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Abstract

Background: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized
by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it
relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these
processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics,
which closely mirror disease processes and relate to functional impairment, recently became important variables for
characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear.

Methods: In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network
characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of
the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses
with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of
oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food.

Results: Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52%
reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone
diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined
dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with
decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived
modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus,
and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior.
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Conclusion: Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional
performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven
network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in
MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of
microstructural integrity and network characteristics.
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Introduction
Myelinated fibers in the white matter (WM) assure the
effective communication between anatomical regions
and essential influence brain function. Alteration in
myelin composition in the WM pathways or in gray
matter (GM) regions can lead to severe impairment of
brain functioning [50]. WM and GM integrity relates to
physiological functioning and mirrors pathological pro-
cesses [30, 31, 38]. Addressing structural integrity with
non-invasive magnetic resonance imaging (MRI) pro-
vides quantitative and correlative measures of tissue in-
tegrity. It robustly detects neuroinflammation and
neurodegeneration as seen in multiple sclerosis [28, 32,
69]. However, it is not clear how microstructural integ-
rity drives the entire network behavior and how it is re-
lated to histopathology and behavior. Diffusor tensor
imaging (DTI) based on anisotropic water diffusion is a
powerful method for non-invasive, highly sensitive esti-
mation of WM structures in the brain, reflecting macro-
scopic axonal and myelin organization of fiber bundles
[50, 63, 77, 85, 92]. Recent animal studies have shown that
the myelin content of WM accounts to a larger extent for
the variance of the DTI-derived fractional anisotropy (FA)
scalar index [15], providing evidence that diffusion anisot-
ropy measures in these regions are highly sensitive to mye-
lination [15, 51, 86, 87]. Reconstructing network
properties of the entire brain enable a robust
characterization of alterations that are caused by
pathological processes. In support of this view, ana-
lysis of network properties as derived from structural
similarity measures in vivo showed network alter-
ations (for WM and GM, [19, 64]) and associations
between FA and level of demyelination, both for MS
patients [36] and animal models of neuroinflammation
[49]. In a similar manner, alterations of thalamocorti-
cal pathways were described for other diseases and
suggest a more complex scenario than just the meas-
urable morphological alterations [39, 46, 62, 68].
Pre-clinical studies have reported altered brain tissue

properties in animal models of de- and remyelination
[16, 41, 52, 90] and in models of experimental auto-
immune encephalitis [25, 75]. Alterations followed spe-
cific regional patterns and occurred within specific

temporal scales that were associated with periods of
neuroinflammation [11, 13, 25, 75]. However, it remains
unclear to which extent network characteristics mirror
the level of de- and remyelination or inflammation.
Moreover, it is not clear how network dynamics deter-
mine functional impairment and whether remyelination
promotes complete recovery. We previously demon-
strated that impaired cognitive function associated with
demyelination was only restored by promoting remyeli-
nation when solely WM was affected, while de- and
remyelination in cortical GM was still associated with
functional alterations [12, 71]. Beside a clear spatial pat-
tern, there seem to be mechanisms triggered by myelin
loss that prevent full functional recovery.
To understand these dynamics—namely, when does

myelin loss affect brain circuits at the network level and
how it is related to behavioral performance—we make
use of the cuprizone model of de- and remyelination.
This is an animal model robustly used to study conse-
quences of myelin loss under pathological conditions
[17, 44]. Loss of myelin alters structure and architecture
of neural networks, and hence may have a major impact
on brain functioning [35]. The mechanisms underlying
such alterations have been partially identified as altered
distribution of ion channels following myelin loss
[17, 44] and alteration of tissue excitability [11, 23, 24],
with subsequent cognitive deficits [11, 12, 37, 80] but not
obvious locomotor impairment [80].
Myelin loss persists as long as cuprizone is added to

the diet. When cuprizone is omitted, spontaneous
remyelination occurs and control-like levels of myelin
are observed after only 3 weeks [11, 12, 65]. To closely
track these dynamics on brain network characteristics
and microstructural tissue properties, we investigated
de- and remyelination processes in the cuprizone
model at different time points by acquiring structural
MRI data (including DTI), performing ex-vivo histo-
pathology, and applying behavioral testing. Our data
show that myelin loss and regain can be identified with
immunohistological approaches, and the outcome
matches results from in vivo structural MRI. While
myelin levels follow the diet progression and cuprizone
withdrawal afterwards, alterations of fractional
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anisotropy and network topology are associated with al-
tered cognitive abilities which are still observed during
remyelination and suggest permanent damage at the
neuronal level [5, 7, 40].

Material and methods
Animals and experimental outline
The experiments were performed on C57BL6J mice
(females, 9 weeks old at the beginning of treatment,
Envigo, Rossdorf, Germany). Experiments were con-
ducted in accordance with guidelines of local German
authorities (LANUV ID: 84-02.04.2015.A585). All efforts
were made to minimize stress for the animals in accord-
ance with the ARRIVE guidelines [58]. Food and water
were available ad libitum.
Cuprizone [bis(cyclohexylidenehydrazide)] was mixed

with rodent pellet chow (0.2%). This compound is toxic
for mature oligodendrocytes because it interferes with
their internal mitochondrial metabolism and induces full
demyelination after 6 weeks of diet. Omitting this com-
pound from the diet allows spontaneous remyelination
[65]. Mice were divided into 6 experimental groups: (i)
2, (ii) 4, and (iii) 6 weeks of cuprizone diet (model of de-
myelination, cupri 2, 4, and 6 weeks in the text), and 6
weeks of cuprizone diet followed by (iv) 1, (v) 3, and (vi)
6 weeks of normal food (model of remyelination, remy 1,
3, and 6 weeks in the text). A control group was
matched for gender and age and received normal food
for the whole duration of the study (see Fig. 1).
The same cohort of mice was longitudinally investi-

gated by means of MRI and DTI. A new cohort of
mice was used for each time point for behavioral tests
(OF, EPM, and NOR) and some of the mice, as speci-
fied below, were used for ex vivo histological evalu-
ation. A new cohort of mice was used to perform
Pavlovian conditioning paradigms only in control con-
ditions, after 6 weeks of cuprizone diet, at 1 week and
6 weeks of remyelination as shown in the experimen-
tal outline in Fig. 1.

