the microglia numbers were markedly
elevated in rTg-DI rats and increased from 3 to 12 months of age in the measured brain regions. *P < 002, **P < 001, **P < 0001
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amyloid (Fig. 3n). These changes in microglia numbers and
morphology were not evident in 1-month-old rTg-DI rats
prior to microvascular amyloid deposition (Additional Fig.
2). At this young age, microglia were indistinguishable be-
tween wild-type and rTg-DI rats with both exhibiting a rest-
ing state with elaborate extended processes.

To investigate potentially different subtypes of microglia
in rTg-DI rats, we performed double immunolabeling for
Iba-1, a common resident microglial marker, and OX6
MHCII a marker that has been used to identify activated
macrophagic microglia [22, 23]. In 3 and 12-month wild-
type rats, the small number of microglia were labeled ex-
clusively with Iba-1 and exhibited their resting state
morphology (Additional Fig. 3). On the other hand, in the
presence of microvascular amyloid at 3 months and more
so at 12 months, a subset of microglia was labeled with
both Iba-1 and OX6. However, there were few, if any, cells
labeled solely with OX6. This suggests that a subpopula-
tion of microglia with a potentially different activation
state exists in rTg-DI rats, especially with advanced micro-
vascular amyloid deposition. These series of data together
show that robust increases in both astrocytes and micro-
glia, presenting with perhaps different activation states,
develop as CAA emerges and progresses in rTg-DI rats.
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Inflammatory marker expression in rTg-DI rat brain
Previous data from both human and transgenic mouse
models of CAA have identified changes in expression of a
number of inflammatory markers [1, 11, 12, 24—26]. Based
on the inflammatory cell increases described above in
rTg-DI rats, analysis of inflammatory marker expression
could provide further insight into the pathogenesis of
CAA in this model. Therefore, we next performed
qRTPCR experiments to measure the expression of a
series of inflammatory markers in the rTg-DI rat model of
CAA at the early-stage disease onset (3 months) and at a
stage of more advanced pathology (12 months).

Since we observed significantly increased numbers of as-
trocytes and activated microglia in rTg-DI rat brains, as
shown above in Figs. 2 and 3, we first focused on a set of
cell type specific markers. Indeed, compared to wild-type
rats, the rTg-DI rats exhibited significantly increased ex-
pression of GFAP at 3 months of age that further in-
creased at 12months of age (Fig. 4a). Similarly, we
measured the activation markers cluster of differentiation
68 (CD68) and CD86 [27], as well as triggering receptor
expressed on myeloid cells 2 (TREM2), and found all
three genes were significantly elevated in rTg-DI rat brains
at 3 months with the onset of CAA with further increases
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Fig. 4 Inflammation-related gene expression in rTg-DI rat brains. Total RNA was extracted from 3 and 12 months old rTg-DI rats and wild-type
rats followed by reverse transcription and real-time PCR analysis of marker gene expression was performed using 3-actin as an internal control.
Gene expressions in wild-type animals were normalized to 1 (dash line). Data presented are the means + SD of n=3-5 rats per group. *P < 0.05,

MMP2 MMP9




Zhu et al. Journal of Neuroinflammation (2020) 17:78

at 12 months with more advanced stage of microvascular
amyloid (Fig. 4a). These findings of astrocyte and micro-
glial marker gene expression is highly consistent with the
increases in cell numbers and activation as shown above.
Another cell marker measured was expression of platelet-
derived growth factor receptor p (PDGERp), a marker for
perivascular capillary pericytes which resides in the loca-
tion vascular amyloid deposition in rTg-DI rats. With the
emergence of CAA at 3 months in this model, there was
no difference in PDGFRP expression compared to wild-
type rats (Fig. 4a). However, as vascular amyloid accumu-
lation became more severe at 12 months there was a
significant reduction in expression of this pericyte marker.

