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Abstract

Background: Mast cells play an important role in early immune reactions in the brain by degranulation and the
consequent inflammatory response. Our aim of the study is to investigate the effects of rh-relaxin-2 on mast cells
and the underlying mechanisms in a germinal matrix hemorrhage (GMH) rat model.

Methods: One hundred seventy-three P7 rat pups were subjected to GMH by an intraparenchymal injection of
bacterial collagenase. Clodronate liposome was administered through intracerebroventricular (i.c.v.) injections 24 h
prior to GMH to inhibit microglia. Rh-relaxin-2 was administered intraperitoneally at 1 h and 13 h after GMH. Small
interfering RNA of RXFP1 and PI3K inhibitor LY294002 were given by i.c.v. injection. Post-GMH evaluation included
neurobehavioral function, Western blot analysis, immunofluorescence, Nissl staining, and toluidine blue staining.

Results: Our results demonstrated that endogenous relaxin-2 was downregulated and that RXFP1 level peaked on
the first day after GMH. Administration of rh-relaxin-2 improved neurological functions, attenuated degranulation of
mast cells and neuroinflammation, and ameliorated post-hemorrhagic hydrocephalus (PHH) after GMH. These
effects were associated with RXFP1 activation, increased expression of PI3K, phosphorylated AKT and TNFAIP3, and
decreased levels of phosphorylated NF-kB, tryptase, chymase, IL-6, and TNF-a. However, knockdown of RXFP1 and
PI3K inhibition abolished the protective effects of rh-relaxin-2.

Conclusions: Our findings showed that rh-relaxin-2 attenuated degranulation of mast cells and neuroinflammation,
improved neurological outcomes, and ameliorated hydrocephalus after GMH through RXFP1/PI3K-AKT/TNFAIP3/NF-
kB signaling pathway.
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Background

GMH is the most common neurological disorder of
newborns. It is defined as the rupture of immature blood
vessels in the subependymal brain tissue of the prema-
ture infant [1]. The complications after GMH include
neuroinflammation, hydrocephalus, primary and second-
ary brain injury, and developmental delay [2, 3]. Among
all of those, the activation of inflammatory cascades
could be the main factor leading to post-hemorrhagic
consequences, such as long-term morphological and
functional impairment [4]. Mast cells are considered the
first responders and are able to initiate and magnify im-
mune responses in the brain. Therefore, inhibition of the
inflammatory response of mast cells is critically import-
ant at the early stage after GMH.

Mast cells are present in various areas of the brain
and in the meninges [5]. Brain mast cells are mainly of
a tryptase-chymase positive phenotype [6]. However,
their number and distribution can quickly change in
response to a number of environmental stimuli, such
as trauma and stress. They release histamine, seroto-
nim, tryptase, chymase, and TNF-a after activation.
Furthermore, they can crosstalk indirectly with micro-
glia in the release of cytokines. Therefore, treatments
focused on reducing proinflammatory cytokines via
inhibiting mast cells could be potentially important in
attenuating mast cell degranulation and inflammation
after GMH [7].

Relaxin-2 is a member of the insulin-like peptide
family, which can bind to its receptor RXFP1 with high
affinity. Several recent studies have reported that
relaxin and RXFP1 are expressed in the local arteries
of mice and rats [8—10]. In addition to a role in the
reproductive system during pregnancy, a growing
number of literature suggests that relaxin has extensive
cardiovascular effects, such as protecting against fibro-
sis and early inflammation and promoting vasodilation
and angiogenesis [11, 12]. Currently, a number of stud-
ies showed that PI3K-AKT is one of the downstream
pathway of the interaction between relaxin and RXFP1
[13]. Moreover, tumor necrosis factor-alpha-induced
protein 3 (TNFAIP3) plays an inhibitory role in
terminating NF-kB signaling. However, it is unknown
whether TNFAIP3 is a downstream mediator of
relaxin-2 in exerting its stabilizing effect on mast cells
after GMH.

