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There is a great clinical need to identify the underlying mechanisms, as well as related biomarkers, and treatment
targets, for traumatic brain injury (TBI). Neuroinflammation is a central pathophysiological feature of TBI. NLRP3
inflammasome activity is a necessary component of the innate immune response to tissue damage, and dysregulated
inflammasome activity has been implicated in a number of neurological conditions. This paper introduces the NLRP3
inflammasome and its implication in the pathogenesis of neuroinflammatory-related conditions, with a particular focus
on TBI. Although its role in TBI has only recently been identified, findings suggest that priming and activation of the
NLRP3 inflammasome are upregulated following TBI. Moreover, recent studies utilizing specific NLRP3 inhibitors have
provided further evidence that this inflammasome is a major driver of neuroinflammation and neurobehavioral
disturbances following TBI. In addition, there is emerging evidence that circulating inflammasome-associated proteins
may have utility as diagnostic biomarkers of neuroinflammatory conditions, including TBI. Finally, novel and promising
areas of research will be highlighted, including the potential involvement of the NLRP3 inflammasome in mild TBI, how
factors such as biological sex may affect NLRP3 activity in TBI, and the use of emerging biomarker platforms. Taken
together, this review highlights the exciting potential of the NLRP3 inflammasome as a target for treatments and
biomarkers that may ultimately be used to improve TBI management.
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Background

Traumatic brain injury (TBI) is a subset of acquired brain
injury which is induced by an external mechanical force
sustained to the head or neck [1]. Although commonly
described as a silent epidemic, TBI is reported to be one of
the leading causes of long-term disability and equates to a
global annual economic burden of an estimated $400
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billion [2]. TBI is a highly heterogeneous injury that can
cause a range of temporary or permanent neurological
alterations [3] and is often categorized into three injury se-
verities: mild, moderate, and severe. These classifications
are most commonly defined utilizing the Glasgow coma
scale [4]. While TBIs on the mild spectrum were tradition-
ally considered an innocuous injury, recently there has been
developing awareness of the potential long-term implica-
tions of mild TBI (mTBI), and particularly in relation to re-
peated mTBIs. The most well publicized long-term
implication of repeated mTBlIs is the potential development
of chronic neuroinflammatory-related conditions such as
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chronic traumatic encephalopathy (CTE), Alzheimer’s dis-
ease, Parkinson’s disease, depression, and anxiety [5-9].

Despite extensive basic and clinical science research
on TBI to date, no therapeutic interventions have been
successfully implemented to improve patient outcomes
[10]. A key factor that has contributed to previous
translational failures in TBI is the lack of a detailed un-
derstanding of the complex underlying cellular and mo-
lecular sequelae. TBI is considered a “biphasic injury”
characterized by an initial primary injury and a delayed
secondary injury [11]. Primary injury refers to the imme-
diate damage which is caused directly by the mechanical
injury, whereas secondary injury refers to further dam-
age due to the pathophysiological changes induced by
the primary injury [12]. As secondary injuries can be ini-
tiated minutes to hours following injury, and can persist
for months to years [13], a greater understanding of the
mechanisms of secondary injury may facilitate the dis-
covery of treatments that can improve TBI outcomes.
Moreover, a greater understanding of the underlying
pathophysiology may facilitate the discovery of diagnos-
tic and prognostic biomarkers of TBL

Among the different mechanisms postulated to contrib-
ute to secondary injury, a neuroinflammatory response
characterized by the release of pro-inflammatory media-
tors and activation of microglia and astrocytes may be uni-
versal across TBI subtypes [14—17]. This review will focus
on the neuroinflammatory response following TBI, with
particular attention to the potentially central role played
by a complex of proteins known as the nucleotide-binding
oligomerization domain-like receptor pyrin domain-
containing-3 (NLRP3) inflammasome.