Immunohistochemistry
In order to evaluate the efficacy of the cuprizone diet, 3
to 10 animals which participated in behavioral tests were
used for histopathological evaluation. Briefly, mice were
deeply anesthetized using ketamine/xylazine and trans-
cardially perfused using phosphate-buffered saline (PBS),
as described before [12]. Afterwards, the brains were
quickly removed, embedded in cryoprotective compound
(TissuTeK, Science Service GmbH, Munich, Germany),
and frozen using liquid nitrogen. Coronal cryosections
(10-μm thickness) were cut using a cryotome (Leica),
positioned on glass slides (two per slide) and conserved
at −20 °C. Slices were fixed in a solution containing 4%
paraformaldehyde (PFA) for 10 min and then washed
with PBS. In order to avoid false-positive results, slices
were incubated overnight at 4 °C with a blocking solu-
tion containing PBS, 0.03% Triton X-100, 10% goat
serum, and 10% bovine serum albumin (BSA). After
blocking, slices were incubated with the following pri-
mary antibodies: proteolipid protein (PLP, product num-
ber #9311, mouse anti-mouse, Abcam, Cambridge, UK,
1:250), a specific marker for myelin; glial fibrillary acidic
protein (GFAP, product number #7260, rabbit anti-
mouse, Abcam, 1:1000), a specific marker for astrocytes;
and the amyloid precursor protein (APP2452S, rabbit
anti-mouse, Cell Signaling, New England Biolab GmbH,
Frankfurt, Germany, 1:100), a specific marker for neur-
onal and axonal damage. Antibodies were diluted in a
cold solution containing 10% goat serum, 10% BSA, and
PBS. Overnight incubation followed. Slides were then in-
cubated for 1 h with the fluorophore-conjugated second-
ary antibody Cyanine Cy™2 for APP (goat anti-rabbit
IgG, #111-225-144, A = 492 nm, E = 510 nm, Jackson
ImmunoResearch Inc., West Grove, PA, USA, 1:300). Fi-
nally, the mounting medium Fluoromount-G™ contain-
ing DAPI (#00-4959, Invitrogen by Thermo Fisher
Scientific, San Diego, CA, USA) was applied as marker
for cell nuclei. To visualize PLP and GFAP, a 3,3-Diami-
nobenzidine (DAB)-based protocol was used according

Fig. 1 Experimental outline. Schematic representation of the study showing the 7 experimental groups coinciding with different time points
before, during, and after cuprizone diet. MRI data was performed longitudinally at every time point in the same mouse cohort (continuous blue
line). New cohorts of mice were used at each time points to assess locomotor-, anxiety-like behavior, and memory abilities. All mice underwent
the same tests and some of them were used for histological evaluation at every time point. Additional cohorts were used to assess effects of
Pavlovian conditioning paradigm only at the indicated time points
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to the manufacturer’s instructions. Briefly, the secondary
antibody (Biotin-conjugated goat anti-mouse IgG, DAB-
87582, dianova GmbH, Hamburg, Germany) was applied
at room temperature and incubated for 1 h. Then the
avidin-biotin complex interaction method was used to
specify the signal. For this purpose, the Vectastain A
+ B set (PK-6100, Vector Laboratories, Burlingame,
USA, 1:100) and tris-buffered saline (TBS) were ap-
plied for 35 min [26].

Immunohistochemistry analysis
Images were acquired using a Zeiss Examiner micro-
scope. Images of slices containing the corpus callosum
(CC), the neocortex (Cx), and the thalamus (Th) were
collected from both hemispheres. A maximum of 11
slices per mouse were analyzed and considered as tech-
nical replicates for analysis of CC and Cx while more
slices were used for analysis of the thalamus. All image
analyses were performed in a blinded manner using
ImageJ [78]. For PLP staining, images collected at a mag-
nification of 5- and 10-fold were used for analysis. Mye-
lin intensity, corresponding to intensity of DAB staining,
was used as read-out and compared to control for all
other experimental groups. For GFAP staining, images
were acquired using 20- and 40-fold objectives and ana-
lyzed by counting the number of DAB positive cells per
mm2. For APP, images were acquired using a 20-fold ob-
jective and analyzed by counting the number of fluores-
cence positive cells per mm2.

Behavioral tests
Mice underwent a series of tests to evaluate locomotor
activity, anxiety-levels, and cognitive performance.

Locomotor activity
The open field (OF) test was applied in order to evaluate
locomotor activity and basal exploratory behavior.
Animals (n = 10) were tested in the OF arena (35 × 40 ×
40 cm). The distance covered and time spent in the per-
iphery were taken as a read-out (Noldus Ethovision, The
Netherlands).

Characterization of anxiety-like behavior
Animals (n = 10 for the control group and n = 5 for the
other groups) were tested in the Elevated Plus Maze
(EPM, Ethovision, Noldus IT bv, Wageningen, The
Netherlands) to assess anxiety-like behavior. The EPM
system is elevated from the floor (50 cm) with two
closed and two open arms which the animal is allowed
to explore for 5 min. Each group was tested once, and
time spent in closed and open arms was taken as read-
out.

Auditory Pavlovian conditioning
A modified auditory fear-conditioning paradigm was
used, as described previously [12, 18, 72]. Mice (n = 5)
were familiarized with the fear-conditioning apparatus
(TSE System GmbH, Bad Homburg, Germany) twice
during day 1 (with a 6-h interval) while being exposed to
six neutral tones (unconditioned stimulus CS−, 2.5-kHz
tone, 85 dB, 10-s duration; referred to as non-relevant
stimulus in the text). On the next day, animals were ex-
posed to the conditioned stimulus (three trials; CS+, 10-
kHz tone, 85 dB, 9-s duration) randomly coupled with a
mild foot shock (0.4 mA, 1-s duration, onset with CS ter-
mination). Then, 24 h after the last tone presentation,
animals were again randomly presented with two tones,
and freezing was taken as behavioral read-out. Freezing
is the duration of immobility of the animal (except for
respiratory movements) in response to presentation of
the conditioned stimulus (10 kHz), as described
previously [12, 18, 72].