Based on the abovementioned evidence, we hypothe-
sized that rh-relaxin-2 treatment could suppress mast
cell activation, consequently reduce the secretion of
proinflammotory cytokines (Tryptase, chymase, IL-6,
and IL-1f), improve neurological function in the short
and long term and ameliorate PHH, and that these bene-
ficial effects may be mediated by PI3K-AKT/TNFAIP3/
NE-«B signaling (Supplementary Fig. 1).
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Materials and methods

Animals

All experimental procedures were approved by the In-
stitutional Animal Care and Use Committee at Loma
Linda University. All studies were conducted in
accordance with the United States Public Health
Service’s Policy on Humane Care and Use of Labora-
tory Animals and reported according to the ARRIVE
guidelines. One hundred seventy-three P7 Sprague-
Dawley neonatal pups (weight = 12-14g, Harlan,
Livermore, CA) were randomly divided into Sham (n =
37) and GMH (n = 136) groups (Supplementary Table
1). All pups were housed with controlled temperature
and 12-h-light/dark cycle and given ad libitum access
to food and water. All rats (up to 21 days old) were
returned to their home cages with mothers after doing
surgery, drug administration, and behavior tests.
Neither collagenase-induced GMH nor administration
of rh-relaxin-2 caused mortality in this study. Investi-
gators were blinded to the experimental groups when
performing neurological tests, immunofluorescence,
toluidine blue staining, and quantitation Western blot
density.

GMH model and experimental protocol
The procedure for the GMH model using collagenase in-
fusion was performed as previously described [14].
Briefly, pups were anesthetized with isoflurane (3.0% in-
duction, 1-1.5% maintenance) on a stereotaxic frame.
After the skin was incised on the longitudinal plane and
the bregma was exposed, a 27-gauge needle with 0.3 U
clostridial collagenase (0.3 units of clostridial collagenase
VII-S, Sigma-Aldrich, MO) was inserted at coordinates
of 1.6 mmL, 1.5 mmA, and 2.7 mmV, and infused (1 ul/
min) using a 10-pl Hamilton syringe (Hamilton Co, Reno,
NV, USA) guided by a microinfusion pump (Harvard
Apparatus, Holliston, MA). The needle was kept in place
for an extra 10 min to avoid leakage and withdrawn at a
speed of 0.5 mm/min. The pups were placed back onto a
heated blanket after infusion and before being returned to
their mothers, and euthanized at different time points
according to the experimental design.
Intracerebroventricular drug administration was per-
formed as previously described [15] as GMH induction, but
the coordinates were at 1 mmA, 1 mmlL, and 1.7 mmV.
Recombinant human relaxin-2 (rh-relaxin-2, Sigma-
Adrich) was dissolved in phosphate-buffered saline
(PBS). Pups were administered at different dosages
(30 pg/kg, 60 pg/kg, and 90 ug/kg, GMH + rh-relaxin-2
groups) or PBS (GMH + vehicle group) via intraperito-
neal injections at 1h and 13 h after GMH. The Sham
group was treated with the same volume of the solvent
(PBS, 2 pl) of clostridial collagenase by stereotaxic injec-
tions as control.
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Rat-derived RXFP1 siRNA (0.5 nm/2 pl, Thermo Fisher),
scramble siRNA (0.5 nm/2 pl, Thermo Fisher), and clodro-
nate liposome (15 pg/3 pl/rat, Encapsula Nano Sciences)
were infused i.c.v. at 24 h prior to GMH induction.

Phosphatidylinsitol-3-kinase (PI3K) inhibitor LY294002
(50 mM, 2 pl, Sigma) was infused by i.c.v. injection at 1h
prior to GMH induction.

Experiment 1

The time course of endogenous relaxin-2, its receptor
RXFP1, and the mast cell marker chymase and tryptase
in the whole brain at 0.5, 1, 3, 5, and 7 days after GMH
was analyzed by Western blot. The cellular localization
of receptor RXFP1 and tumor necrosis factor-a-induced
protein 3 (TNFAIP3) was detected at 1day after GMH
by double immunofluorescence staining on mast cells.
Thirty-six rat whole brains were collected after perfusion
with cold PBS at 0 (naive), 0.5, 1, 3, 5, and 7 days after
GMH for Western blot (Supplementary Fig. 2).

