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neonatal hypoxic-ischemic encephalopathy
rat model
Juan Huang1,2, Weitian Lu1,2, Desislava Met Doycheva2, Marcin Gamdzyk2, Xiao Hu2,3, Rui Liu2,3,
John H. Zhang2,4,5 and Jiping Tang2*

Abstract

Background: Inhibition of inositol-requiring enzyme-1 alpha (IRE1α), one of the sensor signaling proteins associated
with endoplasmic reticulum (ER) stress, has been shown to alleviate brain injury and improve neurological behavior
in a neonatal hypoxic-ischemic encephalopathy (HIE) rat model. However, there is no information about the role of
IRE1α inhibitor as well as its molecular mechanisms in preventing neuronal pyroptosis induced by NLRP1 (NOD-,
LRR- and pyrin domain-containing 1) inflammasome. In the present study, we hypothesized that IRE1α can degrade
microRNA-125-b-2-3p (miR-125-b-2-3p) and activate NLRP1/caspased-1 pathway, and subsequently promote
neuronal pyroptosis in HIE rat model.

Methods: Ten-day old unsexed rat pups were subjected to hypoxia-ischemia (HI) injury, and the inhibitor of IRE1α,
STF083010, was administered intranasally at 1 h after HI induction. AntimiR-125 or NLRP1 activation CRISPR was
administered by intracerebroventricular (i.c.v) injection at 24 h before HI induction. Immunofluorescence staining,
western blot analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), brain infarct
volume measurement, neurological function tests, and Fluoro-Jade C staining were performed.

Results: Endogenous phosphorylated IRE1α (p-IRE1α), NLRP1, cleaved caspase-1, interleukin-1β (IL-1β), and
interleukin-18 (IL-18) were increased and miR-125-b-2-3p was decreased in HIE rat model. STF083010 administration
significantly upregulated the expression of miR-125-b-2-3p, reduced the infarct volume, improved neurobehavioral
outcomes and downregulated the protein expression of NLRP1, cleaved caspase-1, IL-1β and IL-18. The protective
effects of STF083010 were reversed by antimiR-125 or NLRP1 activation CRISPR.

Conclusions: IRE1α inhibitor, STF083010, reduced neuronal pyroptosis at least in part via miR-125/NLRP1/caspase-1
signaling pathway after HI.
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Background
Neonatal hypoxic ischemic encephalopathy (HIE) is a
devastating disease that causes perinatal brain injury and
leads to prolonged neurodevelopmental consequences in
infants including cerebral palsy, cognitive deficits, men-
tal retardation, seizures, epilepsy, and other neurological
disabilities [1–3]. Although there has been tremendous
progress in understanding HIE pathologies, there is still
a need to explore its pathophysiology and treatment mo-
dalities [3].
Growing evidence reveal that endoplasmic reticulum

(ER) stress is involved in the pathogenesis of HIE [4–7].
ER stress is the condition where ER homeostasis is dis-
turbed and the unfolded or misfolded proteins accumu-
late in the ER lumen, which can be caused by many
physiological or pathological factors, such as hypoxia, is-
chemia, or changes in intracellular pH [5, 8–10].
Inositol-requiring enzyme 1 alpha (IRE1α), an ER trans-
membrane kinase-endoribonuclease (RNase), is a stress
sensor receptor, which is activated by the accumulation
of unfolded or misfolded proteins [11, 12]. It has been
reported that sustained IRE1α activation causes rapid
decay of some microRNAs (miRNAs), such as miR-17
and miR-125 [13].
miRNAs are a class of noncoding short single-

stranded RNAs (~ 22 nt in length) that play a role in
downregulating gene expression at the post transcrip-
tional level via binding to complementary nucleotide
sequences of the target mRNA [14–18]. Our previous
research showed that IRE1α inhibition alleviated brain
injury and restrained the activation of TXNIP/NLRP3
inflammasome via upregulating miR-17 expression level
in neonatal HIE rat model [5]. However, whether IRE1
inhibition may be protective via regulation of miR-125
expression levels has not been studied.
Neuronal pyroptosis, a form of programmed neuronal

cell death, initiated by caspase-1, is one of the important
causes of neurological damage [19]. The nucleotide-
binding oligomerization domain (NOD)-like receptor
(NLR) pyrin domain-containing (NLRP) inflammasomes
have recently been identified and shown to contribute to
cell pyroptosis [20, 21]. Inflammasomes are the multi-
protein complexes composed of a cytosolic pattern-
recognition receptor, the enzyme caspase 1 and an
adaptor protein that facilitates the interaction between
the former two [22, 23]. Activation and homo-
oligomerization of NLRP receptor induces the formation
of NLRP inflammasomes, which convert precursor
caspase-1 into cleaved caspase-1. The cleaved caspase-1
mediates the inflammatory responses including cleavage
and secretion of inflammatory cytokines interleukin-1β
(IL-1β) and interleukin-18 (IL-18), and then initiates the
inflammatory form of cell death, referred to as pyropto-
sis [20, 24]. Up to now NLRP1 and NLRP3