Neuroinflammation and TBI

Neuroinflammation is a key cellular and molecular feature
of the central nervous system (CNS) response to insults
such as a trauma [18]. Microglia, the resident innate im-
mune cells of the CNS, are known to be mediators of the
neuroinflammatory response that occurs following TBI
[15, 16, 19]. The activation of these cells induces a multi-
tude of inflammatory cascades, including the production
and release of downstream pro-inflammatory cytokines
such as interleukin (IL)-1f [20]. As such, microglia play a
critical role in the CNS immune defense [21]. While
neuroinflammation has a crucial neuroprotective role, a
dysregulated or persistent neuroinflammatory response
may contribute to neurological symptoms and neurode-
generation [22]. For example, it is postulated that dysregu-
lated neuroinflammation likely plays a key role in the
aftermath of even mTBIs, and may underlie the persist-
ent post-concussive symptoms that occur in 10-15% of
mTBI cases [23]. In addition, with increasing evidence
that chronic neuroinflammation can trigger various neuro-
pathological changes including hyperphosphorylation of tau
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and neuronal apoptosis [24, 25], neuroinflammation may be
a key mechanism underlying the increased risk for neurode-
generative diseases for those with a history of TBI [14, 26].

One family of important regulators of the innate im-
mune system is the NOD-like receptors (NLRs) [27].
NLRs are a family of cytosolic pattern recognition recep-
tors typically formed by three components: a sensor
molecule, an adaptor protein, and an effector compo-
nent. Following activation, these subunits combine to
form a pro-inflammatory, multiprotein complex termed
an inflammasome [28]. Among the multiple NLRs
expressed in mammals, the NLRP3 has been the most
extensively studied.

The NLRP3 inflammasome

The NLRP3 inflammasome is a multiprotein complex,
composed of three protein subunits: a sensor molecule,
NLRP3, an adaptor protein, ASC, and an effector protein,
caspase-1 (Fig. 1) [29]. The functional regulation of an ac-
tive NLRP3 inflammasome is a two-step process; a non-
activating “priming” stimulus is firstly required to initiate
expression of key inflammasome components, followed by
a secondary “activating” stimulus that results in inflamma-
some oligomerization [30, 31]. Inflammasome priming in-
cludes the transcriptional upregulation of NLRP3 and
pro-IL-1B, as well as post-translational modifications of
NLRP3 that stabilize the inactive protein in a signal-
component state. These molecules are inactive until a sub-
sequent (or prolonged) stimulus occurs. The subsequent
activation induces the assembly of NLRP3 constituent
proteins into the complete NLRP3 inflammasome. This
process involves the oligomerization of NLRP3 proteins
via homotypic interactions between two NLRP3 proteins,
which then recruit and bind ASC. The ASC domain of the
partially assembled inflaimmasome then cleaves pro-
caspase-1 into its active isomer, caspase-1, and subse-
quently binds caspase-1 to form a complete NLRP3
inflammasome. Seven NLRP3 inflammasome molecules
are recruited and bind together to form a ring structure.
This structure allows the self-cleavage and further activa-
tion of pro-caspase-1 proteins into caspase-1. Caspase-1
then facilitates IL-1p and IL-18 maturation via the cleav-
age of their inactive pro-isomers (pro-IL-1 and pro-IL-
18) into their active formation [28, 32]. These cytokines
are involved in the innate immune response to infection
and trauma, creating a generalized pro-inflammatory en-
vironment [33]. As such caspase-1, IL-1p, and IL-18 are
commonly utilized in research as indicators of NLRP3
activation. While some NLRP3 inflammasome activity is a
necessary component of the innate immune response to
pathogens and tissue damage [34], excessive NLRP3
inflammasome activity can lead to a form of cell necrosis
known as pyroptosis [35].
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Fig. 1 Formation of the NLRP3 inflammasome. Activation of the NLRP3 inflammasome involves the constituent molecules of the NLRP3
inflammasome (i.e. NLRP3, ASC and caspase-1) binding to form a complete NLRP3 inflammasome complex. This inflammasome complex allows
, which in turn cleaves pro-IL-13 and pro-IL-18 to their active isomers IL-13 and IL-
18 respectively. The increase in these pro-inflammatory proteins ultimately leads to pyroptosis

Multiple signals are known to activate the NLRP3
inflammasome. The signals most commonly investigated
are damage-associated molecular pattern (DAMP) and
the pathogen-associated molecular pattern molecules
[36]. In response to trauma, DAMPs such as reactive
oxygen species (ROS) [37], high mobility group box 1
(HMGB1) [38], extracellular matrix molecules [39], and
heat shock proteins [40] are known to promote priming
of the NLRP3 inflammasome through toll-like receptor
(TLR) and NF-kB signaling [30]. In addition, trauma can
produce a range of activating signals, including but not
limited to the following: ionic changes such as potassium
and chloride efflux, sodium and calcium efflux, altered
calcium signaling [41-44]; the presence of extracellular
ATP [45]; lysosomal destabilization [46]; and products of
mitochondrial dysfunction such as mitochondrial DNA
and ROS [47, 48]. The precise stimuli that promote the
priming and activation steps are not yet fully under-
stood, and there is now evidence that some stimuli, such

