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Abstract

Background: Traumatic brain injury (TBI) occurs in as many as 64–74 million people worldwide each year and
often results in one or more post-traumatic syndromes, including depression, cognitive, emotional, and behavioral
deficits. TBI can also increase seizure susceptibility, as well as increase the incidence of epilepsy, a phenomenon
known as post-traumatic epilepsy (PTE). Injury type and severity appear to partially predict PTE susceptibility.
However, a complete mechanistic understanding of risk factors for PTE is incomplete.

Main body: From the earliest days of modern neuroscience, to the present day, accumulating evidence supports a
significant role for neuroinflammation in the post-traumatic epileptogenic progression. Notably, substantial
evidence indicates a role for astrocytes, microglia, chemokines, and cytokines in PTE progression. Although each of
these mechanistic components is discussed in separate sections, it is highly likely that it is the totality of cellular
and neuroinflammatory interactions that ultimately contribute to the epileptogenic progression following TBI.

Conclusion: This comprehensive review focuses on the neuroinflammatory milieu and explores putative
mechanisms involved in the epileptogenic progression from TBI to increased seizure-susceptibility and the
development of PTE.
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Introduction
Traumatic brain injury (TBI) occurs in as many as 64-74
million people worldwide each year [1]. TBI severity
ranges from mild to severe, and may cause post-
traumatic syndromes, including depression, cognitive,
emotional, and behavioral deficits. TBI may also cause
post-traumatic seizures (PTS), increase seizure
susceptibility and increase the incidence of epilepsy, a
phenomenon known as post-traumatic epilepsy (PTE).
Despite intensive research, biomarkers and treatments

are lacking, as is a clear mechanistic understanding of
the epileptogenic factors that may contribute to the on-
set of PTE.
While injury type and severity appear to partially pre-

dict PTE susceptibility, similar injuries in people do not
always cause PTE [2]. Lesion location may influence the
risk of PTE, as temporal lobe lesions following TBI are
related to both a high incidence of early seizures and
longitudinal development of PTE [3]. Penetrating lesions
in motor areas and the parietal lobe are also associated
with an increased risk of PTE [4]. Importantly, some risk
factors have been suggested to be neuropathologically
relevant in PTE development in humans, such as age,
early seizures after TBI, and trauma severity [5].
Following TBI, a neuroinflammatory response is rap-

idly initiated and mounting evidence from human and
animal studies support a pro-epileptogenic role of the
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neuroinflammatory response in the development of PTE
[6]. In general, following TBI, there is a rapid release of
inflammatory cytokines, chemokines and complement
proteins. This immune response signals a variety of
cellular mediators and also can initiate the acute phase
response [7–13]. Following these signals, astrocytes and
resident microglial cells are induced to become acti-
vated, proliferate, and migrate to the injury site [14, 15].
Peripheral immune cells are also described to infiltrate
into the brain in response to TBI. Once this immune/
neuroimmune response is activated to re-establish tissue
homeostasis, these immune cells remove debris and
identify potentially pathogenic signaling. Interestingly,
while the most intense neuroinflammatory response
occurs relatively early (within hours and days after the
injury), a low-level of neuroinflammation often chronic-
ally persists [14, 16–20]. Both the acute/early and the
chronic neuroinflammation have been implicated in
epileptogenesis, and herein, the evidence for pro-
epileptogenic contributions of neuroinflammation will
be reviewed.
Some of the earliest neuropathological reports recog-

nized that a progressive gliosis at the site of a brain
injury was a major component of the development of an
epileptogenic focus [4, 21]. Accumulating evidence con-
tinues to support glial scarring and other neuroinflam-
matory mechanisms in PTE. In 2004, the founding of
the Journal of Neuroinflammation by Drs. Sue T. Griffin
and Robert E. Mrak, provided a platform that sparked a
reinvigorated focus on mechanisms of neuroinflamma-
tion in neuropathological disorders. To pay tribute to
Dr. Mrak’s role in ushering in a new era of neuroscience,
an overarching review of neuroinflammation following
TBI is discussed, with a specific focus on neuroinflam-
matory mechanisms that can promote seizures, epilepto-
genesis and the development of PTE.