inflammasomes are the most extensively studied inflam-
masomes [22, 25, 26]. An online search using a miRNA
target prediction software, TargetScan (http://www.tar-
getscan.org/), revealed that miR-125b-2-3p contains
nucleotide sequences complementary to the highly con-
served seed sequences in the NLRP1 mRNA 3’-UTR
(Fig. 7). There are also several previous reports on miR-
125 as a regulator of NLRP1 mRNA stability [27, 28].
Therefore, we deduce that IRE1 could at least partially
regulate the expression level of NLRP1 via miR-125. We
hypothesized that IRE1α inhibition will prevent neuronal
pyroptosis via miR-125/NLRP1 pathway in the neonatal
HIE rat model.

Material and methods
Animals
All experiments performed in this study were in compli-
ance with the National Institutes of Health guidelines
for the handling of laboratory animals and approved by
Loma Linda University Institutional Animal Care and
Use Committee. Sprague-Dawley rat mothers, with lit-
ters of 12 pups, were purchased from Envigo (Livermore,
CA) and housed in regular light/dark cycle environment
with humidity and temperature controlled. Post-natal
day 10 (P10) pups, weighing 14–20 g, underwent
hypoxia-ischemia surgery. A total of 142 unsexed rat
pups were used in this study. Among them, 14 pups
were excluded due to death during ischemia surgery or
hypoxia induction.

HIE rat model
The modified Rice-Vannucci method was performed to
create the HIE rat model as previously described [29,
30]. Briefly, rat pups were anesthetized with 3% isoflur-
ane (in mixed air and oxygen) and placed supine to ex-
pose the anterior cervical region. The right common
carotid artery was separated from surrounding tissues
and double ligated using 5-0 surgical silk suture. The ar-
tery was cut between the two ligations. The isoflurane
exposure time was limited to 8min. After surgery, pups
were allowed to recover for 1 h and then placed in hyp-
oxia (8% O2 and 92% N2), in an Erlenmeyer flask which
was submerged in a 37 °C water bath, for 2.5 h. After
hypoxia, all pups were returned to their dams. Sham
pups underwent anesthesia and the exposure of the right
common carotid artery, without the ligation and
hypoxia.

Intranasal administration
Pups were placed in a supine position under 2% isoflur-
ane anesthesia at 1 h after HI. A total volume of 5 μL of
STF083010 (45 μg/pup, Abcam) or vehicle (10% DMSO
dissolved in corn oil) was administered intranasally.
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1.25 μl of STF083010 or vehicle per drop was given every
2 min in alternating nares.

Intracerebroventricular injection
The miR-125-b-2-3p inhibitor (0.5 nmol/pup, rno-miR-
125b-22-3p miRCURY LNA miRNA Power Inhibitor,
Qiagen, Cat#YI04109200-DDA), or the anti-miR control
(0.5 nmol/pup, miRCURY LNA miRNA Power Inhibitor
control, Qiagen, Cat#YI00199006-DDA) was adminis-
tered to the right lateral ventricle at 24 h before HI. The
intracerebroventricular injection was performed as previ-
ously described [30, 31]. Pups were placed in a stereotac-
tic frame under isoflurane anesthesia. A 10-μl Hamilton
micro syringe needle (Hamilton Company, USA) was
inserted from the skull surface at the following coordi-
nates relative to bregma: 1.5 mm posterior, 1.5 mm lat-
eral to the bregma, and 1.7 mm beneath the horizontal
plane of the skull. The miR-125-b-2-3p inhibitor or the
anti-miR control was infused into the ventricle slowly
over 5 min by a pump, and the needle was kept in place
for 10 min after the end of each injection to prevent li-
quid reflux. The NLRP1 CRISPR activation plasmid
(0.4 μg/pup, NLRP1 SAM guide RNA, Qiagen, Quo-
te#U8376ED300) or control CRISPR activation plasmid
(0.4 μg/pup, NLRP1 SAM guide RNA negative control,
Qiagen, Quote#U8376ED300) was given via intra-
cerebroventricular injection as described above at 24 h
before HI. The time point for miRNA inhibitor and
CRISPR injection was selected based on previous litera-
ture [32, 33]. According to the manufacturers’ protocol,
the phenotypic effects of the products are normally
assessed 24–72 h after delivery. A potentially attractive
quality of antagomir targeting of miRNAs is prolonged
suppression of the miRNA [34]. Silencing of miRNAs by
antagomirs has been reported to last several weeks in
the periphery [35] and after injection into the brain [36].
Therefore, we selected 24 h before HI as the best time
point for intracerebroventricular injection.

Experimental design
The experiment was designed as follows.