Experiment 2

The outcome of rh-relaxin-2 treatment was assessed
during the first 3 days and between 21 and 28 days after
GMH. The pups were randomly divided into 5 groups:
Sham, GMH + PBS, GMH + rh-relaxin-2 (30 pg/kg),
GMH + rh-relaxin-2 (60 pg/kg), and GMH + rh-relaxin-
2 (90 pg/kg). Exogenous rh-relaxin-2 (Sigma) was
dissolved in PBS and administered in a total volume of
60 pl intraperitoneally (i.p.) at 1h and 13 h after GMH.
Short-term (negative geotaxis and body righting reflex)
and long-term (rotarod test, foot fault, and water maze)
neurological tests were examined during the first 3 days
and between 21 and 28 days after GMH, respectively.
The Nissl staining samples were also collected at 28 days
after GMH (Supplementary Fig. 2).

Experiment 3

To evaluate the mast cell activation, the number of mast
cells was quantified in the perihematoma area and
thalamus on the first day after GMH by toluidine blue
staining. Eighteen pups were divided into groups: Sham
(n = 6), GMH + vehicle (n = 6), and GMH + rh-relaxin-
2 (60 pg/kg, n = 6) (Supplementary Fig. 2).

Experiment 4

To evaluate the effect of RXFP1 in vivo on mast cell
degranulation after administration of rh-relaxin-2 post-
GMH, clodronate liposome was administered i.c.v. on
the left side of the brain to inhibit the microglial activa-
tion at 24 h prior to GMH induction. Meanwhile, RXFP1
small interfering RNA (RXFP1 siRNA) and scramble
siRNA (Scr siRNA) were also infused by i.c.v. injection
on the right side of the brain. The whole brain samples
were collected to conduct Western blot analysis on the
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first day post-GMH and after being perfused with cold
PBS. The pups were randomly divided into six groups:
Sham, GMH + vehicle, GMH + vehicle + clodronate
liposome, GMH + clodronate liposome + rh-relaxin-2
(i.p. 60pug/kg), GMH + clodronate liposome + rh-
relaxin-2 (i.p. 60 pg/kg) + Scr siRNA, and GMH + clo-
dronate liposome + rh-relaxin-2 (i.p. 60 pg/kg) + RXFP1
siRNA (Supplementary Fig. 2).

Experiment 5

To assess the role of PI3K-AKT pathway in vivo on mast
cell degranulation after administration of rh-relaxin-2
post-GMH, clodronate liposome was administered i.c.v.
on the left side of the brain to inhibit the microglial
activation at 24 h prior to GMH induction. At the same
time, LY294002 was administered by i.c.v. injection at 1
h on the left side of the brain prior to GMH induction.
The whole brains were collected for Western blot on the
first day post-GMH after being perfused with cold PBS.
The pups were divided randomly into the following
groups: Sham, GMH + vehicle, GMH + vehicle + clodro-
nate liposome, GMH + clodronate liposome + rh-relaxin-2
(ip. 60 pg/kg), GMH + clodronate liposome + rh-relaxin-2
(ip. 60 pug/kg) + DMSO, and GMH + clodronate liposome
+ rh-relaxin-2 (i.p. 60 pg/kg) + LY294002 (Supplementary
Fig. 2).

Immunofluorescence

Double fluorescence staining was performed as described
previously [16]. Sections were blocked with 5% donkey
serum for 1 h and incubated at 4 °C overnight with primary
antibodies: rabbit anti-RXFP1 (1:100, Biorbyt, orb157275),
mouse anti-tryptase (1:200, Abcam, ab2378), mouse anti-
chymase (1:200, Santa Cruz, sc-59586), and rabbit anti-
TNFAIP3 (1:100, Lifespan, LS-C352948) followed by
incubation with appropriate fluorescence-conjugated
secondary antibodies for 2 h at room temperature. Negative
control staining was performed by omitting the primary
antibody. Fluorescence microscopy and LASX software
were used to image the sections (Leica DMi8; Leica Micro-
systems, Wetzlar, Germany).