Etiology and incidence of PTE
The incidence of epilepsy is estimated to be approxi-
mately 0.5–2% of the general population. This incidence
rate increases to approximately 5–7% in patients who
experienced a precipitating head injury [22–24] and/or
have been hospitalized for TBI [2, 25, 26]. A greater in-
jury severity has been correlated with a higher PTE risk
[27], and this risk increases up to 10-fold in military pa-
tients with penetrating head wounds. At the extreme,
some estimates have suggested that the incidence of
PTE is greater than 50% following severe penetrating
head injuries [28–30]. Taken together, it is estimated
that as many as 20% of symptomatic epilepsies are
caused by TBI [31], and this population represents the
largest known etiological cause of seizures and epilepsy.
Although early seizures that occur within a week of

TBI can often be effectively managed by typical anti-

seizure medications like levetiracetam and phenytoin
[32], such treatments do not necessarily ameliorate the
risk to develop PTE [33, 34]. Recurrent spontaneous sei-
zures that define PTE are resistant to anti-epileptic treat-
ments in about one-third of patients [34–36], and the
side-effects from anti-epileptic drugs are found to be
more severe in PTE patients [37]. Thus, understanding
the pro-epileptogenic mechanisms of TBI is vital for the
diagnosis and treatment of PTE and for improving
quality-of-life measures in these patients.

Astrocytes and PTE: support cell, inflammatory
mediator, or pathological nexus?
Transformative studies have re-defined the classical role
of astrocytes in the brain. Astrocytes were initially con-
sidered to be primarily support cells [38], sub serving
neuronal function and helping to maintain brain homeo-
stasis. Although there was early recognition of the role
of astrocytes in the response to injury [21], in the de-
cades since, the extensive roles that astrocytes play in
the pathogenic inflammatory response continues to be
appreciated and explored [39]. Thus, it is abundantly
clear, that far from their classification as merely support
cells, astrocytes are actively and directly involved in mul-
tiple aspects of neuronal function.
Astrocytes are the most abundant cell type in the brain

[40] and are now known to be involved in regulating ion
homeostasis, maintaining blood-brain barrier function,
metabolizing neurotransmitters, as well as providing
nutrient and energy support for neuronal function.
Astrocytes are key components in learning and memory,
sleep, and other fundamental brain functions [41, 42]
and are important components of the neuroinflamma-
tory response.
Astrocytes play a key role in regulating neuronal activ-

ity, energizing neuronal metabolism by exchanging neur-
onal pyruvate for astrocytic lactate, and increasing
NADH levels in neurons [43]. Astrocytes are active in
neuronal information processing, and their processes en-
velop thousands of synapses to control neuronal activity
through neurotransmitter uptake and release [41, 42].
Astrocytes also regulate the availability of glutamate and
GABA in the synaptic cleft, thereby modulating synaptic
transmission [44–46]. Thus, there are numerous
mechanisms by which astrocytes might contribute to
post-traumatic epileptogenesis. Here, we focus on those
mechanisms that are related to neuroinflammation.
Astrocyte activation is a major cellular component of

the neuroinflammatory response, and gliosis is com-
monly seen following TBI. Astrocytosis can also occur as
part of the neuroinflammatory response. In post-
mortem TBI human brains, a widespread astrocytosis is
seen at the primary injury site, as well as at ipsilateral
and contralateral brain regions that are distant from the
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initial injury site [47–51]. It is pertinent to note that in
the post-mortem epileptic brain, it is not possible to de-
lineate between seizure-induced gliosis and gliosis that
might be pro-epileptogenic. The fact that similar pat-
terns of gliosis are also observed in numerous animal
models of TBI [14, 35, 52–57] provides an opportunity
for the investigation of potential causal astrocytic mech-
anisms of epileptogenesis.
The astrocytic response to TBI results from neuronal

cell death and axonal degeneration, as well as the associ-
ated rapid release of inflammatory complement system
factors, cytokines, and chemokines from microglia, neu-
rons, and the astrocytes themselves (Fig. 1). Regardless
of the source, this release of cytokines may influence
pathological functioning of the astrocytes, notably as it
pertains to physiological signaling and epileptogenesis.
In a series of important studies, Steinhauser and

colleagues demonstrated that astrocytes are functionally
changed in epileptic brains, such that they exhibit
smaller K+ currents and lose the ability for gap junction
coupling. These physiological changes were postulated
to be a primary causative factor in the development of
epilepsy [59–61]. Astrocyte activation leads to an in-
crease in intracellular calcium concentration and results
in the increase of glutamate release as a gliotransmitter
[62, 63]. This glutamate release promotes neuronal