Short- and long-term memory skills
Novel Object Recognition (NOR) was performed to
evaluate cognitive and memory skills of the animals (n =
10; all time points; Ethovision, Noldus IT bv,
Wageningen, The Netherlands). We used the same arena
as for the OF test, since the animals were already famil-
iar with it. The NOR test consists of a habituation phase
during which animals are allowed to explore two identi-
cal objects for 10 min, followed by three retrieval phases
performed at different time intervals after habituation in
order to evaluate short non-hippocampal-related (15
min), short hippocampal-related (4 h), and long-term
memory (24 h) skills [45]. For each retrieval session, one
of the old objects was substituted for a novel one (chess
pieces were used for all tests). Time spent exploring
novel and old objects was used to calculate a NOR index
[54] as follows: (time novel)/(time novel + time old). An
index > 0.5 indicates that animals spent more time ex-
ploring the novel object than the old one, suggesting
proper memory skills; an index = 0.5 indicates that ani-
mals spent an equal amount of time exploring the novel
and old object, suggesting their inability to distinguish
between the novel and the old [2].
A new cohort of mice was used for each of the seven

time points described above in order to avoid learning
effects, and they underwent OF, EPM, and NOR testing.
Additional new cohorts of mice were used for Pavlovian
conditioning paradigm which was only performed in
control mice, after 6 weeks of cuprizone diet, 1 week,
and 3 weeks after reintroduction on normal food.

MRI and DTI
MRI was performed using a 9.4-Tesla small animal
MR scanner with a mouse brain surface coil (Bio-
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Spec 94/20; Bruker BioSpin MRI GmbH, Ettlingen,
Germany). Mice (n for each group is given in the re-
sults) were anesthetized in a warmed plexiglas box
with 5% Isoflurane (Baxter, Germany) in 1 L/min O2.
Isoflurane dosage was reduced to 1–1.5% in 1 L/min
O2/compressed air 30/70 vol% for positioning in the
animal cradle and subsequent scanning. Stable physi-
ology was controlled by continuous monitoring of
body temperature via a rectal temperature probe
(36.5 ± 0.5 °C) and respiration rate (80–100 breath/
min). Total examination time did not exceed 70 min.
We obtained T2-weighted (T2w) rapid acquisition with

relaxation enhancement anatomical images. Diffusion
tensor data were acquired with an eight-segment echo
planar imaging (EPI)/diffusion tensor imaging (DTI)
protocol (repetition time/echo time, 5000/30ms, slice
thickness 0.3 mm (20 slices), matrix size (128 × 128)
resulting in an in plane resolution of 125 μm3) with b = 0,
1000 s/mm2 (30 diffusion directions, five B0 images, diffu-
sion gradient duration of 5 ms, and diffusion gradient
separation of 11ms).
In accordance with the FSL (www.fmrib.ox.ac.uk/fsl)

DTI pipeline, and after pre-processing for artefact cor-
rection (eddy currents and head movements), individual
masks were generated for each mouse brain using the
Brain Extraction Toolkit (BET) to isolate the brain from
the skull. These masks were subsequently edited manu-
ally to correct for errors remaining from the masking
process. A study-specific high-resolution mouse tem-
plate was generated by nonlinearly registering each
mouse brain to a single reference image. Further, output
of non-linear registration was validated by checking for
correct alignment of the surface of the brain and internal
alignment of anterior commissure, corpus callosum, and
cerebellum. An averaged image of the registered brains
was constructed and used as reference image for subse-
quent analyses, and transformation matrices were gener-
ated between the reference image and individual mouse
brain data sets using FNIRT (FSL, www.fmrib.ox.ac.uk/
fsl) [42]. Fractional anisotropy (FA) values were obtained
using FSL (http://www.fmrib.ox.ac.uk/fsl/). The detailed
protocol is explained elsewhere [84]. In addition, distri-
bution of crossing fibers was estimated using BED-
POSTX (implemented in FSL), and probability of major
(f1) and secondary (f2) fiber directions was calculated
[4]. Tractography was then computed for each voxel
within the seed mask (using n = 5000 streamline fibers/
voxel and curvature threshold of 0.2) and back-
transformed into high-resolution mouse-standard space
[53]. Allen mouse brain atlas (AMBA) with 82 identified
brain regions was used [49, 61]. Thus, obtained fiber
tracts were mapped to the FA skeleton for each animal
to obtain FA values in the tracts between ROI’s [74].
Hence, a final 82 × 82 connectivity matrix was estimated

based on the correlation of mean FA values of fiber
tracts between those regions for each subject.
The obtained connectivity matrices were then investi-

gated using the graph theoretical network framework to
obtain various local and modular measures which would
describe the topological reorganization of structural net-
works associated to the histological markers and behav-
ior changes. The networks were then obtained at 20
different network densities, and the measures were ex-
tracted at each density. In graph theory analyses, the
density represents cost of the network computed by
fraction of present connections to all possible connec-
tions [47]. Hence, the network measures derived at each
density for each time point would specify the alterations
in network behavior between these time points at differ-
ent levels of network fragmentation (from full, partial to
discontinuous connectivity). This method of threshold-
ing ensures that all the regions (nodes) of the network
are connected while discarding spurious connections
(edges) [1]. The local network measure was observed by
computing “clustering coefficient” [91], and the modular
reorganization was observed using “modularity” [34, 73].
All these measures were computed using BCT toolbox
[76]. It has been shown that addressing both of these
variables gives a robust conceptual characterization of
the network characteristics at different systemic ranges
[29]. Statistical analysis of the imaging data was per-
formed in a blind manner; only preprocessing steps were
performed in a non-blind manner.

Statistics
All data are presented as means ± standard error mean
(SEM) or medians with ranges. Analyses of variance
(ANOVA) and covariance (ANCOVA) were performed
using one way or factorial models (ANOVAs) followed
by Tukey’s or Bonferroni’s post hoc tests (SPSS, IBM).
Statistical analysis of histological results was performed
using nested ANOVAs performed with GraphPad (Prism
8) in order to take into consideration technical replicates
and biological ones and test for random effects. The
other statistical analyses were performed using IBM
SPSS Statistics, Version 22.0 (SPSS, Chicago, IL, USA)
and GraphPad (Prism 5). Graphs were produced using
Prism 5, and figures were created with Coreldraw x8.

