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Serum IgG-induced microglial activation ")
enhances neuronal cytolysis via the NO/
sGC/PKG pathway in children with
opsoclonus-myoclonus syndrome and
neuroblastoma
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Huanmin Wang?"

Abstract

Background: Opsoclonus-myoclonus syndrome (OMS) is a rare neurological disease. Some children with OMS also
have neuroblastoma (NB). We and others have previously documented that serum IgG from children with OMS and
NB induces neuronal cytolysis and activates several signaling pathways. However, the mechanisms underlying OMS
remain unclear. Here, we investigated whether nitric oxide (NO) from activated microglias and its cascade
contribute to neuronal cytolysis in pediatric OMS.

Methods: The activation of cultured cerebral cortical and cerebellar microglias incubated with sera or IgG isolated
from sera of children with OMS and NB was measured by the expression of the activation marker, cytokines, and
NO. Neuronal cytolysis was determined after exposing to IgG-treated microglia-conditioned media. Using inhibitors
and activators, the effects of NO synthesis and its intracellular cascade, namely soluble guanylyl cyclase (sGC) and
protein kinase G (PKG), on neuronal cytolysis were evaluated.
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candidate.

Soluble guanylyl cyclase (sGC), Protein kinase G (PKG)

Results: Incubation with sera or IgG from children with OMS and NB increased the activation of cerebral cortical
and cerebellar microglias, but not the activation of astrocytes or the cytolysis of glial cells. Moreover, the cytolysis of
neurons was elevated by conditioned media from microglias incubated with IgG from children with OMS and NB.
Furthermore, the expression of NO, sGC, and PKG was increased. Neuronal cytolysis was relieved by the inhibitors of
NO signaling, while neuronal cytolysis was exacerbated by the activators of NO signaling but not proinflammatory
cytokines. The cytolysis of neurons was suppressed by pretreatment with the microglial inhibitor minocycline, a
clinically tested drug. Finally, increased microglial activation did not depend on the Fab fragment of serum IgG.

Conclusions: Serum IgG from children with OMS and NB potentiates microglial activation, which induces neuronal
cytolysis through the NO/sGC/PKG pathway, suggesting an applicability of microglial inhibitor as a therapeutic

Keywords: Opsoclonus-myoclonus syndrome, Neuroblastoma, Children, Microglial activation, Nitric oxide (NO),

Background

Opsoclonus-myoclonus syndrome (OMS) is a rare but
devastating neurological disease, characterized by opsoclo-
nus, myoclonus, and ataxia. Most patients suffer from per-
sistent deficits in cognition, neurology, and behavior.
Some children with OMS also have neuroblastoma (NB),
although varied percentages have been reported [1-5].
Previously, we have documented that the insulin-like
growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)
cascade is compensatively activated to alleviate neuronal
cytolysis induced by serum IgG from children with OMS
and NB [6], and others reported that the phosphorylation
of extracellular signal-regulated kinase contributes to
neuronal cytolysis in pediatric OMS [7]. Yet, the cellular
and molecular mechanisms associated with neuronal cy-
tolysis underlying pediatric OMS remain unclear.

Microglias are major immune effectors in the central
nervous system (CNS) and have an important physio-
logical function in inflammation [8]. Notably, patients
with pediatric OMS exhibit increased expression of a
microglial marker and proinflammatory cytokines in cere-
brospinal fluid (CSF) and some children with OMS are
post-infectious [9-11]. Furthermore, serum IgG or auto-
antibody existed in patients enhances microglial activation
in Parkinson disease (PD) [12], amyotrophic lateral scler-
osis (ALS) [13], and systemic lupus erythematosus (SLE)
[14-16]. Thus, it is reasonable to hypothesize that serum
IgG from children with OMS and NB may impact the ac-
tivation of microglia.

Activated microglias release various neurotoxic mole-
cules [8, 17], causing the loss of neurons in neurodegener-
ative diseases [18—20]. We and others have revealed the
cytolysis of cultured cerebellar and cerebral neurons by
sera or IgG from patients with pediatric OMS and NB [6,
7]. Additionally, activated microglias can synthesize and
release nitric oxide (NO), which can activate soluble gua-
nylyl cyclase (sGC) and protein kinase G (PKG) in
neurons, thereby contributing to neuronal death by

mitochondrial dysfunction [21, 22] and increased neuronal
susceptibility to mitochondrial dysfunction [23]. However,
whether the cytolysis of neurons can be induced by acti-
vated microglias in children with OMS and NB via the
NO/sGC/PKG cascade is still unknown.

Here, we found that sera or serum IgG from children
with OMS and NB induces the activation of cultured
cerebral cortical and cerebellar microglias, but not astro-
cytes. The cytolysis of neurons is exerted by conditioned
media from microglias treated with IgG from children
with OMS and NB. Furthermore, the NO/sGC/PKG
pathway contributes to neuronal cytolysis induced by
conditioned media, and neuronal cytolysis can be almost
completely suppressed by pretreatment with the micro-
glial inhibitor minocycline, a clinically tested drug. Fi-
nally, increased microglial activation may depend on the
Fc fragment of serum IgG rather than the Fab fragment.
Our results suggest that serum IgG from children with
OMS and NB increases the activation of cultured micro-
glias, leading to the upregulation of NO, which subse-
quently activates sGC and PKG in neurons, thereby
inducing neuronal cytolysis. These results also suggest
that the microglial inhibitor, such as minocycline, may
serve as a plausible therapeutic candidate.

Methods

Subjects

Enrolled participants

This project was reviewed and approved by the Ethics
Committees of Beijing Children’s Hospital, Capital Med-
ical University (No. IEC-C-028-A10-V.05). Parents of
participants signed written informed consent. Children
were enrolled between January 2015 and December 2019
from Beijing Children’s Hospital using internationally
accepted diagnostic criteria for OMS [24] and they were
Han Chinese. Ten children with OMS and NB were col-
lected (OMS + NB). Control groups were 20 children
with NB without OMS (NB), 10 age- and sex-matched
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healthy children (healthy control), 10 children with ju-
venile idiopathic arthritis (JIA) to reveal whether the ef-
fects on microglias are common to all IgG-related
diseases, and 6 children with anti-N-methyl-p-aspartate
receptor (NMDAR) encephalitis to investigate whether
the effects on microglias are common to all
autoantibody-mediated disorders of the CNS. Two indi-
viduals in the OMS + NB group, 3 individuals in the NB
group, and all the individuals in the anti-NMDAR en-
cephalitis were newly collected, while the rest subjects
were previously described in our another study [6].

