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Abstract

Background: Activated astrocytes play important roles in chronic post-surgical pain (CPSP). Recent studies have
shown reactive astrocytes are classified into A1 and A2 phenotypes, but their precise roles in CPSP remain unknown. In
this study, we investigated the roles of spinal cord A1 and A2 astrocytes and related mechanisms in CPSP.

Methods: We used a skin/muscle incision and retraction (SMIR) model to establish a rat CPSP model. Microglia, CXCR7,
and the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathways were regulated by intrathecal injections of
minocycline (a non-specific microglial inhibitor), AMD3100 (a CXCR7 agonist), and LY294002 (a specific PI3K inhibitor),
respectively. Mechanical allodynia was detected with von Frey filaments. The changes in microglia, A1 astrocytes, A2
astrocytes, CXCR7, and PI3K/Akt signaling pathways were examined by enzyme-linked immunosorbent assay (ELISA),
western blot, and immunofluorescence.

Results: Microglia were found to be activated, with an increase in interleukin-1 alpha (IL-1a), tumor necrosis factor
alpha (TNFa), and complement component 1g (C1q) in the spinal cord at an early stage after SMIR. On day 14 after
SMIR, spinal cord astrocytes were also activated; these were mainly of the AT phenotype and less of the A2 phenotype.
Intrathecal injection of minocycline relieved SMIR-induced mechanical allodynia and reverted the ratio of A1/A2
reactive astrocytes. The expression of CXCR7 and PI3K/Akt signaling was decreased after SMIR, while they were
increased after treatment with minocycline. Furthermore, intrathecal injection of AMD3100 also relieved SMIR-induced
mechanical allodynia, reverted the ratio of A1/A2 reactive astrocytes, and activated the PI3K/Akt signaling pathway,
similar to the effects produced by minocycline. However, intrathecal injection of AMD3100 did not increase the
analgesic effect of minocycline. Last, LY294002 inhibited the analgesic effect and A1/A2 transformation induced by
minocycline and AMD3100 after SMIR.

Conclusion: Our results indicated that microglia induce the transformation of astrocytes to the A1 phenotype in the
spinal cord via downregulation of the CXCR7/PI3K/Akt signaling pathway during CPSP. Reverting A1 reactive astrocytes
to A2 may represent a new strategy for preventing CPSP.
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Introduction

Chronic postsurgical pain (CPSP) refers to pain in and
around the surgical area that lasts longer than 2 months,
excluding pain due to disease recurrence, inflammation,
and other factors [1, 2]. About 10-50% of patients
experience persistent pain after surgical procedures,
such as thoracotomy, cesarean section, radical mastec-
tomy, and inguinal hernia repair. CPSP seriously affects
post-operative recovery and the quality of life of the
patient [3—5]. However, there is no effective strategy for
the treatment and prevention of CPSP. The mechanism
underlying CPSP is complex and remains to be elucidated.
Previous studies have shown that CPSP is a neuropathic
pain caused mainly by surgical damage to peripheral
nerves [6]. However, Flatters demonstrated that skin/
muscle incision and retraction (SMIR)-induced CPSP
lasted at least 22 days without nerve damage [3].

In recent years, much attention has been paid to the
role of spinal glial cells in the development and mainten-
ance of pain [7, 8]. Many studies have demonstrated the
roles of activated astrocytes in various types of chronic
pain, such as neuropathic pain [9, 10], inflammatory
pain [11, 12], and bone cancer pain [13]. It has been
reported that reactive astrocytes can be classified into
Al and A2 phenotypes, which provide neuroprotective
and neurotoxic effects, respectively [14]. Recent studies
have demonstrated that reactive astrocytes are involved
in Parkinson’s disease, spinal cord injury [15, 16], and
traumatic brain injury [17]. However, the roles of Al
and A2 astrocytes in CPSP are unclear.

It is known that activated microglia can induce the
transformation of astrocytes into the Al phenotype by
releasing interleukin-1 alpha (IL-la), tumor necrosis
factor (TNF), and complement component 1q (Clq)
[14]. Minocycline, a microglial inhibitor, could provide
analgesic and anti-inflammatory effects in a variety of
pain models, such as neuropathic pain models [18-20],
inflammatory pain models [21], and bone cancer pain
models [22]. However, it is yet to be determined whether
the phenotypic transformation of Al and A2 reactive
astrocytes is mediated by microglia in CPSP.

CXCRY7, a non-classical G-protein-coupled receptor, is
involved in CXCL12-mediated cell cycle regulation and
cell proliferation [23, 24]. AMD3100, a CXCR7 agonist,
has been reported to induce the transformation of
microglia into the anti-inflammatory M2 subtype and
astrocytes into the neuroprotective A2 subtype [25, 26].
Studies have also documented that CXCR7 signaling
plays a role in regulating cell proliferation and differenti-
ation via the phosphoinositide 3-kinase/Akt (PI3K/Akt)
signaling pathway [27, 28].

In this study, in order to identify the roles of different
phenotypes of reactive astrocytes in CPSP, we first
examined changes in Al and A2 astrocytes in the spinal
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cord after SMIR. We then investigated the role of
microglia in regulating A1/A2 transformation in
CPSP, using minocycline. Last, we investigated the
molecular mechanism by which microglia-mediated
A1/A2 transformation occurred in CPSP by examin-
ing the CXCR7/PI3K/Akt signaling pathway.