Results
Time-dependent white matter de- and remyelination in
the cuprizone model
Two weeks after the mice started on the cuprizone diet,
the myelin intensity signal, which was evaluated in the
corpus callosum (CC) using the specific marker PLP,
was lower compared to control (198.2 ± 4.01 vs. 231.1 ±
4 respectively, nested ANOVA, F(6, 26) = 19.55, p <
0.0001; Tukey’s post hoc test: cupri 2 weeks vs. control,
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p = 0.05; Fig. 2a and Supplementary Fig. 1a). The myelin
intensity signal decreased constantly with continuation
of the diet, reaching a minimum 6 weeks after starting
the diet, evidencing large demyelinated white matter re-
gions in the lateral part of the CC (127.9 ± 11.1, vs. con-
trol, p < 0.0001; Fig. 2a, middle column). In line with
previous reports [65, 83], omitting cuprizone from the
diet allowed remyelination: the myelin intensity con-
stantly and significantly increased in comparison to the
time point of maximal demyelination (cuprizone 6
weeks). Myelination values reached control-like levels 6
weeks after cuprizone withdrawal (221 ± 4.75; Fig. 1a,
1st and 3rd column and bar graph).
Demyelination was accompanied by activation of the

innate immune system, namely by astrocytosis and
microgliosis. In detail, the number of astrocytes observed
in the CC was significantly higher in the presence of
cuprizone already 2 weeks after starting the diet com-
pared to control conditions (526.3 ± 21.6 cells/mm2 and
391.3 ± 9.6 cells/mm2, respectively; nested ANOVA, F(6,
63) = 48.51, p < 0.0001; Tukey’s post hoc test, p < 0.0001;
Fig. 2b). This number further increased 6 weeks after
starting the diet (738.2 ± 24.55; p < 0.0001 vs. control,
Fig. 2b). Interestingly, the number of astrocytes de-
creased during early and late phases of remyelination, al-
most reaching control-like values (remy 1 week 428.7 ±

13.9 cells/mm2; remy 3 weeks 421.2 ± 12.21 cells/mm2;
remy 6 weeks 421.6 ± 7.78 cells/mm2; Fig. 2b).
Analyzing T2-weighted images evidenced a morpho-

logically similar extent of demyelination in the CC, vis-
ible in the lateral part of this structure thereby validating
our ex vivo experimental findings. Since myelin, given
its lipid composition, appears hypointense in T2-
weighted MR images, white matter regions appear
darker than gray matter ones. Analysis of myelination
intensity was carried out by calculating the ratio between
the hyperintense signal from the cortex and the hypoin-
tense signal of the CC. Control conditions were charac-
terized by a high ratio, namely, high differences between
the two signals (54.9 ± 3.6, n = 5; Fig. 1d, first column
and bar graph). Corroborating the histological results,
the ratio calculated 2 weeks after starting the diet was
already significantly lower than control (23.58 ± 1.8,
one-way ANOVA, F(6,57) = 29.31, p < 0.0001; Tukey’s
post hoc test: p < 0.0001 vs. control, n = 12; Fig. 1d).
The ratio did not significantly decrease any further 4
and 6 weeks after starting the diet (17.65 ± 1.8 and
20.87 ± 2.43, respectively, p < 0.0001 vs. control, n =
12; Fig. 1d). Allowing remyelination by re-introducing
normal food into the diet induced an increase of the
ratio at 1 week (n = 5) and 3 weeks of remyelination
(n = 10), although values were still significantly

Fig. 2 Structural and anatomical white matter changes during de- and remyelination in the cuprizone model. Example immunohistochemical
images of coronal mouse slices containing the corpus callosum (CC) in control conditions (1st column), at 6 weeks after starting the cuprizone
diet (cupri 6 weeks—full demyelination, 2nd column), and at full remyelination 6 weeks after reintroduction of normal food (3rd column). On the
right of each panel, bar graphs show quantifications of changes. Stained for: a myelin specific marker PLP; b astrocytic specific marker GFAP; c
exemplary T2-weighted images obtained in living mice during a longitudinal MRI scan. Pictures show frontal part of mouse brain containing
neocortex and CC from control, cupri 6 weeks and remy 6 weeks mice. Bar graph shows the ratio calculated between the intensity of the myelin
signal observed in Cx (SICx) and CC (SICC). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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different compared to control (p = 0.013 and p <
0.0001, respectively vs. control). Only at 6 weeks of
remyelination values reached control-like levels (44.3
± 2.03, n = 10; p = 0.085).

Time-dependent gray matter de- and remyelination in the
cuprizone model
Next, in order to assess potential differences between
white and gray matter regions upon cuprizone adminis-
tration and withdrawal, we performed a structural ana-
lysis, similar to the one described above, but in the
neocortex parenchyma (Cx). Already 2 weeks after start-
ing the diet, myelin intensity evaluated in the Cx showed
a tendency to be lower in comparison to control (117.5
± 34.6 and 223.2 ± 24.41, respectively; nested ANOVA,
F(6,20) = 1.79, p = 0.15; Fig. 3a and e and Supplementary
Fig. 2a). However, contrary to the CC, we did not ob-
serve large demyelinated areas, compared to control, at a
similar time point (cupri 6 weeks 255.9 ± 20.07, Fig. 3a,
middle column). This finding could be attributed to the
low myelin content known to characterize some of the
gray matter regions in comparison to white matter ones

[59]. Similarly, no changes, compared to control, were
observed during remyelination (remy 6 weeks 198.8 ±
22.3, left column; Fig. 3a). Astrocytosis and microgliosis
were also observed in the neocortex (Fig. 3b). The num-
ber of astrocytes (control 57.94 ± 10.83 cells/mm2) was
found to be significantly higher than control already 2
weeks after starting the diet (165.9 ± 15.1 cells/mm2;
nested ANOVA, F(6,20) = 4.86, p = 0.0036; Tukey’s post
hoc test: control vs. cupri 2 weeks: p = 0.006; Fig. 3b and
Supplementary Fig. 2b) and it remained relatively ele-
vated at all investigated time points. The above same
holds true for other gray matter regions like the somato-
sensory thalamus (Supplementary Fig. 3 and 4). More-
over, in order to evaluate potential neurodegeneration
following oligodendrocyte and myelin damage, we also per-
formed staining for amyloid precursor protein (APP), of
which an accumulation in neuronal soma is considered an
indicator for neurodegeneration [70]. Accumulation of APP
was observed in the neocortex already at the beginning of
the cuprizone diet and constantly increased at maximal de-
myelination but reaching significance threshold only during
remyelinating phases (Supplementary Fig. 5). This would