Neurological examinations

Neurological tests were performed in a random and
blinded setup as previously reported [17]. Short-term
neurological tests, namely negative geotaxis and righting
reflex, were conducted from day 1 to day 3 after GMH.
Long-term neurological tests, including rotarod, foot
fault, and water maze tests, were performed from day 21
to day 28 after GMH.

In detail, negative geotaxis was tested to record the
duration of the pups to turn 90° and 180° when posi-
tioned head downward on a 45° inclined plane. The
maximum recording time was 60 s (three trials/pup/
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day). For the righting reflex, the pups were placed on
their backs on a horizontal plane, and the time needed
for the pup to right itself in a prone position on its four
paws was recorded. The maximum recording time was
20 s (three trials/pup/day).

A foot fault test was conducted and the total numbers
of missteps were recorded. When the animal’s forelimb
or hind limb fell into one of the grid openings, a foot
fault was recorded. The maximum recording time was
60 s.

In a rotarod test, the animals were placed on a rotating
wheel (Columbus Instruments) and tested at a starting
speed of 5rpm and 10 rpm with acceleration at 2 rpm
per 5s. The time latency for the animals to remain on
the rotating wheel and the speed at which animals fell
down from the rotarod were measured and averaged
from 3 repeated trials.

The water maze test used a circular pool (diameter:
110 cm) filled with water at 24 + 1°C. A transparent
escape platform (diameter: 11 cm) was submerged 1 cm
beneath the water and placed at a fixed position at the
center of one of the quadrants. On day 6, a probe trial
was performed to assess spatial memory retention. Dur-
ing this trial, animals were allowed to swim freely for 60
s, but no platform was present. Swim distance, escape
latency, velocity, and the percentage of time in the target
quadrant were digitally recorded and analyzed by a
tracking software (Noldus Ethovision).

Toluidine blue staining

Frozen sections were stained in toluidine blue work-
ing solution for 2-3 min. Sections were dehydrated
quickly through 95% and 2 changes of 100% alcohol
(10 dips in each since stain fades quickly in alcohol)
after being washed in distilled water for three times.
Finally, sections were cleared in xylene and covered
with a resinous mounting medium. Mast cells were
counted at perihematoma and thalamus areas for 3
sections per sample (1 = 6/group).

Nissl staining

Nissl staining was conducted and analyzed as previously
described [18]. Brain sections were dehydrated in 95%
and 70% ethanol for 2 min and then washed in distilled
water for 2 min. Sections were stained with 0.5% cresyl
violet (Sigma-Aldrich, USA) for 2min and washed in
distilled water for 10 s followed by dehydration with
100% ethanol and xylene for 2 min twice, respectively,
before a coverslip with Permount was placed. Volumes
were calculated as the average delineated area from
10 um sections taken at = 2.5mm, 1.2mm, 0.7 mm
rostral, and 2.9 mm caudal of the bregma multiplied by
the depth of the cerebroventricular system. Image] software
was used to measure cortical thickness and white matter
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area in Nissl stained histological brain sections. These
indexes were relative to the control group [18, 19]. Calcula-
tions were performed in a blinded fashion.