excitotoxicity and increases the potential to generate sei-
zures. This event appears to involve inflammation-
associated alterations in receptor expression as well as
dysfunctional gap junction coupling [63]. In TBI, one
component of astrocyte activation is the uncoupling of
astrocytic gap junctions [64, 65].
In addition to a role for astrocytic gap junction

uncoupling in seizures, a role for astrocytic Cx43 hemi-
channels was observed for seizures in the pilocarpine
model of epileptogenesis and the 6 HZ corneal kindling
model [66]. Inhibiting the Cx43 hemichannel with
GAP19, a selective hemichannel inhibitor that does not
influence the gap junctions prevented their opening and
decreased seizures [67]. This anti-convulsive effect was
found to be mediated by D-serine because addition of
exogenous D-serine prevented seizure inhibition by
GAP19 [66]. Therefore, the TBI-induced neuroinflam-
matory response may interfere with the ability of astro-
cytes to effectively buffer ions throughout the astrocytic
syncytium, and this dysfunction is likely related to issues
with the astrocytic gap junctions (Fig. 1).
The neuroinflammatory response also induces other

morphological and functional changes to astrocytes, and
some of these mechanisms are related to seizures and
epilepsy. For example, aquaporin-4 function and distri-
bution is known to be altered within the neuroinflam-
matory environment. Aquaporin-4 was also found to be
important for reducing post-traumatic seizure suscepti-
bility in a PTZ second-hit challenge administered 1-
month after TBI. In this study, aquaporin-4-/- mice had
reduced latency to seizure onset and increased seizure
severity [68], suggesting a role for astrocytic aquaporins
in post-traumatic epileptogenesis. In other epilepsy
models, mice lacking aquaporin-4 were found to be
seizure-resistant to PTZ-induced seizures in the absence
of a precipitating TBI [69], suggesting a potentially
broader role for aquaporins in regulating seizure activity.
In the context of TBI, it is possible that injury-induced
alterations to aquaporin-4 dysfunction might be directly
involved in promoting a pro-epileptogenic environment.
Future studies are needed to better understand the role
of astrocytes in this pathological process.
Another morphological change to astrocytes that is

associated with the neuroinflammatory response is astro-
cyte hypertrophy. A series of studies have shown that
hypertrophied astrocytes may play an important role in
the development of pro-epileptogenic circuits after TBI
that could promote the development of PTE. Shapiro
and colleagues performed a series of studies examining
the astrocytic, radial glial-like scaffold in the hippocam-
pal dentate gyrus in the pilocarpine model of epilepto-
genesis [70–75]. Subsequently, these authors examined
them in a model of neonatal hypoxia-induced epilepto-
genesis [76] and following TBI [77, 78]. In normal

Fig. 1 Microglia (purple, left), astrocytes (pink, bottom), and neurons
(red, upper right) are activated and altered after TBI. Cytokines
interleukin-1α, TNF, and complement component 1 subcomponent
q (C1q) are secreted by activated microglia and can induce the A1
astrocyte phenotype. Astrocytes suffer gap junction uncoupling and
have impaired neurotransmitter (NT) clearance and metabolic
recycling from synapses. Cytokines interleukin-6, interleukin-1β,
transforming growth factor beta (TGFβ), and chemokine CCL2 are
secreted in high concentrations creating a neuroinflammatory
milieu. Cells adapted from Blausen Medical Gallery [58]
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brains, these radial glial-like astrocytes send their radial
processes through the granule cell layer providing a scaf-
fold for the normal growth and integration of the gran-
ule cell apical dendrites [79–82]. Following pilocarpine,
neonatal hypoxia, or TBI, these astrocytes were shown
to be hypertrophied. In addition, they had altered their
orientation, such that the radial glial cells preferentially
extended their processes into the hilus instead of into
the granule cell layer [70–74, 77]. Aberrantly sprouted
basal dendrites from the granule cells grow along this
ectopic glial scaffold into the hilus [70]. In addition to
these ectopic granule cell basal dendrites after TBI, the
mossy fiber axons of the granule cell are also induced to
sprout [83–88]. Interestingly, the mossy fiber sprouting
after TBI is most prominent within the dentate gyrus it-
self, which further primes the targeting of ectopic basal
dendrites that become targeted for synaptogenesis, by
the sprouted mossy fiber axons [72, 89]. This latter
phenomenon of granule cell-to-granule cell connectivity
has been termed a recurrent excitatory circuitry [79, 90].
This aberrant circuitry produces excitatory drive that
can both promote and facilitate the spread of seizure
activity [91, 92], and more recent studies further
support the role of this aberrant circuitry in epilepto-
genesis [93–95], including the involvement of injury-
induced atypical astrocytes [96]. Interestingly, a study
also showed that during pilocarpine-induced epilepto-
genesis, the radial glial-like processes in the dentate
gyrus upregulate the expression of CCR2. CCR2,
along with its ligand CCL2, have been shown to act
as chemotactic guidance cues for the migration of im-
mature neurons [97–100]. Therefore, it is possible
that these radial glial astrocytes provide an anatomical
substrate and chemotactic cues for the aberrant
growth of epileptogenic circuitry.

