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Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to
dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P)
1 receptor (STPR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However,
the impact of STPR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains
unknown. Here, we demonstrate that naloxone-precipitated morphine withdrawal in mice altered de novo sphingolipid
metabolism in the dorsal horn of the spinal cord and increased S1P that accompanied the manifestation of several
withdrawal behaviors. Blocking de novo sphingolipid metabolism with intrathecal administration of myriocin, an inhibitor of
serine palmitoyltransferase, blocked naloxone-precipitated withdrawal. Noteworthy, we found that competitive (NIBR-15) and
functional (FTY720) STPR1 antagonists attenuated withdrawal behaviors in mice. Mechanistically, at the level of the spinal
cord, naloxone-precipitated withdrawal was associated with increased glial activity and formation of the potent
inflammatory/neuroexcitatory cytokine interleukin-13 (IL-103); these events were attenuated by STPR1 antagonists. These
results provide the first molecular insight for the role of the STP/S1PR1 axis during opioid withdrawal. Our data identify
STPR1 antagonists as potential therapeutics to mitigate opioid-induced dependence and support repurposing the S1PR1
functional antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
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Introduction

Chronic neuropathic pain is difficult to treat and sufferers
are often left with opioids as the only option for some pain
relief. However, the long-term use of opioids, such as
morphine, is limited by the development of paradoxical
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painful hypersensitivity (opioid-induced hyperalgesia,
OIH) and tolerance to the antinociceptive effects of opi-
oids over time [1, 2]. OIH coupled with tolerance often
prompts extended use and escalated dosages that can trig-
ger further changes, which eventually lead to additional
unwanted side effects such as dependence, addiction, and
abuse [1, 2]. Despite the serious side effects associated
with long-term opioid use, this class of drugs remains the
gold standard for pain management [3].

Identifying opioid-sparing approaches that also miti-
gate the development of dependence, addiction, and
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abuse requires continued investigation of the molecular
underpinnings of how opioids cause such adverse effects.
Emerging evidence shows that long-term morphine ex-
posure can lead to dysregulation of sphingolipid metab-
olism within the dorsal horn spinal cord [4, 5].
Sphingolipids were once thought to serve mainly as
structural cellular components, but now are recognized
to be potent signaling molecules [6]. Ceramide and
sphingosine-1-phosphate (S1P) are among the best-
studied sphingolipids [6] and have been implicated in
numerous disease states [6, 7], including pain and sev-
eral of its co-morbidities [8, 9]. S1P is formed from its
precursor ceramide produced by activation of enzymes
in the sphingomyelin (sphingomyelinase; SMase), and/or
de novo (serine palmitoyl transferase, SPT) metabolic
pathways (Fig. la) [6, 10]. Ceramide is hydrolyzed to
sphingosine, which is then phosphorylated by sphingo-
sine kinases to produce S1P [6, 10]. Our recent work un-
covered an important link within the central nervous
system (CNS) between opioids and sphingolipids in the
neurobiology of OIH and antinociceptive tolerance [4,
5]. We found that repeated administration of morphine
in rodents altered sphingolipid metabolism in the CNS
and increased the levels of ceramide and S1P, which dir-
ectly contributed to the development of OIH and toler-
ance [5]. Once formed, S1P is released from cells and
initiates autocrine and paracrine signaling by activating
any of the five known G protein-coupled S1P receptor
subtypes (S1PR1-5) (inside-out signaling) [11]. S1P sig-
naling is terminated by S1P lyase and phosphatases [12].
Except for SIPR4, all S1IPRs are found throughout the
CNS, but their cell distribution varies [13—16]. We have
recently identified that S1IPR1 was responsible for trans-
ducing the effects of S1P in the development of OIH
and tolerance [4]. Its inhibition with S1PR1 functional
and competitive antagonists significantly attenuated the
development of OIH and tolerance, identifying SIPR1 as
a target for therapeutic intervention for OIH and toler-
ance [4].