as ROS, may be involved in both processes [37, 49, 50].
For detailed reviews on the priming and activation of the
NLRP3 inflammasome, the reader is referred to articles
by Swanson et al. [31], Patel et al. [49], and Herman
et al. [51]. Importantly, the aforementioned priming and
activating stimuli have been implicated in the aftermath
of TBI (see [52-54] reviews), and as such, may play a
key role in generating a significant neuroinflammatory
response (see Fig. 2).

The potential contribution of the NLRP3 inflamma-
some to disease pathogenesis was first investigated after
a gain-of-function mutation in the NLRP3 coding gene
was described as a possible cause of the inflammatory
condition cryopyrin-associated periodic syndrome [55].
Since this first report, there has been vast interest in de-
termining the relationship between NLRP3 activation
and other inflammatory conditions including type 2 dia-
betes, atherosclerosis, and steatohepatitis, among others
[56—58]. Furthermore, while the expression of NLRP3 in
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Fig. 2 Potential NLRP3 inflammasome priming and activation 1 following TBI. TBI is known to induce an array of molecular changes that may
trigger the two-step activation of the NLRP3 inflammasome. (1) Priming of the inflammasome induces transcriptional up-regulation of NLRP3
and pro-IL-1B as well as post-translational modifications of the NLRP3 protein. The most commonly investigated priming signals in the context of
sterile trauma is the recognition of DAMPs to induce TLR-NF-kB signalling. DAMPs such as ROS, HMGB1, extracellular matrix molecules and heat
shock proteins are known to prime the NLRP3 inflammasome and have also been shown to be up-regulated following TBI. (2) Activation of the
inflammasome occurs following priming, and involves the formation of the NLRP3 inflammasome from its constituent proteins (NLRP3, ASC and
caspase-1). TBI features a range of endogenous changes that can serve as activating signals, including but not limited to: ionic changes such as
potassium and chloride efflux, sodium and calcium efflux, altered calcium signalling, lysosomal destabilisation and products of mitochondrial
dysfunction such as mitochondrial DNA and ROS. Importantly, some signals have been shown to upregulate both priming and activation of the

NLRP3 inflammasome. This complete inflammasome complex ultimately results in the release of IL-10.

neurons has been disputed, its expression has consist-
ently been found in microglia and astrocytes [59-61]. As
such, NLRP3 activity is receiving growing interest as a
contributor to various CNS conditions in which glia-
mediated neuroinflammation has been associated with
disease progression such as Alzheimer’s disease, stroke,
Parkinson’s disease, amyotrophic lateral sclerosis, mul-
tiple sclerosis, and pneumococcal meningitis [62-68].
Although the NLRP3 inflammasome was not investi-
gated in the context of TBI until 2013, there is now
mounting evidence implicating this inflammasome as a
critical component in the pathogenesis of the secondary
damage that occurs following TBI.

The NLRP3 inflammasome and TBI

Moderate and severe TBI

The first study to investigate the NLRP3 inflammasome
in TBI was performed by Liu et al, with the authors
finding an upregulation of NLRP3-related genes and
proteins in the cortex of rats within the first week fol-
lowing a moderate TBI (modified weight drop model)
[61]. Specifically, they reported an elevation of markers
of both inflammasome priming (ie.,, NLRP3, ASC, and
pro-caspase-1 mRNA and protein) and activation (ie.,
caspase-1, IL-1PB, and IL-18 protein). Most of these
inflammasome markers were upregulated at 6 h follow-
ing injury, and remained elevated until the experimental
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end point at 7 days post-injury [61]. Since this initial
publication, there has been a surge of studies investigat-
ing the NLRP3 inflammasome in the context of pre-
clinical TBIL. These studies have supported the research
performed by Liu et al., consistently showing an upregu-
lation of the NLRP3 inflammasome, at both a gene and
protein level following a moderate TBI induced via con-
trolled cortical impact (CCI) [69, 70].