Clinical information

Demographic and clinical information is shown in
Table 1. The age and gender of 5 groups, as well as
the tumor stage of the NB and OMS + NB groups,
were not statistically different. The age of subjects
was at the time of our study, and thus, it may be
older than the age of onset. Although a higher female
sex ratio of approximately 1.2 was already evident in
toddlers with OMS [2-4], only 10 children with OMS
and NB in our study may not enough to reflect the
gender difference, and other literatures with a small
sample size also showed much lower (2 females/3
males) [25] or higher ratios (9 females/2males, 11 fe-
males/4 males) [7, 26]. Moreover, the age and gender
of subjects may be affected by whether timely visiting
to hospitals, misdiagnosis as other diseases before,
genetic background, or willingness to enroll in the
study. All the children in the JIA group had systemic-
onset JIA. Electroencephalogram (EEG) results of chil-
dren with OMS were clinically normal, while EEG
results of all the children with anti-NMDAR enceph-
alitis were abnormal. All the blood samples of the NB
and OMS + NB groups were recruited before surgery
for NB, and most of the blood samples were recruited

Table 1 Demographic and clinical data
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before any treatment. After collection, sera were
stored at — 80°C.

According to the criteria for evaluating OMS [1], the
degree of ataxia, opsoclonus, ataxia/gait, ataxia/stance,
and mood/sleep disturbance of patients with OMS was
graded from 0 to 3 and summarized into OMS score in
Table 2. The frequency of symptoms was similar to a
previous report [4].

Purification of IgG and preparation of the Fab fragment
As we previously used [6], 100 pl of protein G agaroses
(Thermo Fisher Scientific, Sunnyvale, CA, USA) were
applied to sera. The IgG-free fraction of sera in superna-
tants was collected after centrifugation at 10000 g for 10
min. The IgG fraction of sera was eluted by 0.1 M
glycine-HCl (pH 2.7) after washing with 0.01 M phos-
phate buffer saline (PBS), and then neutralization buffer
was added. The BCA assay (Pierce, Rockford, IL, USA)
was applied to determine IgG concentration.

The Fab fragment of IgG was prepared by enzymatic
digestion [16]. Pepsin (Sigma-Aldrich, St. Louis, MO,
USA) was mixed with IgG at a ratio of 1:20 and then
incubated at 37 °C for 6 h. The pH of solution was ad-
justed to 7.4 to stop the digestion. HiTrap Protein G HP
columns (GE Healthcare, Freiburg, Germany) and Ami-
con Ultra-15 centrifugal filters (Merck Millipore, Biller-
ica, MA, USA) were used to obtain the Fab fragment.

Primary cultures of microglias or astrocytes separately

Primary cultures of microglias [27] or astrocytes [28]
were prepared as previously described. Sprague Dawley
rats at postnatal day 1 were used, which were provided
by the Department of Experimental Animal Sciences,
Capital Medical University (Beijing, China). The cerebral
cortex and cerebellum were cut and digested in 0.1%
trypsin at 37°C for 20min, and then, tissues were

n  Age enrolled in our study Gender (female/  Tumor Treatment before serum collection
(month) male) stage

Healthy children 10 419+17 5/5 - -

NB 20 445+ 64 9/ l: 4 13 children: no treatment
I 9 7 children: chemotherapy, receiving vincristine,
ll: 6 cyclophosphamide, adriamycin, etoposide,
Vi1 and cisplatin

OMS + NB 10 356+99 5/5 I3 8 children: no treatment
Il 4 1 child: steroid
M 3 1 child: intravenous immune globulin
V: 0

Juvenile idiopathic arthritis 10 408 + 105 6/4 - 6 children: no treatment

(JIA) 3 children: nonsteroidal anti-inflammatory drugs

1 child: received steroid
Anti-NDMAR encephalitis 6 543+99 4/2 - 2 children: no treatment

4 children: steroid and intravenous immune
globulin
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Table 2 OMS scores of children with OMS and NB at the time
of the blood draw

Symptom Number of children %
Grade 0 Grade 1 Grade 2 Grade 3
Opsoclonus 1 4 1 4 90
Myoclonus 3 5 2 0 70
Ataxia/gait 4 4 2 0 60
Ataxia/stance 6 4 0 0 40
Mood/sleep disturbance 5 5 0 0 50

triturated gently. After filtration through a 30-pm cell
drainer (BD Biosciences Discovery Labware, Bedford,
MA, USA), cell suspensions were centrifuged at 1500
rpm for 5min and resuspended in Dulbecco’s modified
Eagle’s medium (Life Technologies, Rockville, MD, USA)
with 10% inactivated low-endotoxin fetal bovine serum.

For primary culture of microglias, mixed glial cultures
were shaken at 200 rpm for 2 h after seeding onto lysine-
coated dishes for 7 days. After pelleting, floating cells
were subcultured at 3.0 x 10° cells/2000 pul medium/well
in 6-well plates or at 1.0 x 10* cells/200 pl medium/well
in 96-well plates. One day after subculture, the medium
was fully replaced by macrophage serum-free medium.
Cells were used 2 days later.

For primary culture of astrocytes, mixed glial cultures
were shaken at 200 rpm for 2 h after seeding onto dishes
for 10 days. Adherent cells were trypsinized (0.05%) and
subcultured at 3.0 x 10° cells/2000 ul medium/well in 6-
well plates with glial culture medium. One day after sub-
culture, plates were manually shaken for 1 min and the
medium was fully replaced with glial culture medium.
Cells were used 7—10 days later.

Primary culture of neurons

Primary culture of neurons was carried out according to
methods previously described [6]. The cerebral cortex
and cerebellum of Sprague Dawley rats (16 to 18 days
old) were used. Notably, 24h after seeding neurons,
cytosine arabinoside at 10 uM was added to suppress
glial proliferation and prepare neuron-enriched cultures.

Treatment of sera, IgG, or chemicals

Microglias or astrocytes incubated with sera or IgG

As we used previously [6], the culture medium of micro-
glias or astrocytes was replaced with a fresh medium
containing sera or IgG from children (6-well plates in a
2000-pl volume: 40 pl sera of children, 1:50 diluted;
100-200 pg IgG; 1000-1400 pg the IgG-free fraction; 96-
well plates in a 200-ul volume: 4 pl sera of children, 1:50
diluted; 10-20 pg IgG). Microglias or astrocytes were in-
cubated with sera or IgG for 48h before performing
further assays, such as ELISA, or getting conditioned
media. To explore whether increased microglial
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activation is simply induced by higher concentration of
IgG, commercially available human IgG (Sigma-Aldrich)
was dissolved in normal saline and was added into each
well with the medium at the final concentration of
0.1 ug/pl and the highest concentration in the OMS +
NB group. Each serum or IgG of an individual parallelly
treated 3 wells of glial cells. Cluster of differentiation
11b (CD11b) is a marker of microglial activation. Micro-
glias to examine the expression of CD11b and condi-
tioned media to detect cytokines or neuronal cytolysis
were got from the same well.