Experiment I
To study the temporal expression and cellular
localization of p-IRE1α after hypoxia-ischemia (HI), rat
pups were randomly divided into six groups: sham, HI-6
h, HI-12 h, HI-24 h, HI-48 h, HI-72 h. n = 6 per group.
Western blot analysis was performed to determine the
expression changes of IRE1α and p-IRE1α. Additional 6
pups in the HI-12 h group were used for double
immunofluorescence staining to evaluate the co-
localization of p-IRE1α with different cell types.
In addition, western blot analysis and reverse tran-

scription quantitative real-time polymerase chain

reaction (RT-qPCR) were performed to evaluate the
temporal expression of NLRP1, cleaved caspase-1, IL-1β,
IL-18, and miR-125-b-2-3p at various time points after
HI (groups were assigned same to that of p-IRE1α time
course detection).

Experiment II
To evaluate the neuroprotective effects of IRE1α inhibi-
tor, STF083010, after HI, rat pups were randomly di-
vided into 3 groups: sham, HI + vehicle (10% DMSO
dissolved in corn oil), HI + STF083010. n = 18 per
group, 6 pups for TTC staining and western blot, 6 pups
for RT-qPCR, and 6 pups for immunofluorescence in
each group. Western blot analysis, immunofluorescence,
RT-qPCR, neurobehavioral tests, 2,3,5-Triphenyltetrazo-
liumchloride (TTC), and Fluoro-Jade C staining were
performed to evaluate the infarct volume, neurological
performance, the number of degenerating neurons, and
the expression changes of miR-125-b-2-3p at 48 after HI
with STF083010 treatment. In addition, double immuno-
fluorescence staining was performed to determine the
localization and expression changes of the inflammatory
cytokines IL-1β and IL-18.

Experiment III
To explore whether miR-125-b-2-3p was involved in the
underlying mechanisms of STF083010 mediated neuro-
protective effects, antimiR-125 was used to inhibit miR-
125-b-2-3p. Rat pups were randomly divided into 5
groups: sham, HI + vehicle, HI + STF083010, HI +
STF083010 + antimiR control, HI + STF083010 + miR-
125 inhibitor. n = 12 per group, 6 pups for TTC staining
and western blot, 6 pups for RT-qPCR in each group.
miR-125-b-2-3p inhibitor was intracerebroventricularly
injected at 24 h before HI. TTC staining, neurobehav-
ioral tests, western blot analysis, and RT-qPCR were
examined at 48 h after HI.

Experiment IV
To explore whether NLRP1 was involved in the under-
lying mechanism of STF083010-mediated neuroprotec-
tive effects, NLRP1 activation CRISPR was used to
activate NLRP1. Rat pups were randomly divided into 5
groups: sham, HI + vehicle, HI + STF083010, HI +
STF083010 + CRISPR control, HI + STF083010 +
NLRP1 CRISPR. n = 6 per group. NLRP1 activation
CRISPR was intracerebroventricularly injected at 24 h
before HI. TTC staining, neurobehavioral tests, and
western blot analysis were examined at 48 h after HI.

Neurobehavioral tests
Negative geotaxis test was performed to evaluate the
neurological function at 48 after HI by two blinded in-
vestigators in an unbiased setup. The pups were placed
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head downward on a 45° inclined board, and the time
taken for the pups to turn to head upward was recorded.
The maximum testing time was 60 s, and the time taken
more than 60 s was recorded as 60 s.

Infarct volume measurement
At 48 h after HI, TTC staining was used to evaluate the
infarct volume as previously described [30]. The rat pup
brains were cut into 2-mm coronal sections in a rat
brain matrix. The sections were incubated with 2% TTC
solution (Sigma Aldrich Inc., USA) for 5 min at room
temperature and then washed by phosphate-buffered sa-
line (PBS). The sections were imaged, and the volume of
the infarct area was quantified and analyzed with the
Image J software (NIH, USA). The percentage of in-
farcted area for each section was calculated as [(total
area of contralateral hemisphere) − (area of un-infarcted
area of ipsilateral hemisphere)]/(total area of contralat-
eral hemisphere × 2). The average value of each section
in one brain was taken to represent the percentage of in-
farcted volume for that pup.

Tissue processing
Pups were anesthetized with isoflurane and transcar-
dially perfused with 4 °C PBS and 10% formalin. The
brains were removed and post-fixed with formalin for
48 h and then immersed in 30% sucrose until they sank.
After being embedded into OCT compound (Scigen Sci-
entific) and frozen, the brains were sliced into serial 10-
μm-thick coronal slices using a cryostat (CM3050S-3,
Leica Microsystems) at − 20 °C. The brain slices were
prepared for immunofluorescence and Fluoro-Jade C
staining as follows.