Material and methods

Animals

Male Sprague-Dawley rats (200-220 g) were supplied from
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, Hubei Province, People’s Republic of
China. The rats were housed under standard conditions
(temperature: 22-25 °C, relative humidity: 45-65%, and 12-h
light to dark cycle, with food and water ad libitum). All
experiments were approved by the Experimental Animal
Care and Use Committee of Tongji Medical College,
Huazhong University of Science and Technology, and were
in agreement with the National Institutes of Health Guide-
lines for the Care and Use of Laboratory Animals.

Skin/muscle incision and retraction

The skin/muscle incision and retraction (SMIR) surgery
was carried out, as previously reported [3]. Briefly, the
medial skin of the thigh was cut 1.5-2 cm from approxi-
mately 4 mm medial to the saphenous vein to reveal the
thigh muscles after rats were intraperitoneally injected
with 1% sodium pentobarbital (50 mg/kg). The superfi-
cial layer of the gracilis muscle was cut 7-10 mm, and
then, the muscle was further separated using a blunt dis-
section technique to allow the micro-dissecting retractor
(Biomedical Research Instruments Inc., USA) to be
inserted. All prongs of the micro-dissecting retractor
were positioned below the superficial layer of the gracilis
muscle; then, the skin and superficial muscles of the
thigh were retracted by 2 cm to expose the underlying
adductor fascia for 1h. Isoflurane was used to provide
additional anesthesia if necessary. The muscles and skin
were sutured with 3.0 and 4.0 Vicryl sutures after 1h.
Large absorbent bench underpads were used to cover
the rats to reduce the drying of the surgical site and heat
loss from the rats. For the sham group, the skin and
superficial muscles were cut without retraction.

Intrathecal catheterization and drug administration
Intrathecal catheterization was carried out, as previ-
ously reported [22]. Briefly, the PE10 catheters (inner
diameter 0.3 mm, outer diameter 0.6 mm) were inserted
from L5-L6 spinous processes to the lumbar enlarge-
ment 5 days prior to the establishment of SMIR
models. The rats were temporarily paralyzed after intra-
thecal injection of 2% lidocaine (10 pL), indicating the
success of catheterization. All rats were allowed to
recover for 5 days before experiments.
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Minocycline hydrochloride (#M9511, Sigma-Aldrich,
USA), a microglial inhibitor, was dissolved in saline and
intrathecally injected at a dose of 100 pg/20 pL immedi-
ately and for seven consecutive days after SMIR.
AMD3100 (S8030, Selleck Chemicals, USA), a CXCR7
agonist, was dissolved in saline and intrathecally injected
at a dose of 20 pg/10 pL immediately and for seven con-
secutive days after SMIR. LY294002 (HY-10108, MCE,
USA), a specific antagonist of PI3K, was dissolved in
10% dimethyl sulfoxide (DMSO) and injected intra-
thecally at a dose of 10 pg/5pL 15 min before minocy-
cline or AMD300 treatment. The doses of minocycline,
AMD3100, and LY294002 were determined based on
our preliminary studies and previous reports [22, 29, 30].

Paw withdrawal threshold test

As described previously [3, 31], the mechanical paw
withdrawal threshold (PWT) test was performed with
von Frey filaments (Stoelting, Wood Dale, IL, USA) on
days 0, 1, 4, 7, 14, and 21 at 09:00 AM. Briefly, the rats
were placed in a separate transparent box with a wire
mesh at the bottom that allowed the paws to be fully
touched and then allowed to adapt for 40 min. Different
von Frey filaments, ranging from 2 to 15g, were grad-
ually applied for up to 3 s to the mid-plantar area of the
right hindpaw in an ascending manner. Sudden claw re-
traction, shaking, or licking was regarded as a positive
reaction. The PWT was defined as the minimum force
required to cause a positive reaction at least three times
in five tests.

Enzyme-linked immunosorbent assay analysis

The rats were sacrificed under deep anesthesia, and L3-L5
spinal segments were immediately removed and homoge-
nized in phosphate-buffered saline (PBS). The supernatants
of tissue homogenates were collected and analyzed using
rat IL-la (Elabscience Biotechnology Co. Ltd., Wuhan,
China), TNF-a (Elabscience Biotechnology Co., Ltd.), or
Clq (LifeSpan BioSciences Inc., USA) ELISA Kits, according
to the manufacturer’s instructions.