Neurons incubated with conditioned media

In order to avoid the direct effects of serum IgG on neu-
rons [6], instead of co-culture of microglias and neurons
and treating both kinds of cells with IgG at the same
time, here we cultured microglias or neurons separately.
IgG from children was added into the culture media of
microglias to collect conditioned media, and then, con-
ditioned media were filtered with protein G agarose to
get the IgG-free fraction. Finally, the culture media of
neurons were replaced with IgG-free conditioned media
from microglias. This method has been used before [29].

Microglias or neurons treated with chemicals

To investigate the role of NO and its intracellular cascade
in neuronal cytolysis, the NO synthesis inhibitor 7-
nitroindazole (7-NINA) was added into the media of
microglias 30 min before treatment with the IgG fraction,
whereas the sGC inhibitor 1H-1,2,4 oxadiazolo-4,3-a
quinoxalin-1-one (ODQ) or the PKG inhibitor Rp-8Br-
PET-cGMP (the inhibitor of both PKG type I and type II)
(all from Tocris Biosciences, Bristol, UK) was added into
the culture media of neurons 30 min before the replace-
ment of conditioned media from microglias. While 7-
NINA or Rp-8Br-PET-cGMP was dissolved in normal
saline and added into the medium to make a final concen-
tration of 10 pM or 1 uM, ODQ was dissolved in 5% di-
methyl sulfoxide (DMSO, Sigma-Aldrich) at a final
concentration of 10 uM.

Moreover, pharmacological activators of the NO signal-
ing pathway were also tested. The NO-donor S-nitroso-N-
acetylpenicillamine (SNAP) was added into the media of
microglias 30 min before treatment of IgG from children,
while the sGC activator 3-5-hydroxymethyl-2-furyl-1-ben-
zyl-indazole (YC-1) or the PKG activator 8Br-cGMP (the
activator of both PKG type I and type II) (all from Tocris
Biosciences) was added into the culture media of neurons
30 min before the replacement of IgG-treated microglia
conditioned media. Whereas SNAP or YC-1 was dissolved
in 5% DMSO and added into the medium at 100 pM or
1 uM, 8Br-cGMP was dissolved in normal saline at a final
concentration of 1 uM. The final concentration of DMSO
was 0.01%. Additionally, minocycline (Sigma-Aldrich), an
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inhibitor of microglial activation, was given 30 min before
SNAP or IgG from children. Minocycline was dissolved in
normal saline and added into the medium at 20 uM.

Recombinant IL-1pB, IL-6, TNF-a, or MCP-1 (all from
R & D Systems, Minneapolis, MN, USA) was used 30
min before the replacement of neuronal medium. Cyto-
kines were dissolved in 0.01 M PBS containing 0.1% bo-
vine serum albumin (BSA) and were added into the
culture medium of neurons at 100 pg/ml, 100 pg/ml, 80
ng/ml, and 20 ng/ml, respectively. The concentrations of
inhibitors, activators, and recombinant cytokines were
selected based on previous studies [23, 30].

To investigate the role of IGF/PI3K signaling in neur-
onal cytolysis, recombinant IGF-1 (R & D Systems) was
added into the culture media of neurons 30 min before
the replacement of conditioned media from microglias.
IGEF-1 was dissolved in 0.01 M PBS and was added at the
final concentration of 10nM. To detect the effects of
PI3K on neuronal cytolysis, the PI3K inhibitor LY294002
(Sigma-Aldrich) was added into the culture media of
neurons 30 min before IGF-1. LY294002 was dissolved
in 5% DMSO and was added at the final concentration
of 20 uM.

Enzyme-linked immunosorbent assay (ELISA)

Cultured microglias, astrocytes, or neurons were lysed in
RIPA buffer (KeyGen Biotechnology, Nanjing, China)
after washing by PBS. Commercially available ELISA kits
were applied to explore the expression of CDI11b
(Cloud-Clone, Houston, TX, USA) in microglias, glial fi-
brillary acidic protein (GFAP) (Abcam, Cambridge, MA,
USA) in astrocytes, and PI3K (CUSABIO, Wubhan,
China) [6] in neurons. The concentrations of CD11b,
GFAP, and PI3K were normalized to the amount of total
protein, which was detected at the same time as ELISA
using the BCA protein assay kit.

Moreover, the culture medium of microglias was used
to assess the concentrations of proinflammatory cyto-
kines IL-1B (Bio-Swamp, Wuhan, China), IL-6 (Promo-
cell, Heidelberg, Germany), TNF-a (Abcam), and MCP-
1 (Abcam) by commercially available ELISA kits follow-
ing manufacturer’s instructions.

Nitrite assay

To calculate the concentration of NO in the culture
medium of microglias, nitrite was measured, which is a
product resulting from the reaction of NO with molecu-
lar oxygen. Briefly, 50 ul of cell culture media and an
equal volume of Griess reagent (0.1% naphtyletylenedia-
mine dihydrochloride, 1% sulphanilamide, 2.5% phos-
phoric acid, Sigma-Aldrich) were added in 96-well
plates. The absorbance at 550 nm was determined, and
standard curves with sodium nitrite (NaNO,, Sigma-
Aldrich) were generated [27].
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Cytolysis assay

Cytoplasmic lactate dehydrogenase (LDH), an indicator
of plasma membrane-damaged cells, was measured by
the cytotoxicity detection kit (Roche, Indianapolis, IN,
USA) [6]. Cytolysis of neurons or microglias was de-
tected using the same method. Briefly, 100 pl of culture
supernatants of neurons or microglias was mixed with
an equal volume of reaction mixture followed by incuba-
tion for 30 min. LDH was detected by the absorbance at
490 nm. Maximum LDH release was induced by 1% Tri-
ton X-100, while the background control was untreated
neurons or microglias. The percentage of specific cytoly-
sis was determined using the following formula: [(experi-
mental value-background control)/(maximum value-
background control)] x 100.

Western blot

To assess the protein expression of CD11b in the cell
membrane, the cell membrane fraction of microglias was
isolated using the plasma membrane protein extraction kit
(Abcam). Protein concentration was determined by the
BCA protein assay kit. After gel electrophoresis, proteins
were transferred to PVDF membranes. PVDF membranes
with the cell membrane fraction were rinsed briefly in dis-
tilled water and stained with Ponceau S solution (Po-S)
(0.5 [w/v] in 1% [v/v] acetic acid) for 2 min, rinsed in dis-
tilled water to remove excess stain, and imaged. Protein
levels were normalized to Po-S as a loading control (100—
140 kDa) [31]. After blocking, rabbit anti-CD11b antibody
(127 kDa, 1:1000, ab133357, Abcam) was incubated at 4 °C
overnight. Following washing, PVDF membranes were
then incubated for 1h at room temperature with HRP-
conjugated secondary antibody. Finally, an enzymatic
chemiluminescence kit (Thermo Fisher Scientific) was
used to visualize protein bands, and the intensity of pro-
tein bands was quantified using Quantity One software
(Bio-Rad, Hercules, CA, USA).