In previous studies, CD86 expression indicated classic-
ally activated, pro-inflammatory M1 microglia [28]. There-
fore, we examined the mRNA levels of IL-1pB, IL-6, and
TNF-a in rTg-DI rat brains, which all participate in the
polarization of M1 microglia [29]. Of these markers, only
IL-6 showed a significant increase in expression at the on-
set of CAA, but this increase subsided as the rats pre-
sented with more advanced disease at 12 months (Fig. 4b).
On the other hand, increased expression of IL-1p and
TNEF-a was not evident at early-stage disease but was sig-
nificantly elevated at late-stage disease (Fig. 4b). Interest-
ingly, expression of IL-17, which can upregulate microglial
production of IL-1p and IL-6 [30], was not affected or
appeared to be reduced in rTg-DI rats compared to wild-
type rats. We also measured the expression of two import-
ant anti-inflammatory cytokines, IL-10 and transforming
growth factor B (TGE-P). In this case, TGF-p showed a
significant increase in expression at 3 months with a fur-
ther increase at 12 months, while IL-10 showed somewhat
lower expression in rTg-DI rats.

We next examined the expression of several comple-
ment cascade components and matrix-metalloproteinases
(MMPs), which both can promote damage to cerebral
blood vessels. For example, fibrillar Ap deposits have been
shown to increase expression and activate certain compo-
nents of the complement cascade [31]. Interestingly, the
expression levels of classical complement component 1q
(Clq) and C4b did not show any significant difference be-
tween rTg-DI and wild-type rats at either stage of disease.
On the other hand, the alternative pathway complement
component 3 (C3) showed a robust increase in expression
at onset of CAA accumulation that somewhat tapered at
12 months but was still highly significant. Expression of
Cl-inhibitor, which regulates complement activation, was
significantly elevated in advanced disease, but not with the
onset of microvascular CAA. Similarly, we found disparate
expression of two key MMPs that can degrade vascular
basement membranes and promote bleedings [32].
Whereas MMP9 expression was increased several-fold in
r'Tg-DI rat brains at 12 months MMP2 was not. Taken to-
gether, these findings indicate that rTg-DI rats express a
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unique profile of inflammatory markers, complement
components, and MMPs, some beginning at the onset of
microvascular amyloid accumulation with more robust ex-
pression with increased pathology at 12 months, whereas
others are only expressed at late stage of disease.

Decreased perivascular pericytes in rTg-Dl rats

Pericytes are vascular mural cells embedded in the base-
ment membrane of blood microvessels, and uniquely
positioned within the neurovascular unit between endo-
thelial cells of capillaries [33, 34]. Previous studies in
APBPP transgenic mice have shown that pericyte loss can
impede soluble AP clearance and accelerate cerebral B-
amyloidosis and CAA [35]. Further, our gene expression
analysis in Fig. 4 showed that PDGFRp, a marker for
pericytes, is reduced at 12 months of age in rTg-DI rats.
Therefore, we evaluated microvascular pericytes in rTg-
DI rats at the different stages of the disease. In the wild-
type rats, pericytes with extended processes were readily
visualized along cerebral capillaries in all brain regions
at 3 and 12 months of age (Fig. 5a—c, d—i, m). In fact,
the number of pericytes along cerebral capillaries actu-
ally significantly increased from 3 to 12 months in wild-
type rats (Fig. 50). At 3 months of age, with the onset of
CAA, the morphology and numbers of capillary peri-
cytes in rTg-DI rats were indistinguishable from wild-
type rats (Fig. 5d—f, o). In contrast, at 12 months with
extensive capillary amyloid deposition, pericytes were
markedly reduced, degenerative, and lacked long ex-
tended process (Fig. 5d—f, n). Quantitation of pericyte
coverage in cerebral capillaries in the cortex, hippocam-
pus, and thalamus of rTg-DI rats revealed a highly sig-
nificant reduction (p < 0.001) in all brain regions. These
findings are consistent with the decreased expression of
PDGEFRp at 12 months of age in this model of micro-
vascular CAA (Fig. 4a).