There has been limited research investigating the
NLRP3 inflammasome in the context of human TBL
One study performed by Lin et al. found an upregulation
of NLRP3, caspase-1, IL-1p, and IL-18 protein in the
surgically resected cortex of severe-TBI patients in com-
parison with that of epilepsy patients [71]. Another re-
cent clinical study analyzed cerebrospinal fluid (CSF)
from severe-TBI pediatric patients at four time points
post-injury, ranging from < 24h to > 72h [72], finding
that pediatric TBI patients had higher CSF levels of
NLRP3 than their age-matched controls (i.e., patients
without TBI who underwent a lumbar puncture to rule
out CNS infection). Furthermore, a CSF NLRP3 concen-
tration > 6.63 ng/ml at any time point was associated
with poorer neurological outcome as determined by the
Glasgow Outcome Scale at 6 months post-TBI. This
study provided the first evidence of the potential utility
of NLRP3 as a fluid-based prognostic biomarker of TBI
outcomes. Taken together, these studies have provided
clinical evidence of NLRP3 inflammasome activity in
moderate and severe TBIL.

Mild TBI
There is likely to be considerable overlap with certain
aspects of mild, moderate and severe TBI pathophysi-
ology. Evidence is mounting suggesting that neuroin-
flammation plays an influential role in the aftermath of
mTBI, with a number of recent pre-clinical studies
showing that microglial and astrocytic activation can
also be prominent in this form of injury [73-76]. There
is limited clinical research on glial activation following
mTBL however, the emergence of positron emission tom-
ography (PET) tracers that bind to the 18 kDa translocator
protein (TSPO) that is associated with microglia has en-
abled in vivo clinical imaging of microglial activation. Eber
et al. found that at 1-2weeks and 3-4 months post-
mTBI, patients who had sustained an mTBI had signifi-
cantly higher TSPO binding when compared to healthy
controls [77]. Additionally, a preliminary study of former
athletes with an extensive history of mTBI found signifi-
cantly higher TSPO expression in comparison to healthy
age-matched controls [78]. Combined, these preliminary
studies suggest that microglial activation may be a prom-
inent feature of single and repeated mTBI.

Despite evidence indicating that neuroinflammation
and specifically, glial activation, contribute to the
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pathogenesis of TBI, to the best of our knowledge, no
studies have directly investigated the role of the NLRP3
inflammasome in mTBI Studies have instead investi-
gated IL-1p, a protein induced by multiple mechanisms,
including activation of NLRP3 inflammasome [31, 79].
One study found that rodents administered a single
mTBI had an increase in cortical IL-1p protein levels at
6 h post-impact [80]. Interestingly, no difference was
found at 3 h following injury indicating a potential delay
in the inflammatory response to mTBI [80]. Further-
more, the influence of repeat mTBI on IL-1f levels has
also been investigated. Mice given two mTBIs (via modi-
fied weight drop) separated by 3 days had an upregula-
tion of IL-1p mRNA in the forebrain 3 days following
the final injury [81]. This upregulation was only tempor-
ary, with mRNA levels not significantly different to
sham-injured controls when the animals were allowed to
recover for 20days [81]. Similarly, mice given two
mTBIs separated by 24 h also had elevated cortical IL-1
protein levels that peaked at 48 h following the final in-
jury and were no different to shams at 7 and 14 days
[82].

There is now evidence that neuroinflammation, and
specifically glial activation, and IL-1f are prominent in the
aftermath of both single and repeated mTBI [78, 80—82].
Nonetheless, while the NLRP3 inflammasome causes the
cleavage of IL-1B from its inactive isomer, IL-1p is not
specific to the NLRP3 inflammasome. As such, increases
in IL-1p may not necessarily indicate NLRP3 inflamma-
some activity, with future studies required to determine
functionality of this inflammasome following mTBI.

NLRP3 as a therapeutic target for TBI

The aforementioned evidence that TBI can activate the
NLRP3 inflammasome has led to the hypothesis that
therapies targeting this pathway may be effective for
mitigating neuroinflammation and improving TBI recov-
ery. In animal models of other neuroinflammatory-
related conditions such as Alzheimer’s disease and
stroke, knock-down or knock-out of NLRP3 has been
shown to decrease neuroinflammation as well as improve
functional outcomes [62, 63]. In addition, a number of re-
cent studies have found that pharmacological treatments
that directly or indirectly target this inflammasome can re-
duce its activity following moderate-to-severe TBIL. These
treatments are broadly broken into four groups: (i) treat-
ments derived from naturally occurring compounds (e.g.,
mangiferin [83], omega-3 fatty acids [71], and apocynin
[84]); (ii) repurposed medications (e.g., propofol [85], and
telmisartan [86]); (iii) inhibitors of NLRP3-associated mole-
cules (e.g., ASC antibodies [87], NF-kB inhibitor, Bay 11-
7082 [88-91]); and (iv) specific NLRP3 inflammasome
inhibitors (e.g., MCC950 [69], JC-124 [92]). While the first
three treatment categories have been shown to decrease
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Table 1 Specific and non-specific NLRP3 inhibitors investigated
in the context of TBI