Microglia in PTE
Following TBI or other pro-epileptogenic stimuli, micro-
glial cells become rapidly activated. This activation may
persist for months or even years after the initial injury
[101–106]. Microglial cells are the resident macrophages
of the central nervous system (CNS), and their role in
immune defense is widely accepted. During early devel-
opment, microglia originate from primitive macrophages
that migrate to developing neuroepithelium from the
embryonic yolk sac and reside in the mature CNS
throughout the lifespan [107, 108]. In addition to their
immune role in the CNS, studies have indicated that
microglial cells also play a pivotal role in neuronal
proliferation, differentiation, and sculpting of synaptic
connections [109–111].
Most studies of epileptogenesis following TBI do not

distinguish resident microglial cells, from infiltrating
macrophages that migrated to the brain in response to

injury and blood-brain barrier breakdown. Circulating Ly-
6C(hi) CCR2(+) monocytes are also recruited to lesioned
areas [112]. In TBI studies, distinctions have rarely been
made between resident microglial cells and infiltrating
macrophages. Herein, the term microglial cells will be
used to describe any macrophage in the brain after injury.
When possible, differences between microglial cells and
infiltrated macrophages will be noted.
Activation of microglial cells is also a common feature of

TBI and epileptogenesis [113]. In resting state and normal
conditions, microglia are highly dynamic cells that continu-
ally assess the microenvironment by extending and retract-
ing processes with bulbous endings, throughout the brain
parenchyma [114]. Microglial cells are homogenously dis-
tributed, and their processes are in close contact with astro-
cytes, neurons, and vessels. In response to activation cues,
the microglial cells and their processes, orient, and migrate
toward the injury site in order to isolate the injured tissue
and phagocytose cellular debris [114, 115]. In addition, resi-
dent microglia or infiltrated macrophages may also act as
antigen presenting cells [116].
The seizure-inducing role of monocytes and microglia

is supported by studies showing that inhibition of micro-
glial cells using minocycline or minocycline derivatives
reduced post-traumatic seizures, epileptogenesis, and
cognitive deficits [101, 117–119]. In a post-traumatic
kindling model, rats with TBI were found to kindle fas-
ter and have more intense seizures than non-TBI rats
[120, 121]. Targeting microglial cells by pretreatment
with the toll-like receptor (TLR) antagonists, Pam3Cys,
and monophosphoryl lipid A rendered rats less suscep-
tible to kindling and more like kindled rats that did not
undergo a prior TBI [122]. More specifically, antagoniz-
ing the toll-like receptors resulted in higher seizure
thresholds, slower speed to kindling, and reduced dur-
ation of kindled seizures. Other studies outside of epi-
leptogenesis have also postulated a role for microglial
cells in hyperexcitability. Microglial cells activated by
lipopolysaccharide or heat-killed Gram-negative bacteria
induced hyperexcitability of cerebellar purkinje cells that
was suppressed by inhibiting or depleting the microglia
[123]. Another study showed that using minocycline to
inhibit microglial activation in a repeated toluene inhal-
ation model prevented neuronal hyperexcitability by
ameliorating the loss of the slow calcium-dependent po-
tassium current [124]. Finally, Devinsky et al. [125]
reviewed the role of glia-induced hyperexcitability and
concluded that microglial cells make a significant contri-
bution to hyperexcitability, via direct and indirect (e.g.,
cytokine release) mechanisms. Therefore, there is some
evidence for a direct role of microglial cells in inducing
neuronal hyperexcitability, but more research is needed.
Interestingly, treatment with lipopolysaccharide (LPS)