Increased numbers of caspase 3-positive cells are
associated with severe microvascular amyloid deposition
in rTg-DlI rats

Our findings above show that the extensive cerebral
microvascular amyloid accumulation at 12 months in rTg-
DI rats is accompanied by robust neuroinflammation and
loss of pericytes, recapitulating the pathological features of
CAA type-1. In many human APPP transgenic mouse
models that develop cerebral amyloid deposits and pro-
mote cell stress, elevated caspase 3 activation was ob-
served [36-38]. Multiple lines of evidence indicate that
caspase 3 activation is both necessary and sufficient to
trigger apoptosis [39, 40]. Since our above results clearly
demonstrate that rTg-DI rats develop many signs of peri-
vascular stress including strong neuroinflammation and
loss of pericytes, we investigated if this also promoted cas-
pase 3 activation in these brain regions. At 3 months of
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age, the wild-type and rTg-DI rats with the absence of
microvascular CAA, exhibited little evidence for caspase 3
activation (Fig. 6a—f, m). However, at 12 months of age in
the presence of extensive CAA type-1, there was a dra-
matic increase in caspase 3-positive cells in rTg-DI rats

(Fig. 6j-1). Quantitative measures showed that there were
highly significant increases of caspase 3-labeled cells in
the cortex, hippocampus, and thalamus, with abundant
microvascular CAA (Fig. 6m). To identify what cell types
express caspase 3 in the 12months old rTg-DI rats,
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double labeling for caspase 3 and cell-specific markers was
performed. Surprisingly, these studies showed that the
majority of caspase 3-positive cells were found to be astro-
cytes, with little, if any, involvement of neurons or micro-
glia (Additional Fig. 4).

Disruption of axonal integrity in rTg-DI with advanced
CAA pathology

We next explored if advancing CAA pathology and asso-
ciated neuroinflammation had effects on surrounding

Page 10 of 15

neurons. Although we found no evidence of overt neur-
onal loss in the brains of rTg-DI rats up to 12 months of
age (not shown), we then focused on axonal integrity. At
3 months of age, when cerebral microvascular amyloid
deposition first appears in rTg-DI rats, axonal morph-
ology appeared very similar to that of wild-type rats
(Fig. 7a—f). However, as rTg-DI rats aged to 12 months
and presented with extensive microvascular amyloid
there were noted changes to axonal integrity (Fig. 7j—o).
For example, swollen and fragmented axons were
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Fig. 6 Progressive accumulation of microvascular amyloid leads to increased numbers of activated caspase-3 positive cells in rTg-Dl rats. a—f
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Representative images from 3-month-old wild-type (a—c) and rTg-DI (d-f) rats and 12-month wild-type (g-i) and rTg-DI (j-I) rats. Brain sections
were stained with DAPI (blue), immunolabeled with a rabbit polyclonal antibody to active caspase 3 to identify apoptotic cells (red) and with
mouse monoclonal antibody 66.1 to identify cerebral microvascular amyloid (green). Scale bars =50 um. g Quantitation of activated caspase 3
positive cells in wild-type rats (black bars) and rTg-DI rats (gray bars) in the cortex, hippocampus, and thalamus. Data shown are mean + SD of
n =5 rats per group. **P < 0.01, ***P < 0.001. In wild-type rats, very few activated caspase 3-positive cells were observed, but in rTg-Dl rat brains,
markedly elevated numbers of activated caspase 3-positive cells were seen surrounding microvascular amyloid in all brain regions
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evident. In addition, many neuronal cell bodies were
now labeled with the axonal marker showing a striking
redistribution of this reactivity. These findings suggest
that there are indeed marked impacts of advancing CAA
pathology on neuronal integrity, which likely contribute
to behavioral deficits in rTg-DI rats [16].

Discussion

CAA is a common cerebral small vessel disease of elderly
people, a prominent feature of AD, and a cause of VCID.
However, our understanding of the etiology and down-
stream pathological consequences of cerebral vascular
amyloid accumulation are still limited resulting in a lack of
effective therapeutic treatments. Therefore, valid and con-
sistent preclinical animal models to study the pathogenesis
of CAA are paramount. Most previous animal studies on
CAA involved the use of various human ABPP transgenic
mouse models that develop variable levels of CAA in the
presence or absence of parenchymal amyloid pathology
[41-44]. Recently, we reported the generation of a novel
transgenic rat model (rTg-DI) that robustly develops capil-
lary CAA type-1 [16]. We showed that rTg-DI rats express
low amounts of human chimeric Dutch (E22Q)/Iowa
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(D23N) familial CAA mutant A in the brain and develop
early-onset and progressive microvascular CAA. As CAA
progresses in rTg-DI rats, they develop consistent and nu-
merous cerebral microbleeds that can readily be detected
by magnetic resonance imaging. These findings suggest that
rTg-DI rats have the potential to be a useful preclinical
platform to study the pathogenesis of CAA type-1, to iden-
tify biomarkers for disease and to test therapeutic interven-
tions. Indeed, we recently showed that decreasing levels of
AB40 peptide in cerebrospinal fluid correlated with the pro-
gression of CAA in this model [22]. To better understand
the utility of rTg-DI rats as a valid preclinical model, here
we investigated the temporal development of several peri-
vascular pathologies that are commonly observed with hu-
man CAA type-1. Our results show that with the
progression of cerebral microvascular amyloid deposition,
rTg-DI rats develop robust perivascular neuroinflamma-
tion, disruption and loss of capillary pericytes, increased
numbers of caspase 3-positive cells, and disruption of
axonal integrity. These findings indicate that rTg-DI rats
faithfully recapitulate many of the pathological features of
human CAA type-1 and provide new insight into the
pathogenesis of this condition.