The impact of S1IPR1 antagonists on other undesirable
side-effects of opioids remains unknown. Opioid with-
drawal is perhaps one of the most damaging side effects,
as the unpleasant physical and affective symptoms asso-
ciated with withdrawal compel patients to continue tak-
ing opioids despite the risks [17]. These symptoms
emerge in patients within hours after the last dose and
some affective symptoms such as anxiety, depression,
and cravings can persist for up to several weeks in
chronic users [18]. It is important to find treatments that
can help manage these symptoms to facilitate the cessa-
tion of opioid use and prevent potential relapse. Guided
by our previous work, we now present the first evidence
that SIPR1 antagonists may also have a use in opioid-
induced dependence.
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Materials and methods

Study approval

All animal studies were performed in accordance with
the International Association for the Study of Pain, the
National Institutes of Health guidelines on laboratory
animal welfare and approved by the Saint Louis Univer-
sity Institutional Animal Care and Use Committee, and
the University of Adelaide Animal Ethics Committee
(Ethics approval number M-60-2009).

Animal

Pathogen-free adult male BALB/c mice (20-30 g starting
weight) from Envigo Laboratories (Fredrick, MD, USA)
or Laboratory Animal Services (University of Adelaide,
Adelaide, AU) were housed 4-5 per cage. All animals
were kept in a controlled environment (12 h light/dark
cycle) with food and water available ad libitum. Animals
were randomly separated into treatment groups for each
experiment. Experimenters were blinded to treatments
during behavior and biochemical assessments.

Test compounds

Morphine sulfate was obtained as a kind gift from Mal-
linckrodt Pharmaceuticals (St. Louis MO, USA) or from
the NIDA drug repository (Bethesda MD, USA). Fingoli-
mod (FTY720; Gilenya®) was purchased from Cayman
Chemical (Ann Arbor, MI, USA). NIBR-15 was synthe-
sized as previously described [19].

Experiments

Naloxone-precipitated withdrawal

For all studies, chronic morphine dependence was in-
duced as previously described [20] in male BALB/C mice
by repeated intraperitoneal (i.p., 0.2ml) injections of
morphine given twice daily (morning and afternoon) for
three consecutive days with an escalating dose schedule:
day 1 (7.5 and 15 mg/kg), day 2 (30 and 30 mg/kg), and
a single dose on day 3 (30 mg/kg). Saline control groups
of age-matched male mice received an equal number of
saline injections over 3 days. To induce withdrawal be-
haviors, naloxone (10 mg/kg, i.p., 0.2 ml) was injected 1 h
after the last morphine injection on day 3 (Fig. 1a). Ani-
mals not receiving naloxone were given an i.p. injection
of saline (0.2 ml).

Opioid withdrawal behaviors

Behaviors associated with withdrawal in rodents (jump-
ing, front paw shakes, and hunching) [20-23] were mea-
sured as previously described [20]. The animals were
placed into individual plexiglass observation cylinders
(25cm x 1lcm) and the incidence of jumping, front
paw shakes, and hunching were recorded for 30 min.
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Fig. 1 Sphingolipid metabolism is enhanced in the spinal cord during naloxone-precipitated withdrawal and contributes to withdrawal behaviors. (@) Schematic
of treatment paradigms. (b) Schematic of sphingolipid metabolic pathways. (c-e) LC-ESHMS/MS analysis of multiple sphingolipid species of lipids extracted from
the mouse spinal cord 1 h after intraperitoneal naloxone (Mor+naloxone, n = 5) or its vehicle (Mor; n = 6) administration to mice treated with 3 days of escalating
morphine treatments (c). Naloxone-precipitated withdrawal was associated with significant enhancements of sphingolipid metabolite levels, including S1P and
dihydro-S1P, when compared to its vehicle. Individual ceramide (d) and dihydroceramide (e) species are shown. (f) Naloxone-precipitated withdrawal behaviors
(eg, jumping, front paw shaking, and hunched/prayer postures) in mice treated with morphine and naloxone (Mor+naloxone; n = 6) were attenuated in mice
administered a single daily intrathecal myriocin (300 nM; Mor+naloxone+myriocin; n = 6) given 15 min before first dose of morphine of the day. Jumping [t(5.8)
=39,p=0008,d =228, n = 6], front paw shaking [1(93) = 42, p = 0002, d = 245, n = 6], and hunching [t(99) = 44, p = 00014, d = 254, n = 6]. Data are mean
+ SEM and analyzed by two-tailed Welch's corrected t test and Benjamini-Hochberg analysis (b-d) or two-tailed Welch's corrected t test (e). *g < 004 (b) or g <
0046 (c, d) vs. Mor and #p < 005 vs. Mor