Western blot

Brain tissues were collected and stored in a — 80 °C
freezer after being perfused with cold PBS (0.1 M, pH
7.4). Western blot was performed as described previ-
ously [14, 20]. After extraction of protein samples,
protein quantification was performed using Lowry meth-
odology (BioRad, USA). Each sample containing 50 pug of
protein were separated by SDS-PAGE gel electrophoresis
and then transferred onto nitrocellulose membranes.
Membranes were blocked with 5% milk and incubated
with the following primary antibodies overnight at 4 °C:
rabbit anti-RXFP1 antibody (Biorbyt, USA, orb157275),
rabbit anti-relaxin 2 antibody (Invitrogen, USA, PA5-
76483), mouse anti-mast cell tryptase antibody (Abcam,
USA, ab2378), rabbit anti-mast cell chymase antibody
(Santa Cruz, USA, sc-59586), rabbit anti PI3K (CST,
USA, #4249), rabbit anti-phospho-AKT (CST, USA,
#9271s), rabbit anti-AKT(CST, USA, #9272), rabbit
anti-TNFAIP3 antibody (Lifespan, USA, LS-C352948),
rabbit anti-NF-kB (Novusbio, USA, NBP1-87760), rabbit
anti-phospho-NF-kB (CST, USA, #3033S), rabbit anti-
IL-6 (Abcam, USA, ab9324), rabbit anti-TNF-a (Abcam,
USA, ab9755), and goat anti-B-actin (Santa Cruz Biotech-
nology, USA, sc-1616). B-actin was used as the internal
loading control. Membranes were then incubated with
horseradish-peroxidase conjugated secondary antibodies for
1h at room temperature. Membranes were probed with an
ECL Plus chemiluminescence reagent kit (Amersham
Biosciences, USA). The relative density of protein was
analyzed by Image] software (ImageJ 1.5, NIH, USA).

Statistical analysis

All data were presented as a mean + SD. All analyses
were performed using GraphPad Prism 6 (GraphPad
software). Normal distribution was first confirmed using
the Shapiro-Wilk normality test. For the data that passed
the normality test, the statistical differences among
groups were further analyzed using one-way ANOVA
followed by Tukey’s multiple comparison post hoc
analysis. For the data that failed the normality test,
Kruskal-Wallis one-way ANOVA on ranks was used,
followed by Tukey’s multiple comparison post hoc ana-
lysis. P < 0.05 was considered statistically significant.

Results

Endogenous relaxin-2 was downregulated and RXFP1
level peaked on the first day after GMH

Western blot results showed that there was a significant
decrease in the expression of endogenous relaxin-2 at
12 h after GMH (Fig. 1a, b). The expression of RXFP1
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increased at 12h after GMH, peaked on the first day,
and declined significantly on the third, fifth, and seventh
day after GMH (Fig. 1la, c). Mast cell marker chymase
expression increased and peaked on the first day and
diminished on the third day after GMH (Fig. 1la, d).
Additionally, tryptase, another marker of mast cells, in-
creased dramatically at 12 h, peaked on the first day, and
decreased on the third day after GMH (Fig. 1la—e). Double
immunofluorescence staining demonstrated that the
receptor RXFP1 was expressed abundantly on mast cells
marked with tryptase (Fig. 2B2, B4, C2, C4) and chymase
(Fig. 2E2, E4, F2, F4) on the first day after GMH.
Furthermore, TNFAIP3 (Supplementary Fig. 3B and
F) was also co-localized in mast cells marked by
tryptase (Supplementary Fig. 3A and D) and chymase

(Supplementary Fig. 3E and H) on the first day after
GMH.

rh-relaxin-2 treatment inhibited mast cell response after
GMH

In order to explore whether rh-relaxin-2 inhibits mast
cell degranulation after GMH, we used toluidine blue as
the specific staining of mast cells in the perihematoma
and thalamic areas and quantified the numbers of mast
cells on the first day after GMH. The results showed
that the total numbers of violet mast cells with rh-
relaxin-2 treatment were decreased compared to the
vehicle group in the perihematoma (Fig. 3b-d) and
thalumic (Fig. 3f-h) areas. There were scarcely any violet
mast cells in the sham groups (Fig. 3a, d, e, h).
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Intraperitoneal administration of rh-relaxin-2 improved
short-term neurological function at 72 h post-GMH