Immunofluorescence staining
The slices were rinsed with PBS for 30 min and perme-
abilized with 0.3% Triton X-100 for 30 min at room
temperature [37]. The slices were then rinsed with PBS
for 15 min and blocked with 5% donkey serum at 37 °C
for 30 min. Subsequently, each coronal slice was incu-
bated with primary antibodies at 4 °C overnight. The pri-
mary antibodies used are as follows: rabbit anti-p-IRE1α
(1:50, Abcam), mouse anti-NeuN (1:200, Santa Cruz Bio-
technology), mouse anti-GFAP (1:100, Santa Cruze Bio-
technology), and mouse anti-Iba-1(1: 200, Wako). Slices
were rinsed in PBS for 15 min and then incubated with
appropriate fluorescence-conjugated secondary anti-
bodies at 37 °C for 1 h. After being rinsed in PBS for 15
min, the slices were covered with Vectashield Antifade
Mounting Medium with DAPI (Vector Laboratories
Inc.). Images were then visualized under a fluorescence
microscope (Leica DMi8, Leica Microsystems).

Fluoro-Jade C staining
Fluoro-Jade C staining (FJC) was used to identify and
quantify degenerating neurons. The staining was
performed at 48 h post HI with the Fluoro-Jade C
Ready-to-Dilute Staining Kit (Biosensis) following the
manufacturer’s instructions. The number of FJC positive
cells was counted manually in the peri-ischemic regions.
The data was expressed as positive cells per mm2 and
six sections per brain over a microscopic field of × 20
were picked to be averaged.

Reverse transcription real-time quantitative polymerase
chain reaction (RT q-PCR)
Total RNA extraction was isolated according to miR-
Neasy Mini Kit (Qiagen) instructions, and 2 μg of RNA
in each group was reverse transcribed with miScript II
RT kit (Qiagen) to generate cDNA. The expressions of
miR-125-b-2-3p relative to SNORD61, an internal refer-
ence gene, were determined by SYBR-Green PCR
method with miScript Primer Assay kit (Qiagen) accord-
ing to manufacturer’s instructions. The primer of miR-
125-b-2-3p was Rn-miR-125b*-2 miScript Primer Assay
(Qiagen, Cat#MS000033201) and that of SNORD61 was
Hs-SNORD61-11 miScript Primer Assay (Qiagen,
Cat#MS00033705). The PCR reaction mixture consisted
of 12.5 μl 2 × QuantiTect SYBR Green PCR Master Mix,
2.5 μl 10 × miScript Universal Primer, 2.5 μl 10 × miS-
cript Primer Assay, 2 μl of template cDNA, and RNase-
free water to a total volume of 25 μl. Cycling conditions
were 95 °C for 15 min as an initial activation step,
followed by 40 cycles: denaturation at 95 °C for 15 s, an-
nealing at 55 °C for 30 s, and extension at 70 °C for 30 s.
PCR specificity was confirmed by melt curve analysis.
The relative fold change in miR-125-b-2-3p expression
was calculated using the comparative cycle threshold
method (2−ΔΔCT) [38].

Western blot analysis
After TTC staining and digitally photographed at 48 h
after HI, the brain sections were separated into contra-
lateral and ipsilateral hemispheres immediately. The ipsi-
lateral hemisphere samples were snap-frozen in liquid
nitrogen and stored at − 80 °C for further use. The brain
samples were homogenized in RIPA lysis buffer (Santa
Cruz Biotechnology) with protease inhibitor cocktail for
15 min and then centrifuged at 14,000 g at 4 °C for 30
min, the whole cell lysates were collected. The protein
concentration was determined by using a detergent com-
patibility assay (DCTM Protein Assay, Bio-Rad). Equal
amounts of proteins were loaded onto 10% sodium
dodecylsulfate polyacrylamide gel electrophoresis (SDS-
PAGE) gels for electrophoresis, and proteins were then
transferred onto nitrocellulose membranes. The mem-
branes were blocked for 2 h at 37 °C with 5% non-fat
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milk, followed by incubation at 4 °C overnight with the
primary antibodies: anti-p-IRE1α (1:500, Abcam), anti-
IRE1α (1:500, Abcam), anti-NLRP1 (1:1000, Abcam),
anti-cleaved caspase-1 (1:500, Novus Biologicals), anti-
IL-1β (1:1000, Abcam), anti-IL-18 (1:1000, Abcam), and
anti-β-actin (1:3000, Santa Cruz Biotechnology). The mem-
branes were then incubated for 1 h at 37 °C with horserad-
ish peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology). Bands were visualized using ECL Plus
kit (American Bioscience, UK) and quantified through the
Image J software. The density of each protein of interest
was normalized against the density of the β-actin band.

Statistical analysis
Statistical analysis was performed using the GraphPad
Prism 7.01 software. The data were presented as
mean ± SD. Differences between individual groups
were determined with one-way ANOVA analysis of
variance followed by post hoc tests with Tukey’s

multiple comparisons. Differences between two groups
were compared using Student’s t test. All reported P
values were two-sided, and a value of P < 0.05 was
considered statistically significant [39].