Fig. 3 Structural and anatomical gray matter changes during de- and remyelination in the cuprizone model. Example immunohistochemical images of
coronal mouse slices containing the neocortex (Cx) in control conditions (1st column), at 6 weeks after starting the cuprizone diet (cupri 6 weeks—full
demyelination, 2nd column), and at full remyelination 6weeks after reintroduction of normal food (3rd column). On the right of each panel, bar graphs
show quantifications of changes. Stained for: a myelin specific marker PLP; b astrocytic specific marker GFAP; c exemplary T2-weighted images obtained
in living mice during a longitudinal MRI scan. Pictures show frontal part of mouse brain containing neocortex, hippocampus, and CC. Bar
graph shows the ratio calculated between the intensity of the myelin signal observed in caudal regions of the Cx (SICx) and CC (SICC).
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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suggest that cuprizone and therefore demyelination is a
strong insult to neurons.
Analyzing T2-weighted images in more caudal regions

of the brains also evidenced a morphologically similar
extent of demyelination in the CC, visible in the lateral
part of this structure thereby validating our ex vivo ex-
perimental findings. Similarly to the condition observed
for more rostral areas and corroborating the histological
results, the ratio calculated 2 weeks after starting the diet
was lower than control (13.74 ± 1.6, n = 12 and 22.04 ±
2.1, n = 5, respectively; Fig. 3d) and it reached significant
threshold only 6 weeks after starting the diet (2.17 ± 2.8,
n = 10; One-way ANOVA, F(6,64) = 5.80, p < 0.0001;
Tukey’s post hoc test: p < 0. 0001 vs. control; Fig. 3d).
Interestingly, allowing remyelination by re-introducing
normal food into the diet induced a significant increase
in comparison to the full remyelination at 3 (12.76 ± 2.4,
n = 10; p = 0.03) and 6 weeks of remyelination (14.53 ±
2.5, n = 12, p = 0.004). The MRI ratio analysis appeared
to be more sensitive than histological analysis in this
part of the brain.

Behavioral correlates of general de- and remyelination
Next, we performed behavioral experiments to investi-
gate associations between the histological alterations and
region-related functions such as cognition, anxiety-like
behavior, and locomotor activity (Fig. 4). Therefore, in
order to facilitate temporal presentation of the following
behavioral data, a synopsis of histological evaluation in
cortical white (Fig. 4a, left panel) and gray matter
(Fig. 4a, right panel) is presented.
Animals tested in the OF 2- (165.6 ± 12.35 cm, Fig. 4b)

and 6 weeks (165.1 ± 14.97 cm) after starting the cupri-
zone diet travelled a significantly longer distance in com-
parison to control (104.7 ± 9.24 cm, one-way ANOVA,
F(6,62) = 4.9, p = 0.0004; Tukey’s post hoc test: cupri 2
weeks and cupri 6 weeks vs. control, p < 0.01, Fig. 4b).
This indicates locomotor hyperactivity of the mice, a be-
havior which was described previously [89] and seemed to
be characteristic of demyelinated mice as animals from all
remyelination time points travelled a similar distance as
control animals (p = 0.016 vs. remy 6 weeks; Fig. 4b). To
assess the level of anxiety-like behavior due to the new en-
vironment, we measured the amount of time animals

Fig. 4 Behavioral correlates of general de- and remyelination in the
cuprizone model. a Schematic representation of the time course of
histopathological markers for structural impairment in the cuprizone
model. b Bar graphs showing travelled distance and time spent in
the periphery in the Open Field test. c Bar graphs show the results
of the EPM test. d Bar graphs show the results of the auditory
Pavlovian conditioning paradigm conducted using 2.5 kHz or 10 kHz,
where the latter is the conditioning stimulus associated to the foot
shock. e Bar graphs show NOR index calculated 15min, 4 h, and 24
h. *p < 0.05; **p < 0.01; ***p < 0.001
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spent in proximity of the walls and corners, both consid-
ered as shelter places. The group that received cuprizone
for 4 weeks spent significantly more time in proximity to
the walls (128.8 ± 8.64 s, Fig. 4b) compared with control
animals (88.6 ± 15 s) and the other groups. This indicates
anxiety-like behavior rather than locomotor impairment
as there were no obvious differences in distances travelled
(one way ANOVA, F(6,62) = 5.82, p < 0.0001; Tukey’s post
hoc test: cupri 4 weeks vs control: p = 0.048, vs. cupri 2
weeks: p = 0.002, vs. cupri 6 weeks: p < 0.0001, vs. remy 1
week: p = 0.012, and vs. remy 3 and 6 weeks: p < 0.001,
Fig. 4b). Further analysis of number of vertical exploratory
behaviors corroborated the hyperactivity and tendency to
anxiety-like behavior as it was in general increased at any
point of the diet and it is withdrawn in comparison to
control (Supplementary Fig. 6a). In line, the grooming be-
havior, indicating the level of stress to which rodents
might be exposed [55], it was significantly reduced in all
experimental groups in comparison to control (Supple-
mentary Fig. 6b).
To further interpret these findings, we performed the