To assess the protein expression of sGC or PKG in
whole-cell lysates, neurons were homogenized in RIPA
buffer. PVDF membranes with whole-cell lysates were
blocked before incubating with rabbit anti-sGC 31 subunit
antibody (70 kDa, 1:1000, G4405, Sigma-Aldrich), rabbit
anti-PKG type I antibody (78 kDa, 1:1000, 3248, Cell Sig-
naling Technology, Danvers, MA, USA), rabbit anti-PKG
type II antibody (87 kDa, 1:1000, SAB4502387, Sigma-
Aldrich), or mouse anti-glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) antibody (40 kDa, 1:5000, ab8245,
Abcam). GAPDH was used as a loading control. Other
steps were the same as described above.

Statistical analyses

All the data were expressed as mean + SEM. Statistical
analyses were carried out using GraphPad Prism version
6.0 software for Windows (GraphPad Software Inc., San
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Diego, CA, USA). One-way analysis of variance
(ANOVA) followed by Dunnett’s multiple comparison
test was used for multiple analyzation. The statistically
significant level was considered at p < 0.05.

Results

The activation of cerebral cortical and cerebellar
microglias is increased by sera or IgG from children with
OMS and NB

Besides the cerebellum, emerging evidence has shown
that the cerebral cortex has structural and functional
changes in OMS patients. First, most OMS patients have
neurological handicaps in cerebral functions, such as
deficits in attention, memory, and language [4, 32]. Sec-
ond, brain imaging of OMS patients shows changes in
the cerebrum. Cerebral cortical thickness is reduced
across the motor and visual areas in patients with
pediatric OMS [33]. A patient with OMS reveals signifi-
cant nodular enhancing lesions at gray—white junction
of bilateral cerebral hemispheres by magnetic resonance
imaging [34]. Another patient shows decreased metabol-
ism in the bilateral occipital lobes and increased func-
tional connectivity, including the primary- and motion-
sensitive visual cortex [35]. Therefore, both cerebral cor-
tical and cerebellar microglias were exposed to sera or
the IgG fraction from children with OMS and NB.

The expression of CD11b, a marker of microglial activa-
tion, was upregulated in cerebral cortical microglias incu-
bated with sera from children with OMS and NB (3.41 +
0.32 ng/mg total protein OMS + NB, 0.99 + 0.09 ng/mg
total protein NB, 1.09 + 0.12 ng/mg total protein healthy
control, p < 0.001 vs NB, p < 0.001 vs healthy control),
whereas CD11b concentration was not statistically chan-
ged by sera of children with only NB at least under our ex-
perimental conditions (Fig. la). Moreover, IgG isolated
from sera upregulated CD11b expression from 0.91 *
0.10 ng/mg total protein in the NB group and 0.88 + 0.07
ng/mg total protein in the healthy control group to 2.95 +
0.23 ng/mg total protein in the OMS + NB group (p <
0.001 vs NB, p < 0.001 vs healthy control, Fig. 1c). With
respect to cerebellar microglias, the concentration of
CD11b was also increased after incubation with sera or
IgG from the OMS + NB group compared with those
from the NB or healthy control group (Fig. 1b, d). How-
ever, neither commercially available human IgG nor IgG
from children with JIA or anti-NMDAR encephalitis had a
significant impact on the concentration of CD11b (Fig. 1c,
d), suggesting that upregulation of CD11b induced by
serum IgG from children with OMS and NB is not simply
induced by increased dose of IgG, is not common to all
diseases with IgG, and is not common to all autoantibody-
mediated disorders of the CNS. In addition, no alteration
of CD11b concentration was observed after treatment
with the IgG-free fraction (Fig. 1e, f), which suggested that
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the upregulation of CD11b induced by sera mainly de-
pends on the IgG fraction. Consistently, the protein ex-
pression of CD11b in the cell membrane fraction was
increased in the cerebral cortical and cerebellar microglias
incubated with OMS + NB IgG (Fig. 1 g, h).

To further investigate the effects of serum IgG from
children with OMS and NB on microglial activation, the
concentrations of proinflammatory cytokines (including
IL-1pB, IL-6, TNF-a, and MCP-1) and NO in the media of
cerebral cortical and cerebellar microglias were detected
by ELISA. The releases of IL-1f, IL-6, TNF-a, and MCP-1
from cerebral cortical microglias exposed to OMS + NB
sera were elevated (IL-1(3: 1054 + 10.48 pg/ml OMS +
NB, 43.99 + 4.29 pg/ml NB, 39.83 + 5.64 pg/ml healthy
control, p < 0.001 vs NB, p < 0.001 vs healthy control; IL-
6: 107.8 + 11.20 pg/ml OMS + NB, 61.61 *+ 3.67 pg/ml
NB, 49.11 + 5.53 pg/ml healthy control, p < 0.01 vs NB, p
< 0.001 vs healthy control; TNF-o: 169.1 + 14.32 pg/ml
OMS + NB, 100.3 + 9.15pg/ml NB, 90.24 + 6.76 pg/ml
healthy control, p < 0.001 vs NB, p < 0.001 vs healthy con-
trol; MCP-1: 294.1 + 9.30 pg/ml OMS + NB, 181.7 + 7.93
pg/ml NB, 184.7 + 9.59 pg/ml healthy control, p < 0.001
vs NB, p < 0.001 vs healthy control), whereas the incuba-
tion with NB sera had no such effect (Fig. 2al). Further-
more, the levels of IL-1pB, IL-6, TNF-a, and MCP-1
secreted from cerebral cortical microglias were increased
to 109.6 + 12.09 pg/ml, 133.2 + 11.28 pg/ml, 225.3 + 9.84
pg/ml, and 324.2 + 6.68 pg/ml after incubation with OMS
+ NB IgG (p < 0.001 vs NB, p < 0.001 vs healthy control,
Fig. 2b1). In cerebellar microglias, similar impacts of sera
and IgG were observed (Fig. 2c1, d1). Consistent with the
results of cytokines, NO expression was also improved in
the media of cerebral cortical microglias (Fig. 2a2, b2) and
cerebellar microglias (Fig. 2c2, d2) treated with OMS +
NB sera or IgG. Together with the expression of CD11b,
these results suggested that the activation of cultured
cerebral cortical and cerebellar microglias was upregulated
by serum IgG from children with OMS and NB.

In order to explore whether serum IgG-enhanced acti-
vation is specific to microglias or common to glial cells
in the CNS, we detected the activation of cerebral cor-
tical and cerebellar astrocytes. Using the marker of
astrocytic activation, we found that the expression of
GFAP was not significantly changed in cerebral cortical
astrocytes (Fig. 3a, c) and cerebellar astrocytes (Fig. 3b,
d) incubated with sera or IgG from the OMS + NB
group compared with those from the NB group and
healthy control group at least under our experimental
conditions, suggesting that the enhancement of activa-
tion induced by IgG from children with OMS and NB is
specific to microglias, but not astrocytes.