Western blot analysis

The rats were sacrificed under deep anesthesia, and L3-L5
spinal segments were immediately removed and homoge-
nized in an ice-cold mixture of radioimmunoprecipitation
assay lysis buffer, phosphatase inhibitor, and phenylmethyl-
sulfonyl fluoride (Boster Biological Technology, Wuhan,
China) and then centrifuged at 12,000 rpm at 4 °C for 30
min. The protein concentration was determined using a
BCA protein assay kit (Thermo Scientific, USA). The pro-
teins were boiled at 90 °C in a loading buffer for 8 min and
stored at — 80 °C until use. Samples (30—50 pg protein) were
loaded and separated on 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and then transferred to
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a polyvinylidene fluoride membrane. The membranes were
blocked with 5% bovine serum albumin in Tris-buffered
saline and Tween 20 (TBST, 0.1%) for 2h at room
temperature, followed by overnight incubation at 4 °C with
specific primary antibodies: rabbit anti-C3/C3a antibody
(A13283, 1:1000, Abclonal, Wuhan, China), rabbit anti-
S100A10 antibody (ab187201, 1:500, Abcam, MA, USA),
mouse anti-glial fibrillary acidic protein antibody (GFAP,
#3670, 1:5000, Cell Signaling Technology, MA, USA),
rabbit anti-CXCR7 antibody (ab72100, 1:1000, Abcam),
rabbit anti-p-PI3K antibody (AF3241, 1:1000, Affinity,
Wuhan, China), mouse anti-PI3K antibody (60225-1-Ig, 1:
1000, Proteintech), mouse anti-p-Akt antibody (66444-1-Ig,
1:1000, Proteintech), rabbit anti-Akt antibody (10176-2-AP,
1:1000, Proteintech), and mouse anti-glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) antibody (AC002, 1:
5000, Abclonal). After washing in TBST, the membranes
were incubated with horseradish peroxidase (HRP)-conju-
gated goat anti-mouse secondary antibody (1:5000, Aspen,
Wouhan, China) or goat anti-rabbit secondary antibody (1:
5000, Aspen) for 2h at room temperature. Finally, the
protein bands were detected by SuperLumia ECL Plus HRP
Substrate Kit (K22030, Abbkine, Wuhan, China) and
exposed using ChemiDoc XRS+ imaging system (Bio-Rad,
USA). The intensity of bands was analyzed using System
with Image Lab software (Bio-rad Laboratories), standard-
ized against GAPDH, and the band density of the sham
group was set as 1.

Immunofluorescence

The rats were transcardially perfused with PBS, followed
by 4% neutral-buffered paraformaldehyde (PFA). Spinal
cord tissue was removed from levels L3-L5, post-fixed
overnight in 4% PFA, and then dehydrated in 30%
sucrose solution for 2 days at 4 °C. The harvested spinal
cord samples were sectioned to 20 pum thickness in a
cryostat (CM1900, Leica, Germany). The sections were
blocked with 5% donkey serum for 1h at room
temperature and incubated with goat anti-ionized
calcium-binding adapter molecule 1 (Ibal, ab5076, 1:
200, Abcam) overnight at 4°C. Then, the sections were
incubated with Alexa Fluor 488-labeled donkey anti-goat
secondary antibody (1:100, Jackson ImmunoResearch,
West Grove, PA, USA) for 2 h at room temperature.

For double immunofluorescence, the sections were
blocked with 5% goat serum and 0.3% Triton X-100 in
PBS for 1h at room temperature and incubated with a
mixture of rabbit anti-C3/C3a antibody (A13283, 1:100,
Abclonal) and mouse anti-GFAP antibody (#3670, 1:200,
Cell Signaling Technology)/goat anti-Ibal antibody
(ab5076, 1:200, Abcam)/mouse anti-neuronal nuclei
antibody (NeuN, MAB377, 1:50, Millipore) or rabbit
anti-S100A10 antibody (ab187201, 1:100, Abcam) and
GFAP/Ibal/NeuN, or rabbit anti-CXCR7 antibody
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(ab72100; 1:50; Abcam) and GFAP/Ibal/NeuN. Then, the
sections were incubated with a mixture of secondary anti-
bodies, including Alexa Fluor 594-labeled goat anti-rabbit
secondary antibody (1:400; Jackson ImmunoResearch) and
Alexa Fluor 488-labeled goat anti-mouse secondary anti-
body (1:200; Jackson ImmunoResearch), for 2h at room
temperature. Images were captured using a fluorescence
microscope (DM2500, Leica, Germany). As described
previously [32, 33], the mean fluorescence intensity and
the number of Ibal™ cells of microglia were calculated
using Image ] (National Institutes of Health, Bethesda,
MD, USA).

Experimental designs and animal groups
As shown in Fig. 1, there were four experiments in this
study.

Experiment 1: Changes in mechanical allodynia and glial
expression after SMIR in rats

Sixty rats were randomly allocated to a sham or SMIR
group. The PWTs were measured at days 1, 4, 7, 14, and
21 after surgery, and then, the L3-L5 region of the
spinal cord was extracted for western blot and immuno-
fluorescent analysis. According to previous studies and
our preliminary studies, the activation of spinal micro-
glia was most significant at day 7 after SMIR surgery,
while the activation of spinal astrocytes in rats was most
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significant at day 14 after SMIR surgery [4, 34, 35].
Therefore, we chose the 7th day after the sham oper-
ation as a control to study microglial activation and the
14th day after the sham operation as a control to study
astrocyte activation.

Experiment 2: The effects of minocycline pretreatment on
mechanical allodynia, glial expression, and the CXCR7/PI3K/
Akt pathway after SMIR

After SMIR surgery, 40 rats were divided into SMIR+ve-
hicle and SMIR+minocycline groups. The PWTs were
measured 30 min before each injection. The L3-L5
region of the spinal cord was collected from the SMIR+
minocycline group at days 7, 14, and 21 after surgery,
and SMIR+vehicle group at 14 days after surgery for
western blot and immunofluorescence analysis.