prior to TBI also reduced post-traumatic kindling
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susceptibility [126]. In these studies, the TLR antagonists
were administered prior to TBI, suggesting that a prim-
ing effect on the microglial cells might be taking place.
An alternative interpretation is that the microglial cells
may exert a negative influence on epileptogenesis, but a
precipitating immune insult such as toll-like receptor
antagonism may prime the microglial cells, thus inhibit-
ing the putative epileptogenic influence that they exert.
It should be noted that these compounds exclusively tar-
get microglial cells, so other mechanisms of protection
are probably not involved.
Microglia activation most likely occurs in response to

various pro-inflammatory cytokines and chemokines and
the release of danger-associated molecular patterns
(DAMPs) by damaged cells [127]. Injury in the brain
causes the release of the DAMP signal, high mobility
group box 1 protein (HMGB1). Immune cells, neurons,
and glia can also release HMGB1 in response to cytokine
stimulation [128]. HMGB1 works through activating
TLR 4, and it has been noted that mice with TLR4 mu-
tation are resistant to seizures [129]. These data support
a role for microglial signaling in PTE and suggest that
targeting specific signaling components, such as toll-like
receptors, MHCII, and other microglial-specific recep-
tors, might be a viable therapeutic target.
Microglial cells might also wield a double-edged sword

that can positively or negatively influence PTE develop-
ment. Macrophage studies in vitro established the M1
(classical) and M2 (alternative) activation states [130],
whereas in vivo macrophage cell populations present ac-
tivation states as a continuum. The M1/M2 functional
polarization may still have utility in defining cytokine se-
creting cellular profiles. Both M1 and M2 microglia are
noted in damaged tissue [101], and their relative ratios
may be related to outcomes. The M1 secreting profile
could be more advantageous during the acute response
to injury. However, M1 microglia have been shown to
chronically persist after TBI, and these persistent pro-
inflammatory microglia have been implicated in chronic
neurological dysfunction following injury [131]. The
appearance of M2 microglia likely occurs in response to
elevated interleukin-4 (IL4) and IL13 to promote repair
of tissue damage by matrix remodeling. In response to
IL10, glucocorticoid, and transforming growth factor
beta (TGFβ), microglia polarize to a deactivated M2c
state and turn off inflammation [132]. However, it is not
clear if, or how, this mechanism influences the chronic
M1 microglial phenotype. Therefore, it appears as
though a broad spectrum of microglial cells is involved
in the inflammatory response to TBI. Future studies are
needed to better define these microglial subsets and
their roles in PTE.
Also, microglia interaction with astrocytes should be

considered in PTE neuroinflammation. Cytokines,

interleukin-1α (IL-1α), TNF, and complement compo-
nent 1 subcomponent q (C1q) secreted by activated
microglia can induce the A1 astrocyte phenotype [133]
(Fig. 1). This phenotype was denominated in analogy to
M1/M2 phenotypes observed in macrophages. A1 astro-
cytes are neurotoxic leading to neuronal death, synapse
disassembly, and oligodendrocyte death.

Cytokine and chemokine contributions to PTE
One prominent consequence of TBI is the rapid and
prolonged release of inflammatory cytokines and chemo-
kines [134–136]. The list of, and role for, inflammatory
proteins seems to expand at an almost exponential rate.
Of the numerous cytokines known to be released in re-
sponse to TBI, a multitude of studies demonstrate in-
creased tumor necrosis factor (TNF), TGFβ, IL-1β, IL-6,
and IL-10, among other cytokines, that are consistently
found to be elevated after TBI. The TBI-induced release
of cytokines and chemokines may directly and indirectly
increase regional hyperexcitability of neurons and con-
tribute to seizures (Fig. 1). While it is likely that many of
the inflammatory proteins play a role in epileptogenesis,
a paucity of research limits discussion only to those
which have been explicitly explored for seizure-inducing
mechanisms.
The CSF-serum ratio of IL-1β is elevated in TBI pa-

tients who are susceptible for developing epilepsy [137].
It has been reported that transgenic mice that overex-
press IL-1β and TNF have decreased seizure threshold
[138]. Consistent with this notion, treatment with an IL-
1β receptor antagonist results in decreased seizure
susceptibility in young mice [139] and promotes M1-
type microglial cytokine and chemokine release after
TBI [140]. IL-1β has been reported to increase NMDA-
mediated Ca+ current in the pyramidal neurons through
cell surface type 1 IL-1R (IL-1R1), co-localized on pyr-
amidal cell dendrites, and to concurrently decrease the
seizure threshold [141, 142]. Thus, IL-1β may be an
important component in PTE. IL-10 can be used as
treatment to inhibit IL-1β secretion as demonstrated in
epileptic mouse experimental animals [143]. Numerous
CNS and non-CNS cell types are capable of releasing IL-
1β, and any one or more of these cells can contribute to
pathology.