Study 1: Spingolipidomics Male mice were given the
escalating doses of morphine and then treated with sa-
line (n = 5) or naloxone (1 = 6) on day 3. Saline-
perfused lumbar portions of the spinal cords were har-
vested 30min  after  behavioral testing for
sphingolipidomics.

Study 2: Inhibition of morphine withdrawal by
myriocin Male mice were given the escalating doses of
morphine (i.p.) in the presence of myriocin (n = 6) or
vehicle (saline, # = 6). Myrioicin (300 nM) or its vehicle
was given 15 min before the first morphine injection of
morphine each day for 3 days via acute intrathecal (i.th.,
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5 uL) injection as previously described [24, 25]. The dose
of myriocin was chosen from previous studies [5, 26].
All animals received an i.p. injection of naloxone on day
3.

Study 3: Inhibition of morphine withdrawal by
S1PR1 antagonist Male mice were given the escalating
doses of morphine (i.p.) in the presence of NIBR-15 (3
mg/kg/day; n = 4) or vehicle (2-5% DMSO in 0.5%
methylcellulose, » = 4) or in the presence of FTY720
(0.1 mg/kg/day, n = 12) or vehicle (2-5% DMSO in 0.5%
methylcellulose, n = 11). Test agents were given by oral
gavage (0.2 ml) as previously described [27]. The doses
of NIBR-15 and FTY720 were chosen from previous
studies [27]. All animals received the i.p. injection of na-
loxone on day 3.

Study 4: Neuroinflammation Male mice were given sa-
line (n = 7) or the escalating doses of morphine after
oral administration of vehicle (n = 6) or FTY720 (0.1
mg/kg/day, n = 3). On day 3, saline-treated mice re-
ceived i.p. saline vehicle injection and all morphine
treated mice received the ip. injection of naloxone.
Saline-perfused lumbar portions of the spinal cords were
harvested 30 min after behavioral testing for Western
blot and ELISA.

Sphingolipid analysis by mass spectrometry
Sphingolipids were extracted and quantified by liquid
chromatography-electrospray ionization-tandem mass
spectrometry (LC-ESI-MS/MS) using a 5500 QTRAP
(ABI, Ramingham, MA) as previously described [28].

Western blot analyses

Mouse spinal cords were homogenized in cell lysis buffer
containing 1% protease inhibitor cocktail (Sigma-Al-
drich, Sydney, Australia, catalog # P8340), sonicated,
then centrifuged at 14,000 RPM for 5 min and superna-
tants collected. Lysate proteins (30 ug determined by
BCA assays) were separated on 8% or 10% sodium dode-
cyl sulfate-polyacrylamide gels and transferred to nitro-
cellulose. Membranes were treated overnight at 4°C
with antibodies to glial fibrillary acid protein (GFAP) (1:
3000, Santa Cruz Biotechnology, Dallas, USA, catalog #
sc-6170) or CD11b (1:2000, Santa Cruz Biotechnology,
USA, catalog # sc-6614) followed by secondary anti-
bodies for 1.5 h. Immunoblots were incubated for 1 min
with the enhanced chemiluminescence detection re-
agent, and visualized using a LAS 4000 imaging system
(GE Healthcare, UK). The absorbance of protein bands
of interest were then quantified using the ImageQuant
TL software (GE Healthcare, UK). Subsequently, mem-
branes were washed and then immunoblotted with (-
actin antibody (1:10,000, Sigma-Aldrich, Australia,
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catalog # A3854) as a marker of total protein loaded per
each lane. GFAP and CD11b protein levels were normal-
ized relative to B-actin levels. Adjustments to blot im-
ages for publication were limited to linear brightness
and contrast or color inversion using Image J v.1.47 [29]
where noted. All blot images were cropped for the clar-
ity of data presentation.