Results
Spatial expression and time course of endogenous p-
IRE1α expression after HI
Double immunofluorescence staining of p-IRE1α
with NeuN, Iba-1, and GFAP was performed at 12 h
post HI. Colocalization of p-IRE1α with NeuN, Iba-
1, and GFAP were detected in ipsilateral peri-infarct
cortex (Fig. 1a). These results indicated that IRE1α
was extensively expressed on neurons, microglia, and
astrocytes. Analysis of the western blot bands
showed that the ratio of p-IRE1α/IRE1α expression
increased in a time-dependent manner, reaching
peak at 12 h after HI (P < 0.05 compared to sham
group, Fig. 1b, c).

Fig. 1 Endogenous expression of p-IRE1α after HI insult. a Double immunostaining of p-IRE1α with neurons (NeuN), astrocytes (GFAP), and
microglia (Iba-1) at 12 h after HI. n = 6 per group. Top panel indicates the location of microphotographs (small black box). Scale bar = 50 μm. b, c
Representative western blot bands of time course, and quantitative analysis of the relative expression levels of p-IRE1α /IRE1α after HI. n = 6 per
group, *P < 0.05 vs. sham group
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Expression changes of NLRP1, cleaved caspase-1, IL-1β,
IL-18, and miR-125-b-2-3p after HI
Analysis results of the western blot bands showed the ex-
pression level of NLRP1, cleaved caspase-1, IL-1β, and IL-
18 dramatically increased after HI induction and reached
to the highest level at 12 h or 24 h post HI (P < 0.05 com-
pared to sham group, Fig. 2a–e). These results indicated
that the NLRP1 inflammasome was activated and
neuronal cell pyroptosis occurred in the HIE rat model.
RT-qPCR results showed that the expression level of

miR-125-b-2-3p dramatically decreased after HI induc-
tion and reached to the lowest level at 48 h post HI
(P < 0.05 compared to sham group, Fig. 2f).

Intranasal administration of STF083010 reduced infarct
volume, improved short-term neurological functions,
reduced neuronal degeneration, and upregulated miR-
125-b-2-3p expression at 48 h after HI
TTC staining results showed that there was no infarct
region in sham group. HI insults lead to the obvious in-
farct area in vehicle group, while intranasal administra-
tion of STF083010 reduced the infarct volume when
compared with vehicle group (P < 0.05, Fig. 3a, b).
The Geotaxis reflex time in vehicle group was in-

creased significantly when compared with sham group at
48 h after HI, while it decreased significantly in
STF083010 treatment group when compared with
vehicle group (P < 0.05, Fig. 3c).
Robust FJC staining in ipsilateral peri-infarct cortex

was observed at 48 h after HI in vehicle group, while
STF083010 treatment significantly reduced the number
of FJC-positive neurons when compared with vehicle
group (P < 0.05, Fig. 3d, e).

RT q-PCR data showed that the expression of miR-
125-b-2-3p significantly decreased in vehicle group when
compared with sham group (P < 0.05), while STF083010
treatment upregulated the expression of miR-125-b-2-3p
when compared with vehicle group (P < 0.05, Fig. 3f).
These results indicated that IRE1-α inhibition reduced

infarct volume, improved short-term neurological func-
tion, reduced neuronal degeneration, and upregulated
miR-125-b-2-3p expression after HI.

Intranasal administration of STF083010 downregulated
the expression level of IL-1β and IL-18 at 48 h after HI
Immunofluorescence staining showed that the fluores-
cent intensity of IL-1β and IL-18 on neurons, astrocytes,
and microglia, in vehicle group, was increased when
compared with sham group, while the fluorescent inten-
sity of the two inflammatory cytokines decreased in
STF083010 treatment group when compared with the
vehicle group. IL-1β and IL-18 were expressed ex-
tensively on neurons, microglia, and astrocytes (Fig. 4,
Fig. 5). These results indicated that IRE1-α inhibition
reduced cell pyroptosis after HI.

Inhibition of miR-125-b-2-3p attenuated the
neuroprotective effects induced by STF083010 treatment
at 48 h post HI
To determine the role of miR-125-b-2-3p in STF083010
neuroprotective effects, we used antimiR-125 to inhibit
miR-125-b-2-3p. TTC staining results showed that the in-
farct volume increased significantly in HI + STF083010 +
antimiR-125 group when compared with the HI +
STF083010 + miR inhibitor control group. The
Geotaxis reflex time increased in HI + STF083010 +

Fig. 2 Endogenous expression of NLRP1, cleaved caspase-1, IL-1β, IL-18, and miR-125-b-2-3p after HI insult. a–e Representative western blot
bands of time course, and quantitative analysis of the relative expression level of proteins NLRP1, cleaved caspase-1 (CC1), IL-1β, and IL-18 after HI
insult, n = 6 per group. f Expression of endogenous miR-125-b-2-3p after HI insult determined by real time PCR detection, n = 6 per group. *P <
0.05 vs. sham group
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antimiR-125 group when compared with the HI +
STF083010 + miR inhibitor control group (P < 0.05,
Fig. 6). These results indicated that miR-125-b-2-3p
was involved in the neuroprotective effects induced by
IRE1-α inhibition.