Emerging role of TGFβ in seizures and acquired epilepsies
TGFβ has been implicated in the development of excita-
tory synaptogenesis and PTE following TBI. TGFβ sig-
naling has been shown to trigger seizures, neuronal
hyperexcitability, and epileptogenesis [144, 145]. TGFβ
expression is increased in cortex and hippocampus after
TBI [35], and administration of LY-364947, a TGFβ type
1 receptor inhibitor, significantly reduced the duration
and severity of post-traumatic seizures in the second-hit
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pentylenetetrazole (PTZ) challenge [35]. Incubating cor-
tical slices with TGFβ induced epileptiform activity in
slices, and this activity was blocked by inhibiting TGFβ
receptors [146], suggesting an important role for TGFβ
signaling in epileptogenesis. Transcriptome analysis also
supports a role for TGFβ signaling in the epileptogenic
transcriptional response, and this response can be
blocked by inhibiting TGFβ receptor signaling [146].
Other studies found that blocking astrocytic TGFβ R1
activation prevented the development of epilepsy in the
pilocarpine model of epileptogenesis [144]. Specifically,
astrocytic TGFβ signaling was found to induce excitatory
synaptogenesis that preceded the development of
seizures, and these effects were blocked by inhibition of
TGFβ signaling [145]. Therefore, TGFβ causes hyperex-
citability and seizures, and blocking TGFβ signaling
prevents the development of acquired epilepsies. This
phenomenon may be directly mediated via astrocytic
TGFβ.

IL-6 elevation is associated with epileptogenesis
TBI increases the level of IL-6 in the peripheral blood
[147], and it has been reported that the serum level of
IL-6 positively correlates with the severity of TBI [20].
Sustained elevation of IL-6 is associated with increased
odds for detrimental overall outcomes in the first year
following TBI [19]. IL-6 is also thought to play a critical
role in seizure development, and elevated IL-6 has been
observed in patients with temporal lobe epilepsy [148],
pediatric epilepsy [149], and electrical status epilepticus
in sleep (ESES) [150]. Consistent with the notion that el-
evated IL-6 is associated with seizures in patients with
ESES, immunomodulation that reduced IL-6 levels also
improved electroencephalographic seizure activity [150].
IL-6 gene polymorphisms have also been implicated in
pediatric epilepsy and febrile seizure cases [149, 151–
153]. Transgenic mice that expressed elevated astrocytic
IL-6 were more susceptible to NMDA-induced seizures
and sub-threshold doses of kainic acid [154], with the
latter causing mice to have severe tonic-clonic seizures
and death. IL-6 administration in rodents has been
shown to increase seizure severity and decrease seizure
threshold [155]. Moreover, a potential role for IL-6 in
epileptogenesis has been reported in cases of subarach-
noid hemorrhage, where IL-6 was significantly elevated
in patients that developed seizures [156]. Taken to-
gether, IL-6 appears to have numerous roles in neuronal
homeostasis, and its elevation is clearly associated with
increased-seizure susceptibility and epilepsy.

Conclusion: a neuroinflammatory role in PTE
PTE is the most common type of symptomatic epilepsy.
We described inflammatory components of cellular and
molecular mechanisms in the CNS that can contribute

to the epileptogenic progression following TBI. While
the innate inflammatory response to an injury is rela-
tively consistent, the combined effects that contribute to
PTE are highly variable and notably appear to depend
on timing, location, and an individual immune response.
In this context, diagnostic tools that consider multi-
modal variables will likely need to be developed. It is
also important to recognize that adaptive immune com-
ponents are also likely to be playing a role in the post-
traumatic epileptogenic progression, and such variables
require further investigation.
Considering that PTE is difficult to treat, being more

resistant to first and second-line anti-epileptic treat-
ments, there is hope that therapies which target specific
inflammatory components after TBI may ultimately yield
meaningful diagnostic tools and effective therapeutic
strategies. When thinking about these possibilities, it is
important to recognize the pioneers who have helped to
pave the way for these lines of research. To this end, we
wish to thank Dr. Mrak for his contributions to the field
of neuroinflammation, and we dedicate this article to his
founding, success, and leadership of the Journal of
Neuroinflammation.
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