Cytokine ELISA

The levels of cytokines in spinal cord lysates were
assessed using commercially available ELISA kits (R&D
Systems, Minneapolis MN, USA) in accordance with the
manufacturer’s protocol.

Statistics

Data are expressed as mean + SEM for N animals as
noted. Data were excluded only if animals showed signs
of illness not related to study manipulation or interven-
tion or if a data point was considered an outlier by two-
tailed Grubb’s test (p < 0.05). Sphingolipidomic data
were analyzed by two-tailed, Welch’s corrected ¢ test
and adjusted for the false discovery rate determined by
Benjamini-Hochberg method (Q < 0.05). All other data
were analyzed by two-tailed, Welch’s corrected ¢ test or
one-way ANOVA with Dunnett’s comparisons with sig-
nificance determined at P < 0.05. All data were analyzed
using GraphPad Prism (version 8.0.1 for Windows,
GraphPad Software, San Diego CA USA, www.graphpad.
com).

Results and discussion

Mice were treated with escalating doses of morphine
(i.p.) before receiving a single i.p. dose of naloxone or
vehicle (Fig. la). LC-ESI-MS/MS analysis of multiple
sphingolipid species in the dorsal horn of the spinal cord
harvested 1h after naloxone or vehicle revealed that
sphingolipid metabolism was dramatically altered in
mice given naloxone after morphine than mice given the
vehicle after morphine (Fig. 1). Specifically, intermedi-
ates of de novo biosynthesis of sphingolipids, dihydro-
sphingosine, and dihydroceramide were increased
following naloxone, implicating enhanced de novo bio-
synthesis of sphingolipids in naloxone-precipitated with-
drawal (Fig. 1b, c). Ceramides, monohexosylceramides,
monohexosyldihydroceramides, sphingomyelins, and
dihydrosphingomyelins were also concomitantly in-
creased (Fig. 1lc-d). Importantly, the dysregulation of
sphingolipid metabolism led to significant increases in
the levels of sphingosine and the bioactive sphingolipid
metabolites, S1P, and dihydro-S1P (Fig. 1c). These
changes accompanied a significant increase in the inci-
dence of several behaviors that have been long-
associated with opioid withdrawal in rodent models (e.g.,
jumping, front paw shaking, and hunched/prayer
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postures) (Fig. 1f). To further investigate the link be-
tween de novo sphingolipid biosynthesis and the devel-
opment of withdrawal behaviors, we co-treated mice
with myriocin to inhibit serine palmitoyltransferase, the
first and rate-limiting enzyme of this pathway [30]. The
incidences of naloxone-precipitated withdrawal behav-
iors were significantly reduced in mice receiving a daily
intrathecal injection of myriocin 15 min before the first
morphine dose of the day than those receiving its vehicle
(Fig. 1f). These results suggest that alterations in de novo
sphingolipid biosynthesis within the spinal cord are
functionally linked to withdrawal behaviors.