Previously, we have revealed that serum IgG from children
with OMS and NB induces cytolysis in cultured neurons [6],
whether serum IgG impacts the cytolysis of microglias or
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astrocytes needs further study. We observed that neither the
cytolysis of cerebral cortical microglias (Fig. 4a, ¢) and cere-
bellar microglias (Fig. 4b, d) treated with OMS + NB sera or

IgG, nor the cytolysis of cerebral cortical astrocytes (Fig. 4e,
g) and cerebellar astrocytes (Fig. 4f, h) treated with OMS +
NB sera or IgG was statistically changed, which suggested
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only NB had no such effect (a-d). “p < 0.01, "p < 0.001, one-way ANOVA,

18, IL-6, TNF-a, and MCP-1 were raised in the media of cerebral cortical microglias (@1, b1) and cerebellar microglias (c1, d1) treated with sera or
IgG in the OMS + NB group; consistently, the expression of nitric oxide (NO) was also enhanced in the media of cerebral cortical microglias (a2,
b2) and cerebellar microglias (€2, d2) treated with sera or IgG in the OMS + NB group, whereas incubation with sera or IgG from children with

MCP-1

cortical and cerebellar microglias. Note that the concentrations of IL-

n =10 (health control), n = 20 (NB), n = 10 (OMS + NB)

that preincubation with sera or IgG from children with OMS
and NB specially upregulates microglial activation rather
than the cytolysis of microglias and astrocytes at least under
our experimental conditions.

The cytolysis of neurons is induced by conditioned media
from microglias treated with OMS + NB IgG

It has been established that activated microglias contrib-
ute to neuron death by secreting various neurotoxic
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molecules in multiple disorders [8, 17] and serum IgG
from patients with OMS and NB enhances neuronal
death [6, 7, 36], we therefore explored whether neuronal
cytolysis is enhanced by microglial activation in OMS.
After getting rid of the remaining IgG, serum IgG-
treated microglia conditioned media were collected and
were replaced the culture media of neurons. As ex-
pected, incubation with conditioned media from cerebral
cortical and cerebellar microglias increased the cytolysis
of neurons in the same brain regions (cerebral cortical
neuron: 31.95 £ 1.09% OMS + NB, 1345 = 1.12% NB,
14.53 + 1.08% healthy control; cerebellar neuron: 31.21
+ 1.25% OMS + NB, 10.50 + 1.27% NB, 12.75 + 1.34%
healthy control; p < 0.001 vs NB, p < 0.001 vs healthy
control, Fig. 5a, b). Moreover, conditioned media from
cerebral cortical microglias to cerebellar neurons or the
exchanged situation had similar results (cerebral cortical
neuron: 25.67 + 2.71% OMS + NB, 9.00 + 1.21% NB,
9.85 + 1.95% healthy control; cerebellar neuron: 27.24 +
2.55% OMS + NB, 11.79 + 1.06% NB, 10.03 + 2.86%

healthy control; p < 0.001 vs NB, p < 0.001 vs healthy
control, Fig. 5c, d). Conversely, we observed no alter-
ation in the cytolysis of neurons treated with conditional
media from astrocytes (Fig. 5e, f). Taken together, these
results suggested that conditioned media from cerebral
cortical or cerebellar microglias rather than astrocytes
induce the cytolysis of neurons.

NO/sGC/PKG signaling contributes to conditioned media-

induced neuronal cytolysis

To investigate the mechanisms of cytolysis induced by
conditioned media from microglias treated with OMS +
NB IgG, we focus on the NO/sGC/PKG pathway, for its
role in neuronal death is well documented [21-23] and
the production of NO from microglias was raised in the
OMS + NB group (Fig. 2a2—-d2). We first examined the
alterations of sGC and PKG abundance. Enzymatic activ-
ity of sGC needs its B subunit, and although two types of
[ subunit (B1 and B2) have been cloned, only 1 subunit
has been shown to exist at the protein level in the brain



Ding et al. Journal of Neuroinflammation (2020) 17:190

Page 10 of 21

Cerebral cortical microglia

A . Sera
—~ 30
B
@2 200 9 oee .
» e} (XY ]
> XY [
g 10 ¥ —E=- —%‘;ﬂ—
3 %00 ° °
o-
-10 T T T
Healthy control NB OMS+NB

(@)

40- IgG from sera

304
204

104

Cytolysis (%)

Healthy control NB OMS+NB

E ,. Sera

304

Cytolysis (%)

Cerebral cortical astrocyte

Health'y control N'B

_lgG from sera

40

= 30 - 30
g g

0 20 o @ 204
2 o0 [

o 101 o 104
3 000° s

o
O o O o
-10 -10

Cerebellar microglia

B . Sera
~ 301
S
£ 204
s S
o 104
P
> 0g0®
O o
-10 T T T
Healthy control NB OMS+NB
D 4o, '9Gfromsera
— 30'
X2 o
8 207
(7
>
) 10+
>
O
- T T T
Healthy control NB OMS+NB
Cerebellar astrocyte
F 4. Sera
30

n
<

Cytolysis (%)
2
}}{
[o]
o

OMS+NB

Healthy control NB

H _lgG from sera

Healthy control NB OMS+NB

Fig. 4 The cytolysis of cerebral cortical and cerebellar glial cells incubated with OMS + NB sera or IgG. Note that neither the cytolysis of cerebral
cortical and cerebellar microglias treated with sera (a, b) or IgG (¢, d) from patients with pediatric OMS and NB, nor the cytolysis of cerebral
cortical and cerebellar astrocytes treated with sera (e, f) or IgG (g, h) from patients with pediatric OMS and NB was statistically influenced at least
under our experimental design. p > 0.05, one-way ANOVA, n = 10 (health control), n = 20 (NB), and n = 10 (OMS + NB)

Healthy control NB OMS+NB

[37]. Two types of PKG (PKG I and PKG II) have been
identified in mammalian tissues, both are related to cell
apoptosis, proliferation [38, 39], and brain function [40,
41]. Our results showed that the protein expression of
B1 subunit of sGC was upregulated in cerebral cortical
and cerebellar neurons after incubation with conditioned

media of the OMS + NB group (cerebral cortical neuron:
1.54 + 0.08 OMS + NB, 0.76 + 0.03 NB, 0.72 + 0.06
healthy control, p < 0.001 vs NB, p < 0.001 vs healthy
control; cerebellar neuron: 1.56 + 0.10 OMS + NB, 0.76
+ 0.05 pg/ml NB, 0.77 + 0.06 pg/ml healthy control, p <
0.001 vs NB, p < 0.001 vs healthy control; Fig. 6a, b),
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J

and the expression of PKG I and PKG II was also in-
creased (Fig. 6¢—f).