Inhibitor NLRP3 specific?  Pre-clinical Species  Model of TBI
TBI studies
MCC950 Yes (NLRP3 [70] [69] [93] Mouse  CCl
NACHT domain)
JC124 Yes (unknown)  [92] Rat Cccl
Bay 11-7082 No (88-91] Rat and CCl, weight-
mouse  drop, and fluid

percussion

Mangiferin ~ No (83] Rat Blast

Omega-3 No [71] Rat Ccd

fatty acids

Apocynin No [84] Mouse  CCl

Propofol No (85] Rat Blast

Telmisartan ~ No [86] Mouse  Cryogenic

NLRP3 inflammasome activity as well as demonstrating a
neuroprotective effect, they do not target NLRP3 activation
specifically. As such, it is difficult to determine whether the
improved outcomes are NLRP3 inflammasome dependent,
or whether the NLRP3 inflammasome changes are the re-
sult of an alternative mechanism of action (e.g., reduction
in activating stimuli). Hence, the NLRP3 specific inhibitors,
MCC950, and JC-124, may hold the most promise for
unearthing the precise roles of the NLRP3 inflammasome
in TBI, and consequently reveal potential therapies aimed
to improve TBI outcomes. A table summarizing currently
available therapies that have been tested in the context of
TBI and shown to directly or indirectly inhibit the NLRP3
inflammasome is displayed below (Table 1).

MCC950 is a highly selective and potent NLRP3 inhibitor
originally derived from the anti-diabetic drug class, sulfo-
nylurea. MCC950 acts by binding directly to the NACT do-
main of the NLRP3 protein [94]. Pre-clinical investigations
on this compound have determined it to have a suitable
bioavailability and pharmacokinetic profile, with good CNS
penetration as well as no off-target binding of NLRC4 or
the NLRP1 inflammasome [94, 95]. MCC950’s specificity
for the NLRP3 inflammasome and high CNS penetrability
decreases the likelihood of off-target effects (a common side
effect of anti-inflammatory molecules). Systemic adminis-
tration of MCC950 has demonstrated promising results in
pre-clinical studies of ischemic stroke, cerebral hemorrhage,
and Alzheimer’s disease [62, 96, 97], with two recent studies
also showing some promise in the context of TBI of moder-
ate severity [69, 70]. The first of these studies found that
acute treatment with MCC950 (50 mg/kg; intraperitoneal
(IP) injection) prevented increases in NLRP3 constituent
proteins (NLRP3, caspase-1, ASC, and IL-1) in the cortex
of mice at 24 h following CCI. In addition, caspase-1 and
IL-1P levels were decreased in MCC950-treated mice at 72
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h post-TBI [69]. These reductions in inflammasome activity
were also accompanied by evidence of functional improve-
ment, with treated mice displaying reduced modified
neurological severity score (mNSS) compared to vehicle
mice at 72 h post-injury [69]. The second study, performed
by Xu et al, treated mice with MCC950 via IP injection
(10 mg/kg) daily for the first 3 days post-CCI, and every
second day thereafter [70]. At 72h post-CCI, MCC950-
treated mice had reduced protein expression of NLRP3,
ASC, and caspase-1. Additionally, treated mice had im-
provements in the mNSS and motor function at three-,
seven-, and 14-day post-injury, as well as cognition at 17-
and 18-day post-injury [70]. Taken together, these findings
suggest efficacy of MCC950 in the acute stages following
focal TBI in mice; however, it is unknown whether this
compound exerts beneficial effects in other species and TBI
models (e.g., diffuse TBI). While systemic MCC950 treat-
ment has shown to be well-tolerated in hypertensive mice
for as long as 28 days [98], pre-clinical TBI studies have yet
to treat with MCC950 for longer than 7 days. Furthermore,
the effects of early MCC950 intervention on chronic TBI
recovery have not yet been investigated.