Three dosages (30 pg/kg, 60 pg/kg, and 90 pg/kg) of rh-
relaxin-2 were administered via intraperitoneal injections at
1h and 13h after GMH. Pups in the vehicle group took
significantly longer time to finish the action from head
downward to the prone 90° (Fig. 4a) and 180° (Fig. 4b)
position compared to the sham group in the first 3 days
after GMH. There were significant differences in negative
geotaxis between the three treatment groups and vehicle
on the first, second, and third day after GMH. Among these
treatment groups, both the medium and high dosages of
rh-relaxin-2 improved short-term neurological function in
negative geotaxis and body righting reflex (Fig. 4c). Consid-
ering the drug safety profile, we chose the medium dose of
rh-relaxin-2 (60 pg/kg) for the following studies.

rh-relaxin-2 treatment ameliorated long-term

neurological deficits post-GMH

In the rotarod test, rh-relaxin-2 (60 pg/kg) treatment sig-
nificantly increased the falling speed and falling latency
in both 5 rpm (Fig. 4d, e) and 10 rpm (Fig. 4d, €) acceler-
ation groups compared to the vehicle group. In the foot
fault test, animals in the vehicle group had significantly
more total foot slips compared to the rh-relaxin-2
(60 pg/kg)-treated group (Fig. 4f). Moreover, the water
maze test showed that animals from the vehicle group
swam a significantly longer distance (Fig. 4g), took more
time to find the platform (Fig. 4h), and spent less time
in the target quadrant during the probe trial (Fig. 4j, k)
compared to sham animals. In contrast, rh-relaxin-2-
treated animals performed better (Fig. 4j, k) than
vehicle-treated animals. These findings indicated that
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rh-relaxin-2 treatment improved memory function at 28
days after GMH. There was no significant difference in
swimming velocity among these 3 groups (Fig. 4i),
meaning that the differences in finding the platform was
related to the memory recovery, rather than the swim-
ming ability.

rh-relaxin-2 treatment attenuated ventricular dilation and
gray matter loss and restored cortical thickness and white
matter area after GMH

Ventricular dilation is a major demonstration of PHH. We
evaluated whether this could be attenuated by rh-relaxin-2
treatment. Significant ventricular dilation (Fig. 41) was
observed in vehicle-treated animals, but the ventricular
volume was reduced significantly with rh-relaxin-2 treat-
ment (Fig. 41, m). Gray matter loss was significant in
vehicle-treated animals, while it was also significantly
attenuated with rh-relaxin-2 treatment (Fig. 41, n). Loss of
cortical tissues was significantly attenuated with rh-relaxin-
2 treatment (Fig. 41, o) compared to vehicle-treated ani-
mals. Relative white matter area was significantly less in
the vehicle group than that of the sham group and rh-
relaxin-2 treatment pups (Fig. 41, p).

Knockdown of RXFP1 abolished the stabilizing effects of
rh-relaxin-2 on mast cells after GMH

Clodronate liposome was administered i.c.v. at 24 h prior
to GMH to avoid the interference in immune response
from macrophages or microglia (Fig. 5a, 1, Supplementary
figure 4). Western blot results showed that the expression
of RXFP1 was increased dramatically after GMH com-
pared to sham animals (Fig. 5a, c). Knockdown of RXFP1

by specific siRNA significantly inhibited the expression of
RXFP1 in RXFP1 siRNA pups (Fig. 5a, ), PI3K (Fig. 5a,
d), phosphorylated Akt (Fig. 5a, e), and TNFAIP3 (Fig. 5a,
f), which was accompanied by the increase of phosphory-
lated NF-«B (Fig. 5a, g), chymase (Fig. 5a, h), tryptase
(Fig. 5a, i), IL-6 (Fig. 5a, j), and TNF-a(Fig. 5a, k)
expression on the first day after GMH.

Inhibition of PI3K-Akt axis reversed the stabilizing effect
of rh-relaxin-2 on mast cells after GMH

LY294002 was used to inhibit PI3K (Fig. 6a, 1). The results
demonstrated that PI3K (Fig. 6a, d) was reduced signifi-
cantly by LY294002 on the first day after intracerebroven-
tricular injection. The expression of phosphorylated AKT
(Fig. 6a, e) and TNFAIP3 (Fig. 64, f) also decreased subse-
quently. However, phosphorylated NF-«xB (Fig. 6a, g),
chymase (Fig. 6a, h), tryptase (Fig. 6a, i), IL-6 (Fig. 64, j),
and TNF-a (Fig. 6a, k) expression elevated significantly on
the first day after GMH.