3 month
wild-type

3 month
rTg-DlI

12 month
wild-type

12 month R
rTg-DlI

Hippocampus

Thalamus

Fig. 7 Disrupted axonal integrity in rTg-DI rats. a-1 Brain sections from 3-month-old wild-type (a—c) and rTg-DI (d-f) rats and 12-month wild-type
(g-i) and rTg-DI (j-I) rats were labeled with thioflavin S to identify fibrillar amyloid (green) and pan axonal neurofilament marker (red). Scale
bars =50 um. m, n, o Enlarged images of the highlighted regions of panels j, k, and |, respectively. Scale bars = 10um.
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Neuroinflammation is recognized as a key component
in the AD brain with marked increases and activation of
glial cells surrounding parenchymal fibrillar amyloid pla-
ques and expression of inflammatory mediators [45, 46].
Likewise, in human CAA type-1, where vascular amyloid
protrudes into the perivascular brain parenchyma,
activated astrocytes and microglia accumulate in re-
sponse to the amyloid [12, 47]. Similarly, in rTg-DI rats,
we found that corresponding with the increasing accu-
mulation of cerebral microvascular amyloid there is a
dramatic elevation in the numbers of astrocytes and acti-
vated microglia (Figs. 2 and 3). These glial responses
emerged at the onset of microvascular amyloid depos-
ition (=3 months of age) and increased as the disease
progressed to an advanced stage (12 months of age).
Interestingly, in late-stage disease the astrocytes around
microvascular amyloid deposits exhibited enlarged cell
bodies and retracted process suggesting a degenerative
phenotype. Indeed, subsequent experiments showed a
significant increase in caspase 3-positive cells that were
largely identified as astrocytes. This suggests a distinct
cytotoxic effect of the microvascular amyloid to astro-
cytes in this model. Similar to the increase in astrocytes,
there was a pronounced elevation in numbers of micro-
glia in the vicinity of microvascular amyloid deposits.
Morphologically, these microglia presented in an acti-
vated state with a noticeable retraction of the extensive
processes commonly seen in resting microglia of wild-
type rats. To better understand the state of these
activated microglia, labeling for MHCII OX-6 was per-
formed to identify macrophagic microglia [23, 48].
Clearly, there was a subset of microglia in rTg-DI rats
that expressed both Iba-1 and OX-6 reactivity whereas
many of the microglia only expressed Iba-1. This could
suggest that dual-labeled microglia may derive from a
different origin such as the periphery. However, recent
studies suggest that microglia and macrophages can ex-
press similar or disparate markers depending on the en-
vironment where they exist (periphery vs brain) and the
type of stimulus that leads to their activation [49]. Re-
garding this latter point, the activation stimulus here in-
volves vascular amyloid and, in rTg-DI rats, involves
familial Dutch/Iowa CAA mutant AB. Further specifying
this pathogenic stimulus, we previously reported that in
vascular amyloid, the AP peptide adopts a distinct anti-
parallel fibril configuration [16, 50]. Thus, the source
and activation state of microglia can be unique for dis-
tinct disease states in the CNS and requires further in-
vestigation in this model [51]. In any case, regardless of
the source, there is clearly a large microglial response to
the microvascular amyloid in rTg-DI rats.