Experiment 3: The effects of CXCR7 agonist pretreatment on
mechanical allodynia after SMIR

After SMIR surgery, 24 rats were divided into four groups:
SMIR+vehicle group, SMIR+minocycline group, SMIR+
AMD3100 group, and SMIR+minocycline+AMD3100
group (n = 6 per group). The PWTs were measured 30
min before each injection. The L3-L5 region of the spinal
cord was collected from each group 14 days after surgery
for western blot and immunofluorescence analysis.

2, Minocycline(100pg,20plr5)/yehicle

inhibitor; PWT: paw withdrawal threshold

Experiment 1
Mechanical PWT test Groupsl:
(1) Sham
Vool ¥ v ¥ ¥ @ SMIR
| 1 1 1 1
10 1 4 7 14 21 day
SMIR ELISA, WB, IF
modeling
Experiment 2-4 Groups2: .
(1) SMIR+vehicle
(2) SMIR+minocycline
Mechanical PWT test
Groups3:
‘1' ‘L ‘L ‘L ‘l’ (1) SMIR+vehicle
1 1 1 1 1 1 1 1 1 1 1 1 (2) SMIR+AMD3100
-5 -1 0 1 2 3 4 5 6 7 14 21 day (3) SMIR+minocycline
T " y 3 4 " (4) SMIR+AMD3100+minocycline
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4. LY294002(10ug,5uL) L5min, Minocycline(100pg,20uL)/ AMD3100(20ug, 10uL)

Fig. 1 Experimental designs and animal groups. Experiment 1: changes in pain behavior and glial phenotypes after SMIR in rats. Experiment 2:
effects of minocycline pretreatment on mechanical allodynia, glial phenotypes, and the CXCR7/PI3K/Akt pathway after SMIR in rats. Experiment 3:
effects of CXCR7 agonist pretreatment on mechanical allodynia after SMIR in rats. Experiment 4: effects of PI3K/Akt pathway inhibitor
pretreatment on the analgesic effect of minocycline and AMD3100. WB: western blot; IF: immunofluorescence; ELISA: enzyme-linked
immunosorbent assay; SMIR: skin/muscle incision and retraction; AMD3100: CXCR7 agonist; minocycline: microglia inhibitor; LY294002: PI3K
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Experiment 4: The effects of PI3K/Akt pathway inhibitor
pretreatment on the analgesic effect of minocycline and
AMD3100

After SMIR surgery, 30 rats were randomly distributed
into five groups: SMIR+vehicle group, SMIR+AMD3100
group, SMIR+minocycline group, SMIR+AMD3100+
LY294002 group, and SMIR+minocycline+LY294002
group (n = 6 per group). The L3-L5 region of the spinal
cord was collected 14 days after surgery for western blot
and immunofluorescence analysis.

Statistical analyses

All data are presented as the mean + standard error of
the mean (SEM). All statistical analyses were conducted
using GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA). Two-way repeated measures analysis
of variance (ANOVA) followed by Bonferroni’s post hoc
test was used for the analysis of the PWT data. One-way
ANOVA, followed by Bonferroni’s post hoc test, was
used for ELISA, immunofluorescence, and western blot
data analysis. Differences with P < 0.05 were considered
statistically significant.

Results
Microglia are activated in the spinal cord in the early
stages of SMIR
Behavioral testing showed that mechanical PWT was de-
creased in the ipsilateral hindpaw from days 1 to 21 in the
SMIR group, compared with baseline. Compared to sham
rats, the SMIR rats exhibited a decreased PWT in the ipsi-
lateral hindpaw from days 1 to 21 (Fig. 2a, group: F(1, 9) =
136.3, P < 0.0001; time: F(5, 45) = 19.58, P < 0.0001; inter-
action: F(5, 45) = 10.47, P < 0.0001). These results indicated
that the CPSP model was successfully induced by SMIR.
Microglial expression in the spinal dorsal horn was ex-
amined by immunofluorescent labeling of Ibal. As shown
in Fig. 2b, microglia bodies were enlarged with retraction
of the protuberances at days 1, 4, and 7 after SMIR. The
results of the quantitative analysis showed that compared
with the sham group, the mean fluorescent intensity and
number of Ibal-positive cells in the spinal cord were
significantly increased after SMIR (Fig. 2f, F(3, 12) = 19.1,
P < 0.0001; Fig. 2g, F(3, 12) = 35.83, P < 0.0001). The
results of the ELISA showed that spinal cord IL-1a, TNFa,
and Clq were significantly higher in the SMIR group than
in the sham group (Fig. 2c—e, IL-1a: F(2, 6) = 510, P <
0.0001; TNFa: F(2, 6) = 536.2, P < 0.0001; Clq: F(2, 6) =
41.76, P = 0.0003). These indicated that microglia were
activated in the spinal cord in the early stages of SMIR.