Another NLRP3 inflammasome inhibitor, JC-124, has
recently been investigated in the context of TBI [92]. JC-
124 was designed though the structural optimization of
the anti-diabetic compound glyburide, in order to in-
crease the selectivity for the NLRP3 inflammasome and
hence decrease the off-target binding [99]. JC-124 acts
by inhibiting the formation of the NLRP3 inflammasome
[99]; however, the specific mechanisms through which
this occurs are unknown. JC-124 has previously been
shown in rodents to reduce inflammation and infarct size
following myocardial injury [100]. In the only study on JC-
124 and TBI to date, Kuwar et al. found that rats given a
moderate CCI followed by acute treatment with JC-124
(100 mg/kg, IP) had reduced expression of NLRP3 inflam-
masome activation markers at 48 h when compared to
vehicle-treated rats. Interestingly, IL-18 levels were not al-
tered by TBI with or without JC-124 treatment [92]. Other
TBI studies have also found differential expression pat-
terns of IL-1f3 and IL-18, with IL-1pB being the “initial re-
sponder” to injury followed by a “delayed” IL-18 response
[61, 101, 102]. As such, inflammasome activation may not
result in simultaneous upregulation of downstream cyto-
kines. While no behavioral outcomes were measured in
this study, JC-124 treatment was found to reduce lesion
volume and the number of degenerating neurons as quan-
tified by Fluoro-Jade B staining.

Although further studies are required, taken together
these pharmacological studies have further established
the link between the NLRP3 inflammasome and TBI,
and suggest that treatments target this pathway may
have potential for improving TBI outcomes.
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NLRP3 as a biomarker for TBI

There is a growing interest to discover objective bio-
markers that can assist the clinical management of TBL
In particular, fluid-based biomarkers have received much
attention for their potential clinical applications, includ-
ing assisting in TBI diagnosis, determination of injury se-
verity, prediction of outcomes, monitoring of recovery,
identification of underlying pathophysiology, and treat-
ment efficacy. To date, most investigations of fluid bio-
markers of TBI have focused on proteins released into
CSF and blood due to axonal and glial damage; however,
given the prominent role of neuroinflammation in TBI a
number of neuroinflammation-associated molecules have
also recently emerged as biomarker candidates. In particu-
lar, given that astrocyte and microglia reactivity can be
prominent following TBI [14—17], and these cell types are
the primary cells that express NLRP3 [59, 70], it is hypoth-
esized that NLRP3-associated molecules may have utility
as biomarkers of TBI pathophysiology.

While few studies have investigated serum levels of
NLRP3 inflammasome-related proteins in the context of
neuroinflammatory conditions, protein levels of ASC,
caspase-1, IL-1B, and IL-18 were all found to be signifi-
cantly upregulated in the serum of ischemic stroke pa-
tients compared to age-matched healthy controls [103].
Furthermore, levels of caspase-1, IL-1B, and IL-18 were
able to delineate between stroke and healthy controls, al-
beit with a modest degree of sensitivity and specificity
[103]. Serum levels of ASC, however, were found to have
significant diagnostic potential, demonstrating 100% sen-
sitivity and 96% specificity to detect the presence of
cerebral ischemia. Similarly in the context of MS, pro-
tein levels of ASC, caspase-1 and IL-18 (but not IL-1f3)
were upregulated in the serum of multiple sclerosis pa-
tients compared to healthy age-matched controls [67],
with ASC found to have the greatest diagnostic sensitiv-
ity and specificity. Furthermore, circulating ASC levels
were found to have moderate ability to predict the sever-
ity of multiple sclerosis. In the context of TBI, this same
group found that both ASC and caspase-1 (but not IL-
1P or IL-18) were significantly upregulated in the serum
of severe-TBI patients within the first 48 h of injury, with
both proteins having excellent utility for distinguishing
between control and TBI patients [104]. Interestingly,
CSF levels of IL-18 and ASC were also assessed, with
both proteins found to be at upregulated and accurate
indicators of TBL. However, as participants enrolled in
the CSF arm of the study were not the same as the
serum arm, it is impossible to determine a correlation
between these two biofluids. A separate study performed
by Ciaramella et al. investigated the utility of serum IL-
18 as a biomarker of severe-TBI in the chronic stages of
recovery [105]. TBI patients at 87.8 + 12.7 days post-
injury had elevated serum IL-18 protein levels compared

Page 7 of 12

to age-matched healthy controls. Importantly, the serum
IL-18 levels of the TBI patients correlated to the level of
cognitive impairment and disability severity as deter-
mined by Levels of Cognitive Functioning and the Dis-
ability Rating Scale respectively [105].