Inhibition of miR-125-b-2-3p reversed the downregulation
of NLRP1, cleaved caspase-1, IL-1β, and IL-18 induced by
STF083010 treatment at 48 h post HI
RT q-PCR data showed the expression level of miR-
125-b-2-3p decreased significantly in HI + STF083010

+ antimiR-125 group when compared with the HI +
STF083010 + miR inhibitor control group (P < 0.05,
Fig. 7a).
Western blot data showed that the expression level of

NLRP1, cleaved caspase-1, IL-1β, and IL-18 increased
significantly in HI + vehicle group when compared with
the sham group, and then decreased significantly in HI +
STF083010 group when compared with the HI + vehicle
group. These proteins increased significantly in HI +
STF083010 + antimiR-125 group when compared with
the HI + STF083010 + miR inhibitor control group
(P < 0.05, Fig. 8).

Fig. 3 Effect of intranasal administration of STF083010 on brain infarct volume, neuronal degeneration, neurological function and the relative
miR-125-b-2-3p expression level. a Representative TTC staining photographs. b Analysis of infarct volume. c Analysis of reflex time in Geotaxis test.
d Representative Fluoro-Jade C staining (FJC) photographs. Left panel indicates the location of microphotographs (small black box). The white
box at right upper corner in each FJC staining photographs is the magnification of that at left lower corner. Scale bar = 100 μm.
e Analysis of the number of FJC-positive neurons in the FJC staining photographs. f Quantitative analysis of the relative expression level
of miR-125b-2-3p in real time PCR tests. Data are represented as means ± SD. n = 6 for each group. *P < 0.05 vs. sham group; @P < 0.05
vs. HI + vehicle group
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These results indicated that miR-125-b-2-3p plays an
important protective role against ER stress-induced cell
pyroptosis.

NLRP1 activation CRISPR attenuated the neuroprotective
effects induced by STF083010 treatment at 48 h post HI
To explore whether NLRP1 was involved in the mechan-
ism of STF083010 neuroprotective effects, we used
NLRP1 activation CRISPR to activate NLRP1 expression.

TTC staining results showed the infarct volume increased
significantly in HI + STF083010 + NLRP1 activation
CRISPR group when compared with the HI + STF083010
+ CRISPR control group. The Geotaxis reflex time in-
creased in HI + STF083010 + NLRP1 activation CRISPR
group when compared with the HI + STF083010 +
CRISPR control group (P < 0.05, Fig. 6). These results in-
dicated that NLRP1 inflammasome was involved in the
neurological injury induced by IRE-1α activation.

Fig. 4 Representative immunofluorescence microphotographs of IL-1β co-expressed with NeuN, GFAP, and Iba-1 respectively in sham, HI + vehicle,
and HI + STF083010 groups. Top right panel indicates the location of microphotographs (small black box). Scale bar = 50 μm. n = 6 for each group
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NLRP1 activation CRISPR reversed the downregulation of
NLRP1, cleaved caspase-1, IL-1β, and IL-18 induced by
STF083010 treatment at 48 h post HI
Western blot data showed that the expression level of
NLRP1, cleaved caspase-1, IL-1β, and IL-18 increased
significantly in HI + vehicle group when compared with
the sham group, and then decreased significantly in HI +
STF083010 group when compared with the HI + vehicle
group. These proteins increased significantly in HI +

STF083010 + NLRP1 activation CRISPR group when
compared with the HI + STF083010 + CRISPR control
group (P < 0.05, Fig. 9). These results indicated that
NLRP1 inflammasome was involved in ER stress-
induced cell pyroptosis after HI.

Discussion
The activation of several different neuronal cell death
pathways, including apoptosis, autophage, pyroptosis,

Fig. 5 Representative immunofluorescence microphotographs of IL-18 co-expressed with NeuN, GFAP, and Iba-1 respectively in sham, HI +
vehicle, and HI + STF083010 groups. Top right panel indicates the location of microphotographs (small black box). Scale bar = 50 μm. n = 6 for
each group
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necrosis, excitotoxic cell death, etc., account for the
brain damages that occur after hypoxia-ischemic (HI) in-
sults [40–43]. Recently, the contribution of neuronal
pyroptosis in the process of HIE pathophysiology is
drawing much more attention and many researchers
have tried to reduce neural damage by reversing the oc-
currence of neuronal pyroptosis in HIE [41, 44, 45].
NLRP1 was the first inflammasome to be characterized
and was reported to promote pyroptosis in neurons [22,
46]. The core complex of NLRP1 inflammasome is com-
posed of NLRP1, ASC (apoptosis-associated speck-like
protein containing a CARD), caspase 1, and caspase 5
[22]. In the present study, western blot results showed
that the expression level of NLRP1, cleaved caspase-1,
IL-1β, and IL-18 were increased after HI insult, which
indicated that NLRP1 inflammasome was activated and