As mentioned above, reactive gliosis is a common re-
sponse to a variety of neurodegenerative diseases includ-
ing AD, prion disease, Parkinson’s disease, and multiple
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sclerosis [52, 53]. In these diseases there exists a complex
interaction between activated microglia and astrocytes
mediated through pro- and anti-inflammatory cytokines/
chemokines that can lead to neuronal dysfunction. Our
findings show that in response to microvascular amyloid,
the striking glial activation promoted a distinct pattern of
inflammatory marker expression in rTg-DI rats (Fig. 4).
For example, elevated expression of certain pro-
inflammatory cell markers such as GFAP, CD86, CD68,
and TREM2 were noted that reflect the elevated numbers
of astrocytes and microglia. Each of these glial markers
were elevated at the onset of CAA and further increased
with progression of microvascular amyloid accumulation.
Increased expression of TREM2 in rTg-DI rats is of inter-
est since mutations in this gene are associated with an in-
creased risk for AD [54, 55]. Our findings may suggest a
role for TREM2 in the pathogenesis of CAA as well. In-
creases in pro-inflammatory IL-1p and TNF-a were noted,
yet other pro-inflammatory markers such as IL-6, IL-17,
and IFNy did not increase with disease severity or were
muted. On the other hand, TGF-p1, more associated with
anti-inflammatory pathways, was also expressed at high
levels but IL-10, another anti-inflammatory cytokine, was
not. Interestingly, we also found increased expression of
alternative pathway complement component C3 in rTg-
DI rat brain, but not classical complement components
Clq and C4, which have been shown to have a tighter re-
lationship with AP plaque formation [31, 56]. Cl-
inhibitor, which regulates classical complement activation,
was also increased in advanced disease. However, the lack
of expression of classical complement components in rTg-
DI suggest that elevated Cl-inhibitor may rather be in
response to disrupted vessel integrity and microbleeds that
are present only in the later stages of disease. There are in-
dications for Cl-inhibitor playing a role in reducing cere-
bral thrombo-inflammation [57]. Along these lines,
MMP9 also showed increased expression at advanced
stage of disease, and this is likely associated with the
microbleed phenotype associated with CAA. These results
indicate that the pathogenesis of CAA type-1 in rTg-DI
rats triggers neuroinflammation in the brain, but the gene
expression pattern is unique, can be temporal, and differs
from that of AP plaque-related neuroinflammation. Along
these lines, we recently reported that cerebral vascular A
deposits have a unique, anti-parallel -sheet fibril struc-
ture that is distinct from parenchymal plaque Ap fibrils
that possess a parallel -sheet fibril structure [16, 50]. It is
plausible that these distinct fibril structures promote dis-
tinct inflammatory signatures in the brain.

The spatial location of fibrillar amyloid deposits in
CAA type-1 suggests direct interaction with pericytes,
cells that regulate key neurovascular functions including
blood-brain barrier formation and maintenance, clear-
ance of toxic cellular byproducts, and regulating
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neuronal phenotype [58—60]. In rTg-DI rats, we found a
dramatic reduction in the number of pericytes in the
cortex, hippocampus, and thalamus at later stages of dis-
ease, consistent with the reduction in PDGFRP expres-
sion. At the onset of CAA formation at 3 months,
pericyte numbers and morphology were no different in
r'Tg-DI rats compared with wild-type rats. In contrast, at
12 months there was considerable loss of extended pro-
cesses along the length of the capillaries further under-
scoring the degenerative effects of accumulating amyloid
on these cells. This is consistent with previous studies
demonstrating that AP is toxic to pericytes in primary
cell culture [61]. Accordingly, we suggest that there is
likely a negative feedback loop between pericyte loss and
CAA progression in rTg-DI rats where the loss of peri-
cytes diminishes proper neurovascular function and
clearance of soluble AP further promoting accumulation
and deposition of AP on capillaries, which in turn ampli-
fies amyloid-induced pericyte loss. Targeting this de-
structive interaction could have implications for
developing strategies for early intervention in capillary
CAA type-1.