Astrocytes were activated and mainly expressed as the

A1 phenotype in the spinal cord after SMIR

The changes in astrocytes, Al versus A2, after SMIR
were examined by western blot with GFAP, C3, and
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S100A10. The results show that compared with the sham
group, GFAP increased in a time-dependent manner at
days 7, 14, and 21 (Fig. 3a, F(5, 36) = 6.295, P = 0.0003).
The expression of C3 (a marker for the Al astrocyte
phenotype) was significantly increased at days 7 and 14
after SMIR (Fig. 3b, F(5, 36) = 5.004, P = 0.0014). In con-
trast, the expression of S100A10 (a marker for the A2
astrocyte phenotype) was decreased at days 7, 14, and 21
after SMIR (Fig. 3¢, F(5, 36) = 9.672, P < 0.0001).

We further examined the expression of Al and A2
phenotypes in the spinal cord by double immunofluores-
cence. As shown in Fig. 3d, e, C3 and S100A10 were
mostly colocalized with GFAP in the superficial region
of the spinal cord of the SMIR rats. Compared with
sham rats, Al reactive astrocytes were increased, while
A2 reactive astrocytes were decreased 14 days after
SMIR. This indicated that reactive astrocytes were
mainly expressed as the A1 phenotype in the spinal cord
after SMIR.

Minocycline reverted the A1/A2 ratio of reactive
astrocytes and relieved mechanical allodynia after SMIR

in rats

Minocycline was intrathecally injected immediately and for
seven consecutive days after SMIR to investigate the role of
microglia in regulating the A1/A2 phenotypic transform-
ation in CPSP. As shown in Fig. 4a, behavioral testing
showed that PWT was significantly increased after intra-
thecal injection of minocycline, compared with the SMIR+
vehicle group (group: F(1, 9) = 2232, P < 0.0001;
time: F(5, 45) = 21.52, P < 0.0001; interaction: F(5,
45) = 33.11, P < 0.0001).

Western blot analysis showed that the expression of C3
(a marker for the Al astrocyte phenotype) was signifi-
cantly downregulated on days 7, 14, and 21 after minocy-
cline treatment (Fig. 4b, F(3, 16) = 12.64, P = 0.0002),
while the expression of S100A10 (a marker for the A2
astrocyte phenotype) was upregulated on days 7 and 14
after minocycline treatment (Fig. 4¢c, F(3, 16) = 6.082, P =
0.0058). Similarly, double immunofluorescence showed
that compared with the SMIR+vehicle group, the expres-
sion of the Al astrocytic phenotype was significantly
decreased, while the expression of the A2 astrocytic
phenotype was significantly increased in the SMIR+mino-
cycline group (white arrow in Fig. 4d, e). These results
demonstrated that inhibition of microglial activation
reverted the A1/A2 ratio of reactive astrocytes and re-
lieved mechanical allodynia after SMIR in rats.

The CXCR7 and PI3K/Akt signaling pathways are involved
in CPSP

The molecular mechanisms of microglia-regulated astro-
cyte polarization in CPSP remained unclear in the studies
above. CXCR?7 is involved in inflammatory communication
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between glial cells and neurons, which regulates the
polarization of glial cells. Therefore, we first examined
changes in CXCR?7 and its endogenous ligand CXCL12 in
the spinal cords of SMIR rats. Double immunofluorescence
staining showed that CXCR7 was expressed mostly in
astrocytes and, to a small extent, in microglia and neurons
(Fig. 5¢). As shown in Fig. 5a, b, western blot analysis
showed that compared with the sham group, the expression
of CXCR7 was reduced in the spinal cord in the SMIR
group (F(5, 18) = 5.831, P = 0.0023), while the expression

of its ligand CXCL12 was unchanged. In contrast, after
treatment with minocycline, the expression of CXCR7 was
significantly increased at days 7, 14, and 21 (Fig. 5f, F(3, 12)
= 28.04, P < 0.0001).

The PI3K/Akt pathway was examined as it is an import-
ant signaling pathway that regulates cell growth, differenti-
ation, and migration. Western blot analysis showed that
compared with the sham group, the expression of p-PI3K
was significantly downregulated at days 7, 14, and 21 after
SMIR (Fig. 5d, F(5, 18) = 24.02, P < 0.0001), which was
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Fig. 3. Astrocytes were activated and mainly expressed as the A1 phenotype in the spinal cord after SMIR. a-c Representative blots and
quantification of GFAP, C3, and ST00A10 in the spinal cord of sham (day 14) and SMIR group rats (n = 7). The expressions of GFAP, C3, and
S100A10 were normalized to GAPDH for each sample. GFAP, C3, and ST00A10 levels in the sham group were set as 1 for quantification.
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GFAP (green) in the spinal cords of sham (day 14) and SMIR group rats (n = 3). Scale bar: 50 um or 200 um. d: day; GFAP: glial fibrillary acidic

reversed after minocycline treatment (Fig. 5g, F(3, 12) =
57.38, P < 0.0001). The expression of p-Akt was signifi-
cantly downregulated at days 4, 7, 14, and 21 after SMIR
(Fig. 5e, F(5, 18) = 3.558, P = 0.0206), which was reversed
after minocycline treatment (Fig. 5h, F(3, 8) = 10.16, P =
0.0042). These results indicate that minocycline can pre-
vent SMIR-induced downregulation of the CXCR7 and
PI3K/Akt signaling pathways.