neuronal cell pyroptosis occurred in the HIE rat model.
The immunofluorescence results indicated that both in-
flammatory cytokines, IL-1β and IL-18, were expressed
in neurons, microglia, and astrocytes, demonstrating
pyroptosis.
ER stress, caused by the clustering of excess misfolded

or unfolded proteins in the ER lumen, triggers unfolded
protein response (UPR) signaling pathway [47]. Under
remediable ER stress, UPR is a protective response
aimed at preventing further accumulation of unfolded
proteins within the ER and returning the ER to its nor-
mal physiological state. However, under severe or pro-
longed ER stress, UPR switches to leading cell death by
activating ER-associated apoptotic pathways [4, 5, 48,
49]. At least three ER-transmembrane proteins, the
PKR-like ER kinase (PERK), the activating transcription

Fig. 6 Effects of miR-125 inhibitor and NLRP1 CRISPR on infarct volume and neurological function at 48 h post HI. a Representative TTC staining
photographs. b Analysis of infarct volume. c Analysis of reflex time in Geotaxis test. Data are represented as means ± SD. n = 6 for each group.
#P < 0.05 vs. HI + STF083010 + miR inhibitor control group; &P < 0.05 vs. HI + STF083010 + CRISPR control
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factor-6 (ATF-6), and the inositol-requiring enzyme 1
(IRE1), contain ER luminal stress-sensing domains and
carry out the UPR in mammals. IRE1 is the most an-
cient, evolutionarily conserved UPR sensor, which has
two types of isoforms: IRE1α or IRE1β [11, 50, 51].
IRE1α is expressed extensively in various tissues,
whereas IRE1β is only expressed in the digestive system
[11, 50]. Apart from the stress sensor domain, IRE1α

contains a cytosolic serine/threonine kinase domain and
an endoribonuclease (RNase) domain as well [47, 52,
53]. Upon ER stress, the IRE1α kinase domain is dimer-
ized and self-phosphorylated, which consequently acti-
vates the RNase domain [47, 54, 55]. The RNase activity
of IRE1α catalyzes the excision of a 26-nt intron within
the X-box-binding protein 1 (XBP1) mRNA and results
in the formation of spliced XBP1 (XBP1s), which

Fig. 7 Effects of miR-125 inhibitor on miR-125b-2-3p and search results from the TargetScan software. a Quantitative analysis of the relative
expression level of miR-125b-2-3p in real time PCR tests. Data are represented as means ± SD. n = 6 for each group. #P < 0.05 vs. HI+ STF083010
+ miR inhibitor control. b Sequence alignment showed putative miR-125b-2-3p binding sites within the 3’-UTR of the NLRP1 mRNA in
rats (http://www.targetscan.org/)

Fig. 8 Effects of miR-125 inhibitor on downstream proteins in proposed signaling pathway with STF083010 treatment at 48 h post HI. a
Representative pictures of the western blot bands of the proteins NLRP1, cleaved caspase-1(CC1), IL-1β, and IL-18. b–e Quantitative analysis of the
relative expression level of proteins NLRP1, cleaved caspase-1, IL-1β, and IL-18. Data are represented as means ± SD. n = 6 for each group.
*P < 0.05 vs. sham group; @P < 0.05 vs. HI + Vehicle; #P < 0.05 vs. HI + STF083010 + miR inhibitor control
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transcriptionally promotes the expression of genes re-
sponsible for restoring ER folding capacity [56–58]. In
addition to its adaptive effects on alleviating unfolded
protein accumulation, excessive activation of IRE1α can
switch to promote apoptosis by degrading numerous
types of RNA which encode the downstream signal mol-
ecules related to apoptosis such as CCAAT/enhancer-
binding protein-homologous protein (CHOP) [47, 59,
60]. In the present study, the results showed that the
relative expression level of p-IRE1ɑ peaked at 6 h and
started to decline after 12 h, which is consistent with
previous studies [4, 5] and indicated that IRE1ɑ activa-
tion, after HIE, is an early event.
In our previous study, we explored the optimal dose of

STF083010 (45 μg/pup), a specific inhibitor of IRE1α’s
RNAase activity, for treatment in HIE rat model and
evaluated STF083010 protective effects by measuring in-
farct volume and performing neurobehavioral testing at
24 h and 72 h after HI insult [5]. Here we complemen-
tally observed the treatment effect of the best dose of
STF083010 on infarct volume and negative geotaxis test
score at 48 h after HI insult, which further confirmed
that inhibition of the IRE1α activity could alleviate the
brain injury in HIE rat model.
Severe ER stress is associated with multiple types of

tissue damage, including excitotoxicity injury, oxidative
stress, and neuronal apoptosis [61–63]. For example, the
accumulation of excessive unfolded proteins within the