The aforementioned severe-TBI studies provide the
first evidence indicating a potential role for NLRP3-
related proteins, particularly ASC and IL-18, as fluid bio-
markers of TBL. However, these two proteins are not
specific to the inflammasome and as such, without direct
assessments of the NLRP3 protein, do not necessarily
provide an insight into the role of the NLRP3 inflamma-
some itself in the aftermath of TBIL.

Future directions
As described above, since 2013, there have been several
lines of evidence indicating that the NLRP3 inflamma-
some is upregulated and contributes to the pathology of
TBI. While these reports are promising, there remains
multiple gaps in the current literature. These gaps are
described below.

mTBI: To date, there have been no specific investiga-
tions into the NLRP3 inflammasome and its potential
contribution to the neuropathological and neurobehav-
ioral effects of mTBIs. In particular, the utility of
NLRP3-associated proteins as objective biomarkers of
mTBI remains unexplored, but important to investigate
given that the diagnosis and management of this form of
injury remain notoriously difficult [106, 107]. Further-
more, in the context of sports-related mTBI, collision
sports athletes are at risk of experiencing multiple
mTBIs across their career. Multiple mTBIs, or repeated
mTBIs, have been linked to the development of chronic
deficits, including neurodegenerative diseases associated
with neuroinflammation, such as CTE [5]. It is not yet
known whether the NLRP3 inflammasome is involved in
the potential cumulative effects of repeated mTBI; how-
ever, as the inflammasome requires a two-step activation
(i.e., priming and activation), previous mTBIs may prime
the inflammasome, with increased basal NLRP3 expres-
sion creating vulnerability for a subsequent mTBI to in-
duce inflammasome activation, and as a result, an
exaggerated and prolonged neuroinflammatory response.

Temporal changes of the NLRP3 inflammasome

There are inconsistencies in the current literature on the
temporal profile of NLRP3 activity following TBI. Greater
temporal characterization is required to both understand
the contribution of the inflammasome to TBI-related
neuropathological and neurobehavioral changes and to
identify appropriate windows for assessment of bio-
markers and application of treatments. Additionally, while
one study has shown behavioral improvements at 21 days
post-TBI with NLRP3 inflammasome inhibition [70],
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currently no investigations have analyzed the NLRP3
inflammasome and its inhibition beyond 7 days post-TBIL
As such, future studies need to extend past these acute
and sub-acute time points to investigate the role of the
NLRP3 inflammasome in the chronic stages of TBI.

Effect of NLRP3 inflammasome on TBI pathophysiology
Given the increasing awareness that neuroinflammation
can interact with other aspects of TBI pathophysiology,
it is likely that alterations or manipulation of the NLRP3
inflammasome will have multiple pathophysiological
consequences. For example, recent studies have found
that a relationship exists between neuroinflammation,
oxidative stress, and blood-brain barrier permeability
after TBI [84, 108, 109]. The involvement of the NLRP3
inflammasome in these interactions is not yet known;
however, MCC950 treatment TBI was found to reduce
the extent of blood-brain barrier damage and apoptosis
in the acute stages after in TBI mice [70]. NLRP3 may
also interact with tau pathology, a prominent feature of
chronic TBI, with Ising and colleagues recently reporting
strong evidence of a bi-directional relationship between
NLRP3 activation and hyperphosphorylation and aggre-
gation of tau [110].

Biological sex and the NLRP3 inflammasome

To date, all animal studies investigating the relationship
between the NLRP3 inflammasome and TBI have exclu-
sively utilized male rodents. It is becoming increasingly
appreciated that males and females can have different
biological and behavioral responses to TBI [111]. Of par-
ticular relevance, there is some evidence that the nature
of neuroinflammatory responses after TBI may differ be-
tween sexes. For example, Villapol and colleagues re-
cently found that the microglial response to moderate-
to-severe CCI differed between sexes, with male mice
displaying an earlier and more intense microglial
activation when compared to female mice [112]. Inter-
estingly, a recent study found that the NLRP3 inflam-
masome had a sex-dependent effect on post-operative
pain, with male but not female NLRP3 knockout mice
demonstrating less mechanical hypersensitivity when
compared to wild type mice [113]. Although prelimin-
ary, these findings suggest that NLRP3-driven path-
ology may be more prominent in males. On a related
note, Thakkar and colleagues recently found that
activation of the NLRP3 inflammasome following is-
chemic brain injury was significantly impaired by es-
tradiol signaling [114]. As such, future studies are
warranted to decipher whether the nature and signifi-
cance of NLRP3 activation following TBI does indeed
differ between sexes.
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Age and the NLRP3 inflammasome