EPM test which is based on the normal exploration atti-
tude of mice. Non-anxious, control mice spent an equal
amount of time in the two arms (open 77.6 ± 15.9,
closed 103.7 ± 10.6, Fig. 4c), while the animals on a 2-
week cuprizone diet spent most time in closed arms
(159.4 ± 48.3 s vs. open arms, 38.5 ± 17.7 s, two-way
ANOVA, effect of the anxiety F(1,66) = 31.7, p < 0.001;
Tukey’s post hoc test: cupri 2 weeks open vs. closed
arms: p < 0.01, Fig. 4c). Similar anxiety-like behavior was
observed during the first 3 weeks of remyelination
(closed arms 141.37 ± 9.7 s), and still persisted after 6
weeks of remyelination (closed arms 141.8 ± 3.9 s).
Next, we assessed the cognitive and learning abilities of

the mice. Our previously published experiments [11, 12]
demonstrate that demyelination heavily impairs the ability
to retrieve information from different brain regions. Here,
we chose the auditory Pavlovian conditioning paradigm,
which, in accordance with our previous findings, revealed
that cuprizone-treated mice fail in associating a specific
tone frequency with aversive stimuli (Fig. 4d). Moreover,
animals tested during early and late stages of remyelina-
tion (freezing at 2.5 kHz, 50 ± 2.9% and freezing at 10
kHz, 62.3 ± 4.5%; two-way ANOVA, effect of the diet,
F(1,32) = 28.3, p < 0.0001, Tukey’s post hoc test 2.5 kHz vs.
10 kHz, not significant, Fig. 4d) showed the same outcome
as control mice (freezing at 2.5 kHz, 9.8 ± 1.03% and freez-
ing at 10 kHz, 59.7 ± 3.4%; Tukey’s post hoc test 2.5 kHz
vs. 10 kHz, p < 0.001; Fig. 4d), confirming that myelin loss
triggers mechanisms that alter neuronal circuits associated
with tone frequency discrimination as well as fear learning
and memory. The impairment persisted after 3 weeks of
remyelination (Fig. 4d). On this basis, we applied another
well-established method to investigate short- and long-

term memory abilities: the novel object recognition
(NOR) test. Test was performed 15min and 4 h after
adaptation to test short-term memory and 24 h to assess
long-term memory. Control animals recognized the novel
object at all of the chosen time intervals, while impaired
memory skills seemed to arise with diet onset and con-
stantly progressed to an inverted performance 6 weeks
after starting the diet (cupri 6 weeks: 24 h, 0.33 ± 0.03,
two-way ANOVA, effect of the diet: F(6,165) = 7.87, p <
0.0001; Fig. 4e). After reintroduction of normal food, the
performance of mice ameliorated, reaching control-like
values for short-term memory intervals already in the first
week of remyelination, and for long-term memory inter-
vals in the third week of remyelination. Taken together,
our data suggest that improvement of memory abilities
goes hand in hand with spontaneous remyelination.

DTI analysis depicts altered FA values while the network
analysis shows a regional discrepancy between the cortex
and thalamus
The structural MRI data were further evaluated to
analyze the FA and to build structural similarity maps
for the entire brain. T2-weighted MR images and DTI-
related parameters such as FA were extracted to meas-
ure structural similarity of the ROIs from the anatomical
atlas. The cortex and hippocampus showed reduced FA
values indicating a demyelination over time effect 6
weeks after starting the diet compared to control (one-
way ANOVA, thalamus—F(6, 83) = 5.81, p < 0.001;
hippocampus—F(6, 83) = 4.74, p < 0.001; cortex—F(6, 83)

= 6.23, p < 0.001; corpus callosum—F(6, 83) = 4.98, p <
0.001; Fig. 5b). The post hoc comparisons between the
other time intervals for all four regions were significant
(p < 0.001) except for thalamus at cuprizone 2 weeks,
and for the other three regions at the remyelination 6
weeks as shown in Fig. 5b with dashed line. In the cortex
and hippocampus, FA recovered with reintroduction of
normal food, following a similar time course as observed
for myelin markers (Fig. 5b). However, analysis of thal-
amic FA indicated that this region only shows very low
FA values during early remyelination, indicating a net-
work abnormality in comparison to neocortical integrity.
Addressing the network properties, we depict increased
global clustering (Fig. 5c, left), and increased modularity
over time (Fig. 5c, right) shows higher short-range con-
nections, while compared to controls (for one-way
ANOVA: clustering, F(6, 139) = 27.2, p < 0.001; modular-
ity, F(6, 139) = 22.3, p < 0.001). The post hoc comparisons
between the control and the other time intervals for
both parameters were significant (p < 0.001) except for
the clustering coefficient between remyelination 3 and 6
weeks (p < 0.01), and the modularity between control
and cuprizone 2 weeks (p < 0.01) and between remyeli-
nation 3 and 6 weeks (p < 0.01).
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So far, we investigated histopathological differences
between white and gray matter regions in the cuprizone
model of general de- and remyelination. Moreover, we
linked these differences to specific behaviors and
changes in brain connectivity observed with the help of
in vivo approaches. As final step, we performed correl-
ation analyses to further characterize the role of white
and gray matter myelination in a disease model. A
positive correlation was observed between the number
of GFAP positive cells in the cortex and the FA values
(Fig. 6a and Table 1), thus supporting the relation be-
tween astrocyte count and MRI-driven microstructural
integrity or damage in the WM and GM regions [8]. We
found a positive correlation between FA values mea-
sured in the CC and content of myelin for the studied
groups at all-time points (Fig. 6b and Table 1).
Moreover, we investigated the correlation between clus-

tering coefficients and behavioral variables. Clustering

describes the networks at the local level and depends on
their property to form microstructurally similar entities.
Indeed, we observed a negative correlation between clus-
tering and the NOR index 2 weeks after diet onset (Fig. 6c
and Table 1).

Discussion
Non-invasive investigation of the brain networks and
studies on the relation of cerebral circuit characteristics
and microstructural tissue properties are challenging
since regional and global pathophysiological processes
cannot be robustly delimited through widely available
methodological tools. Here, we overcome this gap by
linking histopathological analyses of myelin dynamics
with diffusion MRI-derived metrics of tissue integrity
and network characteristics (modularity, clustering) and
dissect this essential pathophysiological bridge using the
cuprizone model. Moreover, we relate these variables to