The CXCR7 agonist AMD3100 has similar effects to
minocycline in SMIR but has no synergistic effects when
combined with minocycline

To further investigate the role of CXCR7 in the microglia-
mediated phenotypic transformation of reactive astrocytes,
the specific CXCR7 agonist AMD3100 was intrathecally
injected alone or in combination with minocycline immedi-
ately and for seven consecutive days after SMIR. As shown
in Fig. 6a, behavioral testing showed that the PWT was sig-
nificantly increased after intrathecal injections of AMD3100.
However, the analgesic effect of AMD3100 alone was not

comparable with that of minocycline alone or in com-
bination with AMD3100 (group: F(3, 15) = 27.32, P <
0.0001; time: F(5, 25) = 7.841, P = 0.0001; interaction:
F(15, 75) = 6.502, P < 0.0001). Western blot analysis
showed that after injection of AMD3100, minocycline,
or both, the expressions of CXCR7, p-PI3K, and p-Akt
were significantly increased in the spinal cords of SMIR
rats (Fig. 6b, for CXCR7: F(3, 16) = 6.523, P = 0.0043;
Fig. 6e, for p-PI3K: F(3, 12) = 12.07, P = 0.0006; Fig. 6f,
for p-Akt: F(3, 12) = 19.06, P < 0.0001). Moreover, the
expression of C3 (a marker for the Al astrocyte pheno-
type) was significantly downregulated (Fig. 6¢, F(3, 16)
= 28.07, P < 0.0001), while the expression of SI00A10
(a marker for the A2 astrocyte phenotype) was upregu-
lated (Fig. 6d, F(3, 16) = 9.484, P = 0.0008).

These results suggest that CXCR7 is one of the
important downstream receptors for minocycline-
induced behavioral improvement, upregulation of the
PI3K/Akt signaling pathway, and transformation of
astrocytes into the A2 subtype.
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LY294002, a specific PI3K inhibitor, inhibited the
analgesic effect and A1/A2 transformation induced by
minocycline and AMD3100 after SMIR

To verify whether the PI3K/Akt pathway is the down-
stream mechanism by which microglia and CXCR7?
regulate the transformation of reactive astrocytes during
CPSP, LY294002, a specific PI3K inhibitor, was intra-
thecally administered prior to minocycline or AMD3100
injection. As shown in Fig. 7a, behavioral tests showed
that the administration of LY294002 significantly antag-
onized the analgesic effects of minocycline or AMD3100
(group: F(1, 5) = 71.17, P = 0.0004; time: F(5, 25) =

5.182, P = 0.0021; interaction: F(5, 25) = 11.37, P < 0.0001,
vs SMIR+minocycline group; group: F(1, 5) = 28.89, P =
0.003; time: F(5, 25) = 1541, P < 0.0001; interaction: F(5,
25) = 3.912, P = 0.0093, vs SMIR+AMD3100 group). More-
over, the western blot results showed that LY294002 pre-
treatment significantly hindered the downregulation of C3
(a marker for the A1 astrocyte phenotype) (Fig. 7b, F(4, 20)
= 35.28, P < 0.0001) and the upregulation of S100A10 (a
marker for the A2 astrocyte phenotype) (Fig. 7c, F(4, 20) =
20.93, P < 0.0001) induced by minocycline or AMD3100.
These results suggested that minocycline and AMD3100
reverted the A1/A2 ratio of reactive astrocytes and relieved
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the mechanical allodynia induced by SMIR via the PI3K/

Akt pathway.

Discussion

In the present study, we demonstrated that (1) during

SMIR-induced CPSP, astrocytes were activated

mainly manifested as the Al phenotype after the activa-

tion of microglia in the spinal cord; (2) minocycline, a
microglial inhibitor, relieved SMIR-induced mechanical
allodynia and reverted the ratio of A1/A2 reactive astro-

cytes; (3) AMD3100, a CXCR7 agonist, relieved SMIR-

and  induced mechanical allodynia, reverted the ratio of Al/
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A2 reactive astrocytes, and activated the PI3K/Akt sig-
naling pathway, which was similar to the effects pro-
duced by minocycline; however, intrathecal injection of
AMD3100 did not increase the analgesic effect of mino-
cycline; and (4) LY294002, a specific PI3K inhibitor,
inhibited the analgesic effect and A1/A2 transformation
induced by minocycline and AMD3100 after SMIR.
These results indicate that Al and A2 astrocytes play
different roles in the development of CPSP. The trans-
formation of A1/A2 astrocytes during the development
of CPSP was regulated by microglia, and the CXCR7/
PI3K/Akt pathway is considered to be the downstream
mechanism involved.

Previous studies have shown that SMIR induces CPSP
that lasts at least 22 days without nerve injury [3]. Three
rat pain models are similar to the SMIR model: the

thoracotomy model, the gastrocnemius incision model,
and the paw incision model. Unlike the thoracotomy
model, where nerve degeneration leads to persistent pain
[36], the SMIR model causes persistent pain without
nerve injury. In addition, the paw incision model and
gastrocnemius incision model induce mechanical allody-
nia for up to 4days and 8 days, respectively, while the
SMIR model induces mechanical allodynia for at least 3
weeks [3]. Therefore, we used the SMIR model in this
study and found that it could induce persistent post-
operative pain.