We found a marked increase in caspase 3-positive cells
indicating a marker for cell stress and pro-apoptotic pro-
cesses. This increase in caspase 3-positive cells was ob-
served in late-stage disease, but not early-stage disease
suggesting that it results from the continuing accumula-
tion of microvascular amyloid and the chronic neuroin-
flammation associated with it. It was interesting that
these stressed caspase 3-positive cells were largely deter-
mined to be astrocytes further implicating the impact of
vascular amyloid accumulation on this cell population.
Although we have not observed overt neuronal loss in
this model at 12 months of age, this could become ap-
parent in older animals. However, at around 12 months
of age r'Tg-DI rats generally become moribund thus pre-
venting further aging. Nevertheless, we did find that at
later stage disease, when caspase 3-positive astrocytes
are abundant, there were some profound effects on
axonal morphology with fragmentation, swelling, and re-
distribution of axonal labeling. This implicates the
increasing microvascular amyloid burden, chronic in-
flammation, and perivascular disruption in compromis-
ing neuronal integrity that likely underlies behavioral
deficits in rTg-DI rats leading to VCID in this model.

Conclusions

The rTg-DI rat is a novel model of early-onset and pro-
gressive cerebral microvascular amyloid deposition that
recapitulates many features of human CAA type-1. Our
results show that there is a relationship between the
onset and progressive accumulation of cerebral micro-
vascular amyloid with the temporal development of
neuroinflammation and perivascular cellular pathology.
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Advanced stages of microvascular amyloid and neuro-
inflammation in rTg-DI rats is associated with pro-
nounced pericyte loss in capillaries, degeneration of
astrocytes, and disruption of neuronal axonal integrity.
These findings underscore the utility of rTg-DI rats to
serve as a useful preclinical platform to develop bio-
markers and to test therapeutic strategies to intervene
in the onset and progression of microvascular CAA and
its role in VCID.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512974-020-01755-y.

Additional file 1 : Figure S1. Immunolabeling of astrocytes in 1 month
old wild-type rats and rTg-Dl rats prior to microvascular amyloid depos-
ition. A-F: Brain sections from 1-month old wild-type (A-C) and rTg-DI
(D-F) rats were labeled with Amylo-Glo to detect fibrillar amyloid (blue),
rabbit polyclonal antibody to collagen IV to detect cerebral microvessels
(red), and goat polyclonal antibody to GFAP to identify astrocytes (green).
Scale bars = 10 pm. At this young age, in the absence of microvascular
amyloid deposition astrocytes are morphologically indistinguishable be-
tween wild-type and rTg-DlI rats.

Additional file 2 : Figure S2. Immunolabeling of microglia in 1 month
old wild-type rats and rTg-DI rats prior to microvascular amyloid depos-
ition. A-F: Brain sections from 1-month old wild-type (A-C) and rTg-DI
(D-F) rats were labeled with Amylo-Glo to detect fibrillar amyloid (blue),
rabbit polyclonal antibody to collagen IV to detect cerebral microvessels
(red), and goat polyclonal antibody to Iba-1 to identify microglia (green).
Scale bars = 10 um. At this young age, in the absence of microvascular
amyloid deposition microglia are morphologically indistinguishable be-
tween wild-type and rTg-DI rats with both exhibiting a resting
phenotype.

Additional file 3 : Figure S3. Immunolabeling for macrophagic
microglia in 3 and 12 month old wild-type rats and rTg-DlI rats. A-L: Brain
sections from 3-month old wild-type (A-C) and rTg-DI (D-F) rats and 12-
month wild-type (G-I) and rTg-DI (K-L) rats were labeled with Amylo-Glo
to detect fibrillar amyloid (blue), goat polyclonal antibody to Iba-1 as a
marker for microglia (green) and mouse monoclonal antibody to OX6 as
a marker for macrophages (red). Scale bars = 50 um. In wild-type rats at
both ages cells were solely labeled with Iba-1. In rTg-DI rats the majority
of cells labeled solely with Iba-1 and a subset of cells were double la-
beled for the microglial marker Iba-1 and for the macrophagic microglial
marker OX6. Few, if any, cells were labeled solely with OX6 antibody.

Additional file 4 : Figure S4. Double immunolabeling for caspase 3
and cell specific markers. A-C: Brain sections from 12 month old rTg-DI
rats were immunolabeled for caspase 3 (red) and (A) NeuN to identify
neurons (green), (B) GFAP to detect astrocytes (green) and (C) Iba-1 to
identify microglia (green). Caspase 3 labeling most closely co-localized

with astrocytes. Scale bars = 10 um.
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