Fig. 5 Structural dynamics of de- and remyelination. a Schematic representation of the methodological approach used to perform neuronal
network analyses. Diffusion tensor images were used to calculate the fractional anisotropy (FA), and a connectivity matrix was built with the help
of an anatomical mask. b Regional FA values in the thalamus (left upper panel), in the neocortex (left lower panel), and the hippocampus (right
upper panel at all and CC (right lower panel) investigated at all-time points). c FA-based network values had increased clustering coefficients and
modularity compared to control. Horizontal black lines represent significance of a given time point in comparison to control: p < 0.01. Dashed
lines represent significance of a given time point in comparison to control: p < 0.001
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function and psychopathology studying the behavioral
correlates of the de- and remyelination.
Moreover, our study brings together several independ-

ent approaches that combined MRI and DTI technology
during demyelination only [94] or focused solely on
white matter regions with [93] studies investigating
remyelination and effects in gray matter regions.
Our results indicate that histological and cytomorpho-

logical abnormalities in response to cuprizone-induced
damage are closely interrelated to network properties as
measured by diffusion MRI and are directly influenced
(to a different extent) by processes occurring in both
gray (cortex and thalamus) and white matter (corpus

callosum). These structural reorganizations are caused
by gradual myelin loss and occurrence of astrocytosis
followed by remyelination processes. Our findings expli-
citly show how white and gray matter myelination differ-
ently affects microstructural integrity and network
properties and how circuit variables parallelize improve-
ment of behavioral performance and psychopathology.
While control-like levels of myelin are observed during
remyelination, cognitive function does not improve
completely throughout remyelination. Hence, cuprizone-
treated animals tested with a modified auditory
Pavlovian conditioning paradigm were cognitively abnor-
mal upon myelin loss and remained impaired in their

Fig. 6 Correlation analyses. a Correlation plots between FA values in the cortex and number of GFAP positive cells found in the cortex. Three
time points corresponding to onset of demyelination (cupri 2 weeks, left column), full demyelination (cupri 6 weeks, middle column), and full
remyelination (remy 6 weeks, right column). b Correlation plots between FA values in the corpus callosum and PLP signal intensity (indication for
myelination) in the corpus callosum. Three time points corresponding to the start of demyelination (cupri 2 weeks, left column), full
demyelination (cupri 6 weeks, middle column), and full remyelination (remy 6 weeks, right column). c Correlation plots between clustering
(indicator of network activity) and the NOR index. Three time points corresponding to the start of demyelination (cupri 2 weeks, left column), full
demyelination (cupri 6 weeks, middle column), and full remyelination (remy 6 weeks, right column). r2 and p values are given in Table 1

Table 1 r2 and p values obtained from correlation analysis for all experimental groups and different parameters

Correlation parameters (corrected r2) Cupri 2
weeks

Cupri 4
weeks

Cupri 6
weeks

Remy 1
week

Remy 3
weeks

Remy 6
weeks

r2 p r2 p r2 p r2 p r2 p r2 p

FA thalamus Distance OF 0.45 < 0.01 0.67 < 0.001 0.61 < 0.001 0.63 < 0.001 0.52 < 0.001 0.61 < 0.001

FA hippocampus Time in periphery 0.58 < 0.001 0.62 < 0.001 0.64 < 0.001 0.56 < 0.001 0.58 < 0.001 0.64 < 0.001

FA cortex number of GFAP+ cell in cortex 0.62 < 0.001 0.63 < 0.001 0.57 < 0.001 0.53 < 0.001 0.62 < 0.001 0.58 < 0.001

FA corpus callosum PLP myelination 0.59 < 0.001 0.64 < 0.001 0.62 < 0.001 0.59 < 0.001 0.57 < 0.001 0.64 < 0.001

Clustering NOR index 0.48 < 0.01 0.59 < 0.001 0.62 < 0.001 0.56 < 0.001 0.59 < 0.001 0.65 < 0.001
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performance even after reintroduction of normal food.
Interestingly, in the same animals, we observed recovery
of cognitive performance during remyelination in the
memory task. This observation suggests network-specific
effects: while hippocampal memory-related functions re-
cover (this study), the auditory thalamocortical network,
providing the anatomical basis for the sensory input for
fear conditioning with its connection to the limbic system,
remains affected (our previous studies and a study by
[81]). Thus, we can hypothesize that persistent cognitive
decline depends on alterations occurring at the network
level and involves a modified balance of long- to short-
range structural similarity dependent tissue reorganization
(as shown by modularity alterations in our study). More-
over, the ability of neural circuits to re-wire and recruit
higher numbers of neuronal populations or spatially sepa-
rated neuronal populations, thereby interfering with a
proper response to behavioral tasks, could be a potential
mechanism underlying disturbed function [3, 9].
Reorganization of white matter pathways has been de-

scribed as a potential mechanism to explain these effects
[3, 57]. This explanation is supported by the results of
our correlation analyses between FA values and PLP sig-
nal (Table 1) and by reduced excitability at maximal
myelin loss probably due to lack of stimulus propagation
[33, 44]. Interestingly, the cuprizone diet leads to a tran-
sitory period of hyperexcitability in early phases of
remyelination associated with altered activity in the sev-
eral network regions in vitro [11] and in vivo and affects
white and gray matter regions differently [71]. Accord-
ingly, we show that white and gray matter network prop-
erties as derived from fractional anisotropy measures
clearly decrease during demyelination, with a subsequent
increase upon remyelination.
Detrimental effects of myelin loss and inflammation

have been shown for the neocortex in animal models of
neurodegeneration [8, 49] and for sensory motor systems
of MS patients ([20]; Fleischer et al., 2016). We could de-
pict reduced FA values in the cortex and hippocampus,
with a significant negative peak 6 weeks into the diet. Sub-
sequently, FA values of the cortex and hippocampus in-
creased with reintroduction of normal food, indicating
neural tissue recovery following diet-induced damage and
regain of baseline pre-cuprizone behavioral activity. Con-
trary, thalamus FA values remained very low during early
remyelination, indicating that this anatomical structure is
more susceptible to demyelination, showing slightly de-
layed effects compared to the cortex. This may directly in-
fluence the thalamocortical communications and the
network metrics. These mechanisms could be responsible
for the lost ability to differentiate auditory stimuli during
demyelination and residual deficits with remyelination. In-
deed, focal demyelination in the thalamus induces altered
sensory responses to stimuli entering the auditory

thalamocortical circuitry at a later time point of remyeli-
nation compared to the cortex [71]. Similarly, despite the
amount of myelin produced by differentiated oligodendro-
cyte progenitors [83, 95], inter-hemispheric and inter-
hemispheric connectivity through the CC is impaired then
through cuprizone-induced demyelination and remains
abnormal during remyelination. This supports the idea
that myelin loss triggers a more permanent and profound
decline of neuronal network functionality [11, 12, 17].
The increased clustering observed in MS patients