It is known that activated astrocytes are involved in
the maintenance of chronic pain [7, 37]. Recent studies
have also demonstrated that reactive astrocytes have two
different phenotypes, A1 and A2, which play neurotoxic
and neuroprotective roles, respectively [14]. Neurotoxic
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Al astrocytes, which secrete toxic factors that kill
mature oligodendrocytes and neurons, have been shown
to be involved in a variety of neurodegenerative diseases
[38] and spinal cord injury [39]. The detrimental role of
Al astrocytes in traumatic brain injury has also been
well documented [40]. A2 reactive astrocytes have been
shown to play a neuroprotective role in traumatic brain
injury [17]. In the present study, we observed an imbal-
anced astrocytic polarization of Al and A2 in the spinal
cord of the rat SMIR model. During the development of
CPSP, reactive astrocytes were mainly expressed as Al
astrocytes, with very few A2 astrocytes found. When
mechanical allodynia was relieved in SMIR rats by intra-
thecal injection of minocycline or AMD3100, the expres-
sion of Al astrocytes was decreased, and the expression
of A2 astrocytes was increased. These results indicate
that A1 astrocytes contribute to pain development, while
A2 astrocytes are beneficial for relieving pain. Regulating
the ratio of A1/A2 astrocytes may represent a new strat-
egy for preventing CPSP.

A previous study showed that Al astrocytes were in-
duced by activated microglia via the secretion of IL-1a,
TNFaq, and Clq [14]. Qian et al. found that microglia in-
duced the formation of Al astrocytes by activating the
Notch-Stat3 pathway in spinal cord injury [16]. Micro-
glia induced the transformation of astrocytes into a

neuroprotective phenotype by downregulating the P2Y1
receptor after brain trauma [41]. A2 astrocytes are
induced by damaged neurons via the secretion of
prokineticin-2 [42]. Milk fat globule epidermal growth fac-
tor 8 can decrease the expression of Al astrocytes and in-
crease the expression of A2 astrocytes by upregulating the
activation of the PI3K/Akt pathway and downregulating
the activation of the nuclear factor kappa-light-chain-en-
hancer of activated B cell pathway [43]. In addition, many
studies suggested that microglia were activated in the early
stages of chronic pain and thus appear to be involved in
the initiation of chronic pain [44—47]. Consistent with this
evidence, we found that microglial activation occurred
earlier than astrocytic activation after SMIR and was ac-
companied by increased IL-1«, TNFa, and Clq levels in
the spinal cord. Moreover, reactive astrocytes were mainly
expressed as the Al phenotype in the spinal cord after
SMIR. These results suggested that Al reactive astrocytes
were induced by microglia during CPSP.

Minocycline, which selectively inhibits the activation
of microglia, has no direct effect on neurons or astro-
cytes [44]. As a second-generation tetracycline, it has
antibacterial and anti-inflammatory effects and also has
antioxidant and anti-apoptotic effects [48]. In addition,
minocycline is emerging as a promising therapy for
chronic pain due to its good lipid solubility, easy passage
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through the blood-brain barrier, and analgesic effects in
a variety of pain models [44, 49]. Choi et al. have shown
that minocycline alleviated the development of mirror
pain by inhibiting the production of IL-1p from micro-
glia and suppressing astrocytic activation in inflamma-
tory pain models [21]. In line with this, our results show
that the intrathecal injection of minocycline prevents
SMIR-induced mechanical allodynia. Al astrocytes were
significantly downregulated, and A2 astrocytes were
dramatically upregulated after intrathecal injections of
minocycline. These results indicated that minocycline
relieved CPSP by reverting the ratio of A1/A2 astrocytes.
They also confirmed that Al reactive astrocytes were
induced by microglia during CPSP.

CXCR?7 is involved in inflammatory communication
between glial cells and neurons, which regulates the
polarization of glial cells. Odemis et al. found that CXCR?
was expressed on the surface of astrocytes in the CNS
[50]. However, some studies found that CXCR7 was
expressed in both astrocytes and microglia [51]. CXCR7
promotes cell maturation, differentiation, polarization,
and migration when combined with its ligand CXCL12
[52, 53]. In addition, studies have shown that G-protein-
coupled receptor kinase 2 in microglia regulates the
signaling of CXCL12-bound CXCR7 by silencing and
internalizing CXCR7 in astrocytes [54]. Evidence indicates
that activation of CXCR7 can generate neuroprotective
effects in the CNS by inhibiting the activation of microglia
and astrocytes as well as by modulating M1/M2 microglial
polarization and A1/A2 astrocyte transformation [25].
Our results showed that CXCR7 was predominantly
colocalized with GFAP, with some colocalized with Ibal
or NeuN. The expression of CXCR7 decreased after
SMIR, while it increased after minocycline pretreatment
in SMIR rats, indicating that minocycline could regulate
the expression of CXCR7 during CPSP.

Next, the CXCR7 agonist AMD3100 was injected intra-
thecally into SMIR rats, either alone or in combination
with minocycline. Our results showed that AMD3100
attenuated SMIR-induced mechanical allodynia. CXCR7
was upregulated, Al astrocytes were increased, and A2
astrocytes were decreased after intrathecal injection of
AMD3100. However, we found that the analgesic effect of
AMD3100 alone was less than that of minocycline alone
or in combination with AMD3100. This suggests that
there may be other mechanisms involved in the analgesic
effect of minocycline, apart from CXCR7. For example, in
sciatic nerve ligation, minocycline alleviates neuropathic
pain by upregulating glutamate transporters in glial cells
and preserving the normal activation of NMDA receptors
in sensory synapses in the spinal cord [20].