Discussion

GMH is the most common neurological disorder of
newborns, and the major neurological complications fol-
lowing intraventricular hemorrhage are neuroinflamma-
tion, cerebral palsy, PHH, and cognitive deficits [21].
Neuroinflammation is a trigger of secondary injury after
GMH. Mast cells are the first responders in neuroin-
flammation after intracranial hemorrhage, which can
release inflammatory mediators, such as cytokines, pro-
teinases, and reactive oxygen species, to initiate and
magnify the immune response in the brain. Therefore,
inhibition of neuroinflammation focused on attenuating
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Fig. 4 Intraperitoneal administration of rh-relaxin-2 improved short-term neurological function at 3 days after GMH. Negative geotaxis (a, b) and
righting reflex (c) demonstrated that medium (60 pg/kg) and high (90 pg/kg) dosages of rh-relaxin-2 significantly improved neurological function
compared to vehicle-treated pups in the first 3 days. *P < 0.05 vs Sham, #P < 0.05 vs GMH + vehicle, $P < 0.05 vs low dosage (30 pg/kg) of rh-relaxin-2,
one-way ANOVA, Tukey's test, n = 7/group. rh-relaxin-2 (60 pg/kg) treatment significantly increased the falling speed and falling latency in both 5 rpm -
and 10 rpm (d, e) acceleration groups. In the foot fault test, animals in the vehicle group had significantly more total foot slips compared to the rh-
relaxin-2 (60 pg/kg) treatment group (f). The water maze test showed that animals from the vehicle group swam significantly longer in 1 min (g), took
more time to find the platform (h), and spent less time in the target quadrant during the probe trial (j, k) compared to the sham animals. In contrast,
rh-relaxin-2-treated animals performed better (j, k) than vehicle. *P < 0.05 vs Sham, #P < 0.05 vs GMH + vehicle, one-way ANOVA, Tukey's test, n = 10/
group. In addition, rh-relaxin-2 administration reduced ventricular volume (I, m) and gray matter loss (n), and increased relative cortical thickness (o)
and relative white matter area (p) significantly. *P < 0.05 vs Sham, #P < 0.05 vs GMH + vehicle, one-way ANOVA, Tukey's test, n = 6
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mast cell degranulation was our primary strategy to treat
GMH in this study. Thus, we explored the therapeutic
effects of rh-relaxin-2 in inhibiting the degranulation of
mast cells and uncovered the potential mechanisms after
GMH. Firstly, we observed that the expression of
endogenous relaxin-2 decreased continuously and that
its receptor RXFP1 increased on the first day but
decreased in the late phase after GMH. The receptor
RXFP1 was expressed abundantly after GMH on mast
cells, which was marked by tryptase and chymase.
Additionally, administration of rh-relaxin-2 at the dosage
of 60 pg/kg improved short-term neurological functions
in the first 3 days, and inhibited mast cell degranulation
on the first day in the perihematoma and thamalus
areas. It also attenuated the motor and memory dysfunc-
tion and reduced the ventricular dilation in the long-
term studies. Moreover, knockdown of RXFP1 using
RXFP1 siRNA aggravated mast cell degranulation and
neuroinflammation, as shown by the decreased levels of
PI3K, phosphorylated AKT, and TNFAIP3 and increase
in chymase, tryptase, IL-6, and TNF-a. Furthermore,
degranulation of mast cells and neuroinflammation were
exacerbated with the inhibition of PI3K, which was

concomitant with downregulation of phosphorylated
AKT, TNFAIP3, and upregulation of chymase, tryptase,
IL-6, and TNF-a.