compared to healthy controls represents a cost-efficient
reorganization of the brain with amplified local infor-
mation flow [29, 69, 82, 88]. In addition, increased
modularity suggests a network reorganization with a
modification of the long-range structural similarity and
more local homogeneity in response to demyelination
[29, 60, 69]. We observed an increase of modularity in
the demyelination phase and an immediate reversal after
stopping the cuprizone diet. These patterns of brain cir-
cuitry reorganization upon de- and remyelination follow
a known scheme of brain circuits remodeling during
brain development ([14]; Huang et al., 2013 [10];). Tis-
sue microstructural abnormalities, indicated by FA dy-
namics in the course of the experiment, could be
detected in gray matter regions only. Notably, network
topology characteristics obtained from FA values could
be detected at the global (whole brain) level, providing
us with a more perceptible marker for ongoing struc-
tural changes. In contrast, our healthy controls showed
lower clustering and lower modularity, demonstrating
potentially mirroring aspects of compensation and adap-
tive reorganization in neighboring anatomical structures
during early demyelination and remyelination phases. Sev-
eral studies have presented evidence that links community
structure properties of the brain (e.g., increased modular-
ity) to maintenance of function despite continuous dam-
age, as seen in neurodegenerative disorders [66]. These
processes of network reorganization are presumably es-
sential to maintain functioning [56, 67]. It is therefore im-
portant to consider that, apart from restored memory
skills of mice in the NOR test, anxiety-like behavior in the
EPM test and loss of frequency discrimination in the audi-
tory Pavlovian conditioning paradigm were still present
upon myelin gain. Similarly, the distance travelled in the
OF test was also altered after myelin loss, supporting other
recent findings [6]. The network-based approach applied
here bridges ex vivo tracked tissue dynamics and in vivo
microanatomy upon myelin loss and renewal, shaping
discrete determinants of behavioral adaptive responses.

Conclusion
Our data provide new links between histopathological
myelin properties of the white and gray matter and brain
circuit behavior at the network level as derived from
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MRI-driven diffusion imaging. We depict the basis for
brain circuit modularization under demyelination and
behavior abnormalities captured in a spatiotemporal
manner. These translational concepts can be applied to
address microstructural integrity, brain network re-
sponses, functional outcome to track disease courses in
CNS autoimmunity, or therapeutic responses.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12974-020-01827-z.

Additional file 1: Figure S1. Representation of technical and biological
replicates for histological evaluation of PLP intensity, astrocytosis and
microglial activation in the CC. (a) Scatter plots and graphs show the
variability of the data acquired and used for histological evaluation on
myelin intensity by using the specific marker PLP in the corpus callosum
(upper panel). (b) Scatter plots and graphs show the variability of the
data acquired and used for histological evaluation of the number of
astrocytes by using the specific marker GFAP in the corpus callosum (mid
panel). Simplified bar graphs are shown in the main figures.

Additional file 2: Figure S2. Representation of technical and biological
replicates for histological evaluation of PLP intensity, astrocytosis and
microglial activation in the Cx. (a) Scatter plots and graphs show the
variability of the data acquired and used for histological evaluation on
myelin intensity by using the specific marker PLP in the cortex (upper
panel). (b) Scatter plots and graphs show the variability of the data
acquired and used for histological evaluation of the number of astrocytes
by using the specific marker GFAP in the cortex (mid panel). Simplified
bar graphs are shown in the main figures.

Additional file 3: Figure S3. Structural and anatomical thalamic grey
matter changes during de- and remyelination in the cuprizone model. (a)
Exemplary pictures show staining for the specific myelin marker PLP in
coronal mouse slices containing the ventrobasal complex of the
thalamus (VB) in control conditions (left), at 6 weeks after starting the
cuprizone diet (cupri 6 weeks – full demyelination, middle), and at full
remyelination 6 weeks after reintroduction of normal food (right). Note
the decreased signal for PLP indicating demyelination in the cupri 6
weeks group in comparison to control, and a persistent low PLP signal
during remyelination. On the right, bar graphs show the quantification of
myelin loss and regain for all groups and all investigated time points. (b)
Exemplary pictures show staining for the specific astrocytic marker GFAP
in coronal mouse slices containing the ventrobasal complex of the
thalamus in control conditions (left), at 6 weeks after starting the
cuprizone diet (cupri 6 weeks – full demyelination, middle), and at full
remyelination 6 weeks after reintroduction of normal food (right). Note
the increased number of astrocytes indicating astrocytosis in the cupri 6
weeks group in comparison to control and remy 6 weeks groups. On the
right, bar graphs show the number of astrocytes (cells/mm2) in VB, this
increased according to diet progression and cuprizone withdrawal.

Additional file 4: Figure S4. Representation of technical and biological
replicates for histological evaluation of PLP intensity, astrocytosis and
microglial activation in the thalamus. (a) Scatter plots and graphs show
the variability of the data acquired and used for histological evaluation
on myelin intensity by using the specific marker PLP in the thalamus
(upper panel). (b) Scatter plots and graphs show the variability of the
data acquired and used for histological evaluation of the number of
astrocytes by using the specific marker GFAP in the thalamus (mid panel).

Additional file 5: Figure S5. The amyloid precursor protein (APP)
accumulation upon de- and remyelination in frontal neocortical regions.
Exemplary pictures show APP staining in the lower layers of frontal
neocortical regions in control conditions (left), at 6 weeks after starting
the cuprizone diet (cupri 6 weeks – full demyelination, middle), and at
full remyelination 6 weeks after reintroduction of normal food (right).
Note that an increase of positive cells, indicating an accumulation of APP
in the neuronal soma, occurred slowly at the onset of the cuprizone diet

to reach a significant threshold at remyelinating phases. On the right, bar
graphs show the number of APP positive cells (cells/mm2) in Cx.

Additional file 6: Figure S6. Exploratory and grooming behavior were
altered by cuprizone diet and its withdrawn. (a) Bar graph showing
quantification of vertical exploratory behavior. Animals show a significant
increase in comparison to control 2- and 6 weeks after the beginning of
the diet. (b) Bar graph showing the quantification of grooming behavior.
The latter is often considered a indicator of stress levels I rodents and
here it is significantly decreased, in comparison to control, in almost all
experimental groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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