Numerous studies have documented that CXCR7?
signaling plays a role in promoting cell proliferation and
differentiation through the PI3K/Akt signaling pathway
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[27, 28]. The PI3K/Akt signaling pathway is an import-
ant downstream pathway of mGluR5-mediated neuro-
protection after cerebral ischemia [55]. Similarly, the
PI3K/Akt pathway is essential for minocycline to reduce
ketamine-induced neurological damage by promoting
neural stem cell differentiation to neurons and inhibiting
ketamine-induced cell apoptosis [56]. In this study, we
found that the PI3K/Akt pathway was significantly
downregulated during the development of CPSP, which
was reversed after minocycline or AMD3100 treatment.
LY294002, a specific PI3K inhibitor, antagonized the an-
algesic effect of minocycline and AMD3100 after SMIR.
These results suggested that minocycline and AMD3100
relieved mechanical allodynia after SMIR via the PI3K/
Akt pathway.

In an Alzheimer’s disease model, the transformation of
reactive astrocytes to the Al phenotype was accompan-
ied by reduced activation of the PI3K/Akt pathway,
while transformation to the A2 phenotype was accom-
panied by increased activation of the PI3K/Akt pathway
[43, 57]. In line with this, we found that during the
development of CPSP, an increase in Al astrocytes was
accompanied by reduced activation of the PI3K/Akt
pathway, while the decrease in A1l astrocytes induced by
AMD3100 and minocycline was accompanied by in-
creased activation of the PI3K/Akt pathway. In addition,
LY294002 pretreatment eliminated the decrease in the
number of Al astrocytes and the increase in the number
of A2 astrocytes induced by minocycline and AMD3100
in the spinal cord of SMIR rats. Therefore, these results
indicate that the PI3K/Akt signaling pathway is an
essential downstream mechanism by which microglia
and CXCR7 regulate the transformation of reactive
astrocytes during CPSP.

There is a limitation to our study. Due to the lack of
effective CXCR?7 inhibitors, we did not investigate the
effect of inhibition of CXCR?7 signaling on the analgesic
effect of minocycline and A1/A2 expression. Although
CXCR?7 small interfering RNA or CXCR7 knockout ani-
mals can be considered to further confirm the function
of CXCR?7 as the downstream mediator in microglia, our
results suggest that there may be other mechanisms in-
volved in the induction of Al astrocytes by microglia.
For example, Zou et al. demonstrated that the inhibition
of the fibroblast growth factor 2/fibroblast growth factor
2, receptor 1 (FGF2/FGFR1) pathway resulted in an in-
crease in Al astrocytes after infrasound damage [58].
Therefore, there are other receptors and signaling path-
ways related to the unbalanced polarization of astrocytes
toward the Al phenotype in the development of CPSP,
which requires further study.

This study demonstrated the different roles of Al and
A2 astrocytes in the development of CPSP, but the de-
tailed mechanism by which they regulate pain was not
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explored. A previous study showed that mitochondrial
dysfunction in Al astrocytes caused inflammation and
neuronal death, which promoted the development of
neurodegenerative diseases [59]. In rat models of Alzhei-
mer’s disease, Al reactive astrocytes may drive neuronal
death by releasing D-serine, which is the adjunctive
agonist for excess glutamate to activate extrasynaptic N-
methyl-D-aspartate receptors [60]. Bone mesenchymal
stem cell-derived exosomes have been shown to inhibit
the production of Al neurotoxic astrocytes, accompan-
ied by decreased neuronal apoptosis, axonal regeneration,
and functional recovery after spinal cord injury [61]. There-
fore, Al astrocytes may promote the development of CPSP
by releasing D-serine and pro-inflammatory factors that im-
pair synaptic plasticity as well as by inducing neuronal and
axonal injury and neuroinflammation. In contrast, A2
astrocytes promote neuronal survival and tissue repair by
secreting neuroprotective factors. Studies have shown that
the increased reactivity of A2 astrocytes was accompanied
by improvements in mitochondrial energy metabolism, a
decrease in pro-inflammatory factors, and an increase in
neuroprotective factors such as brain-derived neurotrophic
factor and glial cell-derived neurotrophic factor [42, 59, 62].

Therefore, the role of Al astrocytes in regulating synaptic
plasticity, energy metabolism, and neuroinflammation
during chronic pain and the mechanism of A2 astrocytes in
inhibiting the development of pain require further study.

Conclusion

This study is the first to show that Al astrocytes con-
tribute to the development of CPSP, while A2 astrocytes
are beneficial for relieving CPSP. Microglia induced the
transformation of astrocytes to the Al phenotype in the
spinal cord by reducing the activation of the CXCR7/
PI3K/Akt signaling pathway during CPSP (Fig. 8).
Reverting Al reactive astrocytes to A2 astrocytes may
represent a new strategy for preventing CPSP. However,
the precise roles of Al and A2 astrocytes in regulating
CPSP require further study.
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