Next, the effects of inhibitors of NO synthesis and
NO-activated intracellular pathway were assessed. Pre-
treatment with the NO synthesis inhibitor 7-NINA to
microglias before OMS + NB IgG alleviated the cytolysis
of cerebral cortical and cerebellar neurons (cerebral cor-
tical neuron: 6.50 + 1.46% 7-NINA, OMS + NB vs 2691
+ 1.45% saline, OMS + NB, p < 0.001; 26.91 + 1.45% sa-
line, OMS + NB vs 8.36 + 1.10% saline, NB, p < 0.001;
cerebellar neuron: 11.30 + 3.14% 7-NINA, OMS + NB vs
28.72 + 243% saline, OMS + NB, p < 0.001; 28.72 +
2.43% saline, OMS + NB vs 11.50 + 1.83% saline, NB, p
< 0.001; Fig. 7a, b). Similarly, pretreatment with the sGC

inhibitor ODQ or the PKG inhibitor Rp-8Br-PET-cGMP
ameliorated the cytolysis of cerebral cortical and cerebel-
lar neurons (Fig. 7c—f).

Furthermore, the effects of activators of NO synthesis
and NO-activated intracellular pathway were examined.
The cytolysis of cerebral cortical neurons was exagger-
ated after incubation with conditioned media from
microglias pretreated with the NO-donor SNAP 30 min
before OMS + NB IgG (45.05 + 1.74% SNAP, OMS +
NB vs 26.09 + 2.08% DMSO, OMS + NB, p < 0.001;
26.09 £ 2.08% DMSO, OMS + NB vs 7.12 = 0.98%
DMSO, NB, p < 0.001; Fig. 8a), and the cytolysis of cere-
bellar neurons was exacerbated by treatment with SNAP
before OMS + NB IgG (51.51 + 2.55% SNAP, OMS +
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NB vs 3527 + 1.87% DMSO, OMS + NB, p < 0.001;
3527 + 1.87% DMSO, OMS + NB vs 8.06 + 1.21%
DMSO, NB, p < 0.001; Fig. 8b). Pretreatment with the
activator of sGC or PKG, namely YC-1 or 8Br-cGMP,
also exacerbated cerebral cortical and cerebellar neur-
onal cytolysis induced by conditioned media from

microglias stimulated with OMS + NB IgG (Fig. 8c—f).
In addition, pretreatment with minocycline, an inhibitor
of microglia, almost completely blocked the exacerbatory
effects of these abovementioned activators and neuronal
cytolysis induced by IgG-treated microglia conditioned
media (Fig. 8a—f). Collectively, these results suggested
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Fig. 7 The alleviation of neuronal cytolysis by pretreatment with pharmacological inhibitors of the NO cascade. Note that the cytolysis of cerebral
cortical neurons (a) and cerebellar neurons (b) induced by conditioned media from microglias treated with OMS + NB IgG was relieved by the
NO synthesis inhibitor 7-NINA, the cytolysis of cerebral cortical neurons (c) and cerebellar neurons (d) was reduced by the sGC inhibitor ODQ,
and the cytolysis of cerebral cortical neurons (e) and cerebellar neurons (f) was abrogated by Rp-8Br-PET-cGMP, an inhibitor of PKG. wp < 0.001,
one-way ANOVA, n = 20 (vehicle, NB; inhibitor, NB), n = 10 (vehicle, OMS + NB; inhibitor, OMS + NB)

that the NO/sGC/PKG cascade plays a vital role in neur-
onal cytolysis induced by conditioned media from micro-
glias treated with serum IgG from children with OMS and
NB, which depends on the activation of microglias.

The expression of proinflammatory cytokines in the
culture medium of microglias incubated with OMS +
NB IgG (Fig. 2al-d1) and in CSF of OMS children [10]
were upregulated, which raises the possibility that cyto-
kines may have similar effects on neuronal cytolysis. Un-
expectedly, our results showed that the cytolysis of

cerebral cortical and cerebellar neurons induced by con-
ditioned media from microglias preincubated with OMS
+ NB IgG was not influenced by IL-1 (cerebral cortical
neuron: 32.89 + 1.70% IL-1B, OMS + NB vs 33.23 +
1.37% 0.1% BSA, OMS + NB, p > 0.05; 33.23 + 1.37%
0.1% BSA, OMS + NB vs 10.65 + 1.76% 0.1% BSA, NB, p
< 0.001; cerebellar neuron: 27.55 + 2.32% IL-1p, OMS +
NB vs 31.26 + 1.88% 0.1% BSA, OMS + NB, p > 0.05;
31.26 + 1.88% 0.1% BSA, OMS + NB vs 11.48 + 1.39%
0.1% BSA, NB, p < 0.001; Fig. 9a, b). Also, enhanced
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Fig. 8 The exaggeration of neuronal cytolysis by pretreatment with pharmacological activators of the NO pathway. Note that the cytolysis of cerebral cortical
neurons (@) and cerebellar neurons (b) induced by conditioned media from microglias treated with OMS + NB IgG was exacerbated by the NO-donor SNAP,
and the cytolysis of cerebral cortical neurons (c) and cerebellar neurons (d) was also upregulated by YC-1, an activator of sGC. Similarly, the PKG activator 8Br-
cGMP had exaggerated effects on the cytolysis of cerebral cortical neurons (e) and cerebellar neurons (f). The exaggerated effects of SNAP, YC-1, or 8Br-cGMP
and neuronal cytolysis induced by conditioned media were suppressed by pretreatment with minocycline, an inhibitor of microglias @f). ~p < 0001, one-way
ANOVA, n = 20 (vehicle, NB; activator, NB), n = 10 (vehicle, OMS + NB; activator, OMS + NB; saline, activator, OMS + NB; minocycline, activator, OMS + NB)

cytolysis of cerebral cortical and cerebellar neurons was  The activation of cerebral cortical and cerebellar

not affected by IL-6, TNF-a, or MCP-1 (Fig. 9c-h).
These results suggested that the application of cytokines
does not have similar effects of NO on the cytolysis of
neurons induced by IgG-treated microglia conditioned
media.

microglias may depend on the Fc fragment of serum IgG
rather than the Fab fragment