The naturally circulating hormone relaxin-2 is a mem-
ber of the insulin-like peptide family. It is well known to
be used in cervical ripening, scleroderma, or systemic
sclerosis and heart failure in basic and clinical research,
due to its vasodilatory and organ protective actions. In this
study, rh-relaxin-2 has been shown as a beneficial factor
involved in attenuating the degranulation of mast cells.
We observed that the endogenous relaxin2 decreased but
its receptor RXFP1 increased as early as 12 h post-GMH,
indicating a fast protective reaction to attenuate mast cell
degranulation. This data was different from other research
that RXFP1 mRNA was significantly downregulated on
day 3 in a subarachnoid hemorrhage model of rabbit [22].
It might be because we chose an earlier time point at 12 h
and 1 day post-GMH, which was concomitant with mast
cell activation. Our further study showed that rh-relaxin-2
attenuated neurological deficits significantly in the short
and long term after GMH. Therefore, improved outcomes
were attributed to suppressed degranulation of mast cells
by the systemic administration of rh-relaxin-2.
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The exact mechanism by which rh-relaxin-2 exerts its
protective effect in GMH still remains unclear so far.
The 72-h intravenous administration of rh-relaxin-2 in
acute myocardial infarction resulted in early beneficial
effects, including reduced inflammation [10]. In our re-
sults, after knockdown RXFP1 by specific RXFP1 siRNA,
mast cell markers chymase and tryptase, inflammatory
cytokines IL-6 and TNF-a, and classic phosphorylated
NF-kB all increased, which was consistent with the acute
myocardial infarction outcomes. Hence, RXFP1 could be
an important therapeutic target to reduce the degranula-
tion of mast cells after GMH.

Our current results indicated that mast cell degranula-
tion was exacerbated with inhibition of PI3K and also
led to the decrease of phosphorylated AKT on the first
day after GMH. Some research evidence demonstrated
the PI3K-AKT axis as an important therapeutic target in
attenuating degranulation of mast cells via suppressing
immune responses, which has been validated as a major
downstream pathway of RXFP1 activation [13]. RXFP1,
as the receptor of relaxin-2, is expressed on mast cells
abundantly after GMH. All of the abovementioned evi-
dence supports our results observed in GMH.

It is known that TNFAIP3 is an endogenous anti-
inflammatory factor that can reduce the expression of
IL-6 and TNF-a by inhibiting NF-kB activation [23]. As
shown in our results, TNFAIP3 expression was signifi-
cantly reduced after knockdown of RXFP1 and PI3K in
GMH animals. Thus, we hypothesized that TNFAIP3
may be a downstream factor of RXFP1 and the PI3K-
AKT axis in the context of GMH. Meanwhile, the
decrease of TNFAIP3 after inhibition by specific sSiRNA
promoted the expression of phosphorylated NF-kB and
inflammatory cytokines on the first day post-GMH. In
this process, after activation of RXFP1 by rh-relaxin-2,
an increase of TNFAIP3 mediated the reduction of NEF-
kB and functioned as a negative regulator of NF-kB.
Previous reports also showed that IL-6 and TNF-a levels
increased in TNFAIP3”/~ sham groups of an intracerebral
hemorrhage mouse model, suggesting that TNFAIP3 de-
ficiency caused spontaneous inflammation in the mouse
brain, which was consistent with our results in GMH
pups [24, 25]. Thus, our results, coupled with the previ-
ous research, suggested that rh-relaxin-2 attenuated
GMH-induced inflammation through the PI3K-AKT/
TNFAIP3/NF-«B pathway in mast cells.
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There are some limitations in our current research.
We only studied the mast cell activation rather than the
detailed interaction between microglia and mast cells
after GMH. In addition, we did not further explore the
potential protective effects of rh-relaxin-2 on neurons
and the reduction of glial scar in tissues in GMH.

Conclusions

The activation of RXFP1 by rh-relaxin-2 could attenuate
degranulation of mast cells and improve neurological
function by inhibiting NF-«B through the PI3K-AKT/
TNFAIP3 signaling pathway after GMH in a rat model.
Therefore, rh-relaxin-2 may serve as a promising thera-
peutic agent to reduce neuroinflammation and secondary
brain injury in GMH patients.
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