Aging populations represent a significant proportion
of all TBI patients, with 2013 reports indicating that
adults over the age of 75 accounted for approxi-
mately one-third of all TBI-related deaths and hospi-
talizations [115]. Aging has been strongly associated
with an increase in basal inflammation and dysregu-
lation of the innate immune system [116]. Despite
this, aged rodents are rarely included in pre-clinical
studies [117]. Although the NLRP3 inflammasome is
a key driver of the innate immune response [118], to
date, no studies have investigated the NLRP3 inflam-
masome in aged TBI subjects. Future studies directly
investigating the contribution of the NLRP3 inflam-
masome to the pathophysiology of TBI in aging pop-
ulations is required.

Novel biomarkers of the NLRP3 inflammasome

While preliminary evidence implicating inflammasome-
associated proteins as biomarkers of TBI is promising, re-
cent technological advances and the emergence of alterna-
tive biomarker candidates have created opportunities for
discovery of other NLRP3-associated biomarkers. For ex-
ample, the pro-inflammatory cytokine IL-1( has previously
been investigated as a serum biomarker of TBIL This
analysis, however, has thus far failed due to the low serum
detectability of IL-1P. Recent developments of highly sensi-
tive assays, such as the single molecule array (SIMOA®),
have resulted in lower detection limits and the ability
to accurately quantify IL-1f in the periphery [119,
120]. Similarly, the detection of NLRP3-related mole-
cules such as ASC has been made possible due to as-
says available on the Ella Simple Plex System
(ProteinSimple) [103, 104]. Nonetheless, investigations
into the ultimate utility of these novel biomarkers are
somewhat hampered by the low accessibility to these
specific immunoassay platforms. However, these as-
says may enable future investigations of peripheral
NLRP3 inflammasome proteins in the context of
neuroinflammatory-related conditions. Furthermore,
short non-coding strands of RNA termed microRNAs
(miRNA) are receiving growing evidence as potential
biomarkers of various CNS disorders including Alz-
heimer’s disease, Parkinson’s disease, and TBI [121,
122]. miRNAs such as miR-223-3p are known regula-
tors of the NLRP3 inflammasome and act at a prim-
ing and activation level of NLRP3 formation [123].
miRNAs, which regulate the NLRP3 inflammasome
have never previously been investigated in the context
TBI. Additionally, the NLRP3 inflammasome and its
related proteins are not CNS specific, as the NLRP3
protein has been shown to be elevated in systemic in-
flammatory disorders including type 2 diabetes, ath-
erosclerosis, and steatohepatitis [56—58]. As such, the
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implementation of novel techniques including the iso-
lation of molecules contained in CNS-derived extra-
cellular vesicles holds the potential to determine the
cellular origin of the detected molecules and hence
ensure their relevance to CNS pathology [124].

Conclusions

TBI is a global health concern; however, there are no
proven therapeutic interventions to improve clinical out-
comes. Recent findings from human and rodent studies
have indicated an upregulation in NLRP3-related mole-
cules following TBI. Moreover, rodent intervention stud-
ies have found that specifically inhibiting the NLRP3
inflammasome can mitigate neuroinflammation and im-
prove outcomes following TBI. Additionally, emerging
reports suggest that circulating NLRP3 and its associated
molecules may function as biomarkers of neuroinflam-
matory conditions. Although promising, there remains
a number of important knowledge gaps, including po-
tential effects of NLRP3 inhibitors such as MCC950 on
peripheral immune function and any implications this
may have on host-defense mechanisms, as well as the
optimal timing and dose of administration after TBL. It
is recommended that further research also investigates
mTBI includes variables such as age and biological sex,
determines the diagnostic and prognostic ability of
inflammasome-associated biomarkers, and further es-
tablish if NLRP3-targeted treatments can improve TBI
outcomes.
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