IgG contains the Fab fragment and the Fc fragment, and
the Fab fragment combines with targeted antigens, while
the Fc fragment interacts with Fcy receptor (FcyR). FcyR
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Fig. 9 The effects of cytokines on neuronal cytolysis induced by conditioned media from microglias. Note that the cytolysis of cerebral cortical
neurons (a) and cerebellar neurons (b) induced by conditioned media from microglias preincubated with OMS + NB IgG was not influenced by
IL-1B, and the cytolysis of cerebral cortical neurons (c) and cerebellar neurons (d) was also not changed by IL-6. Consistently, the cytolysis of
cerebral cortical neurons (e) and cerebellar neurons (f) was not affected by TNF-a, and the cytolysis of cerebral cortical neurons (g) and cerebellar
neurons (h) was not changed by MCP-1. p > 0.05; 0.1% BSA, OMS + NB vs cytokine, OMS + NB. ""p < 0.001; 0.1% BSA, NB vs cytokine, NB. One-
way ANOVA, n = 20 (0.1% BSA, NB; cytokine, NB), n = 10 (0.1% BSA, OMS + NB; cytokine, OMS + NB)

is expressed on the surface of microglias and other im-  microglias. The results showed that the expression of
mune effector cells and mediates immune reactions in ~ CD11b was not significantly changed in cerebral cortical
the brain. In order to explore whether increased micro- and cerebellar microglias incubated with the Fab frag-
glial activation depends on the Fab fragment or the Fc  ment from the OMS + NB group compared with that
fragment of serum IgG, we detected the effects of the from the NB group and healthy control group (Fig. 10a,
Fab fragment on the expression of CD11b in microglias  b). Consistently, the release of NO was not significantly
and the concentration of NO in the culture medium of changed in cerebral cortical and cerebellar microglias
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(Fig. 10c, d). These results suggesting that microglial ac-
tivation induced by IgG from children with OMS and
NB may depend on the Fc fragment of IgG, but not the
Fab fragment.

Discussion

The IgG fraction of sera from children with OMS and NB
gives rise to the activation of cultured cerebral cortical
and cerebellar microglias

Neuroinflammation in the CNS, a dominant physio-
logical function of microglias and astrocytes, is a com-
mon clinical feature in children with OMS [9].
Moreover, the expression of microglial marker soluble
CD14 and proinflammatory cytokines is enhanced in
CSF from patients with pediatric OMS [10, 11]. Add-
itionally, serum IgG from patients or autoantibody
existed in patients directly enhances microglial activation
in PD [12], ALS [13], and SLE [14-16] or initially binds
with astrocytes or neurons and further indirectly affects
microglial activation [42, 43]. Autoantibodies are also
detectable in sera and CSF of children with OMS [25,
26] and may be contained in serum IgG from children
with OMS and NB in our study, although we did not
identify these autoantibodies and autoantibodies include
IgM besides IgG. Thus, we hypothesized that serum IgG
from children with OMS and NB may impact the activa-
tion of microglias. As expected, our results revealed that

sera or IgG from children with OMS and NB upregu-
lated the activation of cultured cerebral cortical and
cerebellar microglias.

Conversely, commercially available human IgG, or
IgG from children with JIA or anti-NMDAR encephal-
itis, had no such effect, suggesting that the upregulation
of microglial activation induced by serum IgG from
children with OMS and NB is not simply induced by
increased dose of IgG, is not common to all [gG-related
diseases, and is not common to all autoantibody-
mediated disorders of the CNS, indicating specific
changes in pediatric OMS at least to some degree. Con-
sistently, we and others found that IgG-induced neur-
onal cytolysis occurs in pediatric OMS rather than
adult OMS [6, 7]. Notably, increased microglial activa-
tion is not specific to only OMS, since previous litera-
tures have documented that serum IgG from patients
with PD [12] or ALS [13] enhances the activation of
microglia and the production of NO, and serum IgG
from patients with SLE induced behavioral changes is
mediated by microglial activation [14—16]. Moreover,
several autoantibodies found in patients with OMS
[44-47] also exist in other diseases, such as autoanti-
body against glycine receptor in progressive encephalo-
myelitis with rigidity and myoclonus [46, 48] or
autoantibody against glutamic acid decarboxylase in
stiff-person syndrome [48].
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Unlike microglial activation, astrocytic activation by
serum IgG from children with OMS and NB was not ob-
served by us, indicating that microglia reactivity may be
a special mechanism. This notion is supported by studies
demonstrating that human immunodeficiency virus in-
fection increases microglial activation but not astrocytic
activation [14], and administration of AMD3100 allevi-
ates the pathology of ALS by decreasing microglial acti-
vation without affecting astrocytes [17]. However, we
cannot completely exclude the role of astrocytes, and
the activation of astrocytes may be improved by condi-
tioned media from microglia treated with serum IgG
from OMS patients rather than direct stimulation by
serum IgG. Furthermore, distinct from the upregulated
cytolysis of neurons [6], we observed that the cytolysis of
microglias and astrocytes by serum IgG from children
with OMS and NB was not changed.

Some cases of pediatric OMS are paraneoplastic and
are associated with NB, although varied percentages
have been reported [1-5]. The remaining cases are be-
lieved to be post-infectious or resulted from NB that has
regressed prior to onset of symptoms [48]. Adults with
non-paraneoplastic OMS have better outcomes with
fewer relapses [47], while children with paraneoplastic
and non-paraneoplastic OMS have no significant differ-
ence in viral-like prodrome and neurological outcome
[1, 49]. However, whether there is a distinction of para-
neoplastic and non-paraneoplastic childhood OMS is
still unclear. Our present and previous studies showed
that microglial activation or neuronal cytolysis can be in-
duced by serum IgG from children with OMS and NB,
but not children with only NB [6], indicating that the
IgG fraction may be involved in the pathogenesis of
OMS rather than NB. However, we did not obtain sera
from children with OMS and without NB; therefore, we
cannot completely exclude the possibility that the cyto-
toxicity induced by serum IgG from children with OMS
and NB may be synergistic effects of OMS and NB.

The NO/sGC/PKG pathway takes part in neuronal cytolysis
induced by conditioned media from microglias treated
with IgG from children with OMS and NB

A growing body of evidence implicates that microglias in
the active state can release various neurotoxic molecules
[8, 17], causing the loss of neurons in neurodegenerative
diseases, including Alzheimer’s disease [18], ALS [20],
and retinal degeneration [19]. Moreover, we and others
have previously demonstrated that sera or IgG from pa-
tients with pediatric OMS and NB induces the cytolysis
of cerebellar granular and cerebral cortical neurons [6,
7]. Consistently, here our results showed that neuronal
cytolysis was elevated by conditional media from micro-
glias treated with IgG from children with OMS and NB.
Notably, conditioned media from microglias were

Page 17 of 21

applied to cultured neurons instead of co-culture of
microglias and neurons, and conditioned media were
used to cultured neurons after IgG were filtered out, to
avoid the direct effects of serum IgG on neurons [6].