ER leads to the hyperfusion of mitochondria and initi-
ates mitochondria-mediated apoptosis in cells [64]. It
was founded that IRE1α inhibition reduced the number
of FJC-positive neurons in the present study, which indi-
cates that severe ER stress is responsible for the degener-
ation of neurons in HIE rat model. The factors
accounting for the degeneration of neurons include
neuronal apoptosis, necrosis, pyroptosis, etc. [65–67].
The type of cell death, which associates ER stress with
neurodegeneration, is an issue that needs in-depth inves-
tigation. Here, we focused on the relationship between
ER stress process with neuronal pyroptosis and found
that inhibition of IRE1α leads to the decreased expres-
sion of cleaved caspase-1, IL-1β, and IL-18. These results
indicate that ER stress could initiate neuronal injury
through inducing neuronal pyroptosis in HIE rat model.
In our study, we demonstrated ER stress-induced
neuronal pyroptosis; however, the role of other ER
stress-induced signaling pathways which leads to the
brain injury through oxidative stress or excitotoxicity
needs to be further evaluated.
The cytosolic pattern-recognition receptors that form

the inflammasomes in the central nervous system (CNS)
are either a member of the PYHIN (pyrin and HIN
domain-containing) family of proteins or a member of
the NLRs (NOD-like receptors) family proteins [22]. The
members of PYHIN family proteins consists of absent in
melanoma 2 (AIM2) and interferon-inducible protein

Fig. 9 Effects of NLRP1 activation CRISPR on downstream proteins in proposed signaling pathway with STF083010 treatment at 48 h post HI.
a Representative pictures of the western blot bands of the proteins NLRP1, cleaved caspase-1(CC1), IL-1β, and IL-18. b–e Quantitative analysis of
the relative expression level of proteins NLRP1, cleaved caspase-1, IL-1β, and IL-18. Data are represented as means ± SD. n = 6 for each group.
*P < 0.05 vs. sham group; @P < 0.05 vs. HI + Vehicle; &P < 0.05 vs. HI + STF083010 + CRISPR control
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16(IFI16), and those of NLRs family are comprised of
NLRP1 (NOD-, LRR- and pyrin domain-containing 1),
NLRP2, NLRP3, NLRP6, NLRP12, and NLRC4 (activa-
tion and recruitment domain –containing 4) [22].
Among the above numerous inflammasomes, NLRP1
and NLRP3 were extensively studied. In our previous
study, we showed that destabilizing the NLRP3/TXNIP
inflammasome led to neuroprotection after HIE [5]. In
our present study, we demonstrated that inhibition of
IRE1α downregulated the expression of NLRP1 in HIE
model. Moreover, NLRP1 activation CRISPR reversed
STF083010s effects by upregulating the expressions of
cleaved caspase-1, IL-1β, and IL-18 after HI insult.
These results suggest that NLRP1 inflammasome may
contribute to neuronal pyroptosis induced by IRE1α ac-
tivation after HIE. In addition to the activation of IRE1α,
there are two other transmembrane sensor proteins,
PERK and ATF-6, that can be activated as well in the
course of the UPR. Whether activation of the other two
UPR sensor proteins, PERK and ATF-6, also lead to the
downstream pathways related to the formation of cyto-
solic inflammasomes and neuronal pyroptosis is worth
of study in the future.
Recent studies have shown that miR-125 plays import-

ant roles in regulating cancer proliferation, invasion,
angiogenesis, liver regeneration, etc. [68–71]. In this
study, the expression of p-IRE1α was increased and
miR-125 was decreased in HIE rat model; while the ex-
pression of miR-125 was upregulated after inhibition of
IRE-1α activity. These results suggest that the activation
of IRE-1α promotes the degradation of miR-125, which
is consistent with previous reports [13]. Considering
NLRP1 being upregulated after miR-125 was inhibited,
and that a nucleotide sequence in the NLRP1 3’ UTR
might be targeted by miR-125 in the search results of
TargetScan software, we drew the conclusion that
miR-125 acts as a bridge between the RNase activity
of IRE1α and the stability of NLRP1 inflammasome.
The decay of miR-125 caused by IRE1α activation in
HIE model leads to the occurrence of neuronal pyr-
optosis through promoting the formation of NLRP1
inflammasomes.

Conclusions
In conclusion, this study demonstrated that inhibition of
the excessive RNase activity of IRE1α is protective in
part via the miR-125/NLRP1 signaling pathway in neo-
natal HIE rat model, and IRE1α inhibitor acts to reverse
the neuronal pyroptosis post HIE. Elucidating exten-
sively the signaling pathway involved in neuronal pyrop-
tosis in the UPR process is important for future novel
treatment targets to reduce neuronal injury caused by ir-
reversible ER stress post HIE.
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