NO, synthesized and released by activated microglias,
can activate sGC and PKG in neurons, leading to neur-
onal death by mitochondrial dysfunction [21, 22] and in-
creased neuronal susceptibility to mitochondrial
dysfunction [23], which is similar to its function in pan-
creatic tissues [49]. On the other hand, exposure to NO
has anti-apoptotic function through sGC and PKG in
both neuronal and myocardial tissues [50, 51], and the
opposite influences of NO intracellular signal may be
caused by the way (transient or sustained) and concen-
tration of NO, as well as cell type. In the present study,
our results showed the NO/sGC/PKG cascade was a
positive regulator of neuronal cytolysis induced by con-
ditioned media from microglias treated with IgG from
children with OMS and NB.

Previously, we have documented that IGF-1/PI3K sig-
naling is activated as a compensative mechanism to alle-
viate neuronal cytolysis directly induced by IgG from
sera of children with OMS and NB [6]. Here, we found
that the concentration of PI3K was elevated in cerebral
cortical and cerebellar neurons incubated with condi-
tioned media from microglias treated with IgG from
children with OMS and NB. We also found that exogen-
ous IGF-1 alleviated the cytolysis of neurons incubated
with conditioned media, which was attenuated by the
PI3K inhibitor (see Additional file 1: Figure S1). These
results indicated that IGF-1/PI3K signaling may be com-
pensatively activated to alleviate neuronal lysis induced
by IgG through microglias, which is similar to the direct
effects of IgG on neuronal lysis. Taken together, IgG
from children with OMS and NB increases the activation
of microglias, leading to the upregulation of NO, which
subsequently activates sGC and PKG in neurons to in-
duce neuronal lysis, at the same time IGF-1/PI3K signal-
ing may be compensatively activated to alleviate
neuronal lysis; however, the role of NO and its intracel-
lular cascade seems to be more predominant (Fig. 11).

Interestingly, our results showed that neuronal cytoly-
sis induced by conditioned media from microglias via
NO was almost completely attenuated by the inhibitor
of microglia, minocycline. Minocycline has been clinic-
ally used for treating infections as an antibiotic, provid-
ing a systemic anti-inflammatory effect. Moreover, it
produces the anti-inflammatory response in the CNS via
microglias and has neuroprotective properties in neuro-
degenerative diseases, mental illnesses, and others [52—
56]. In particular, minocycline delays motor alterations,
inflammation, and apoptosis in experimental models of
PD and ALS [56]. Although there are controversies
about its efficacy, the relative safety and tolerability of
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minocycline have led to the launching of various clinical
trials; for instance, it may be a possible treatment for pa-
tients with acute ischemic stroke [52, 53]. Thus, the ad-
ministration of minocycline might be an efficient way to
treat pediatric OMS.

Although we found that proinflammatory cytokines,
namely IL-1p, IL-6, TNF-a, and MCP-1, were elevated
in the media of microglias treated with IgG from pa-
tients with pediatric OMS and NB, and others reported
that IL-6 in CSF of untreated OMS patients and IL-1 re-
ceptor antagonist in CSF of intravenous immune
globulin-treated OMS patients are upregulated [10], the
cytolysis of cerebral cortical and cerebellar neurons in-
duced by conditioned media from microglias preincu-
bated with serum IgG was not influenced by these
proinflammatory cytokines, indicating a specific effect of
the NO pathway on neuronal cytolysis induced by
microglial activation. Possible explanations are that cyto-
kines secreted from microglias may take part in other
functions rather than neuronal cytolysis, such as the re-
cruitment of immune cells [8], and cytokines enhanced
in patients with OMS may be produced by other cells,
not microglias.

Microglial activation induced by serum IgG from children

with OMS and NB may be through the Fc fragment of IgG
FcyR, expressed on the surface of microglias, interacts
with the Fc fragment of IgG to release proinflammatory
cytokines, thereby mediating immune reactions. Several
previous studies have documented that IgG combines
with FcyR to activate microglias and thus takes part in
many diseases. For example, serum IgG from patients
with PD significantly induces microglial activation via
FcyR in the microglia-supplemented neuronal cultures
[12]. Also, in an in vitro PD model, neuron-derived IgG
activates microglias through FcyR [57]. Moreover, auto-
antibodies can activate microglias through FcyR underlie
the pathogenesis of autoimmune diseases. For instance,
the expression of FcyR crucially contributes to
autoantibody-induced tissue injury in experimental epi-
dermolysis bullosa acquisita, an organ-specific auto-
immune disease [58]. In agreement with these findings,
our results showed that microglial activation may be in-
creased through the Fc fragment of IgG from children
with OMS and NB rather than the Fab fragment of IgG.
Of interest to note is that we found the activation of
microglias was not affected by treatment with



Ding et al. Journal of Neuroinflammation (2020) 17:190

commercially available human IgG, IgG from children
with JIA or anti-NMDAR encephalitis. These findings
are consistent with previous reports that IgG combined
with microglial FcyR can secrete different molecules, ei-
ther proinflammatory or anti-inflammatory, which de-
pends on the origin and content of IgG [12, 57].
Collectively, it is reasonable to speculate that FcyR may
be involved in enhanced microglial activation triggered
by the Fc fragment of serum IgG from children with
OMS and NB.

Conclusions

In the present study, we demonstrated that incubation
with sera or the IgG fraction from children with OMS
and NB upregulates the activation of cultured cerebral
cortical and cerebellar microglias. Furthermore, neuronal
cytolysis is exerted by incubation with conditioned
media from microglias treated with IgG from children
with OMS and NB. In addition, the NO/sGC/PKG path-
way contributes to neuronal cytolysis induced by condi-
tioned media, and neuronal cytolysis can be almost
completely suppressed by pretreatment with the micro-
glial inhibitor minocycline, a clinically tested drug. Fi-
nally, increased microglial activation may depend on the
Fc fragment of serum IgG rather than the Fab fragment.
Our data provide solid evidence that serum IgG from
children with OMS and NB increases microglial activa-
tion, which induces neuronal cytolysis through the NO/
sGC/PKG pathway, suggesting that the inhibitor of
microglia, such as minocycline, may serve as a plausible
therapeutic candidate for pediatric OMS.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512974-020-01839-9.

Additional file 1: Figure S1. Effects of IGF-1/PI3K signaling on the cy-
tolysis of neurons induced by conditioned media. The concentration of
PI3K was increased in cerebral cortical neurons (a) and cerebellar neurons
(b) incubated with conditioned media of the OMS + NB group. The cy-
tolysis of cerebral cortical neurons (c) and cerebellar neurons (d) incu-
bated with conditioned media of the OMS + NB group was alleviated by
exogenous IGF-1, which was suppressed by pretreatment with the PI3K
inhibitor 1Y294002. p < 0.001, one-way ANOVA, n=20 (PBS, NB; IGF-1,
NB), n=10 (PBS, OMS+NB; IGF-1 OMS+NB; DMSO, IGF-1, OMS+NB;
Y294002, IGF-1, OMS+NB).
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