Since our sphingolipidomic data revealed that S1P and
dihydro-S1P increased in the spinal cord with naloxone-
precipitated withdrawal and our previous studies showed
the strong contributions of SIPR1 to OIH and tolerance
[4], we used the SIPR1 antagonists NIBR-15 and
FTY720 to investigate the role of SIPR1 in withdrawal
behaviors. NIBR-15 is a potent and highly selective
S1PR1 competitive antagonist [19]; whereas, FTY720 is a
S1PR1 functional antagonist [31]. FTY720, when phos-
phorylated by sphingosine kinase 2 to its active counter-
part FTY720-P, acts as an S1P agonist at all S1PRs,
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except S1IPR2, but functionally inhibits S1IPR1 signaling
after binding to S1PR1 and causing sustained depletion
of the receptor at the plasma membrane [31]. Mice were
given NIBR-15 or FTY720 15 min before the first dose
of morphine or saline of the day (Fig. 1la). Co-
administration of NIBR-15 or FTY720 (Fig. 2a, b) with
morphine significantly reduced the incidence of
naloxone-precipitated withdrawal behaviors, unraveling
a role for S1PR1.

SIPR1 is found throughout the CNS including the
spinal cord and expressed preferentially in glial cells, in
particular in astrocytes [13, 16, 32]. Recent evidence sug-
gests that glia play an important role in opioid use disor-
ders [33, 34]. Both astrocytes and microglia within the
dorsal horn spinal cord are activated following pro-
longed exposure to opioids [35-39]. Glial cells are essen-
tial for the development of many opioid-induced adverse
effects including withdrawal [22, 40, 41].

Once activated, glial cells release various inflammatory
cytokines, including tumor necrosis factor (TNE),
interleukin-1p (IL-1B), and interleukin-8 (IL-8) [22, 40—
42]. During withdrawal, when opioid receptor activation
is either spontaneously precipitated or abruptly ceased,
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this inflammatory environment amplifies neuronal excit-
ability and the withdrawal symptoms [43]. We have re-
cently shown that intrathecal activation of SIPR1 with
the highly selective SIPR1 agonist SEW2871 activated
the nod-like receptor family, pyrin domain containing 3
(NLRP3) inflammasome and increased IL-1f; these ef-
fects occurred predominantly through astrocyte-specific
SIPR1 [44]. In mice exhibiting naloxone-precipitated
withdrawal behavior, the levels of IL-1p (Fig. 2c) as well
as glial markers GFAP (astrocytes; Fig. 2d) and CD11b
(microglia/macrophage; Fig. 2d) were significantly in-
creased in the dorsal horn of the spinal cord. These
events were significantly attenuated by FTY720 (Fig. 2c-
e). This is intriguing in light of the documented role of
IL-1B in opioid-induced dependence. Previous studies
reveal that morphine-induced IL-1f release in the spinal
cord contributes to the development of withdrawal [45—
47] and to a broad range of spinal adaptations that con-
tribute to opioid physical dependence [48]. These mech-
anisms are varied and implicate the ability of IL-1p to
enhance presynaptic glutamate release [49] and reduce
glial glutamate uptake [50], thus leading to enhanced
glutamatergic signaling within the spinal cord [48]. Add-
itionally, IL-1P synergizes with other inflammatory cyto-
kines to enhance interferon-gamma production that can
downregulate the potent anti-inflammatory cytokine,
interleukin-10 (IL-10) [51, 52]. This imbalance between
pro- and anti-inflammatory cytokine productions has
been postulated to underlie the increased neuronal excit-
ability in the spinal cord following opioid withdrawal
[40, 46]. The mechanisms whereby naloxone-
precipitated withdrawal triggers sphingolipid alteration
are not known. Previous studies have shown that opioids
acting at the p-opioid receptor can cause receptor in-
ternalization and trigger oxidative stress [53] that can
enhance central neuroimmune signaling and stimulate
sphingolipid metabolism [54]. However, morphine and
its metabolite morphine-3-glucudonide can also activate
toll-like receptor 4 (TLR4) [55], a pattern recognition re-
ceptor that directly activates innate immune and inflam-
matory pathways. TLR4 is activated following naloxone-
precipitated withdrawal [43, 55, 56], and its inhibition
ameliorates withdrawal behaviors [57]. TLR4 activation
can activate enzymes involved in ceramide and S1P me-
tabolism such as serine palmitoyl-transferase and
sphingosine kinase [58, 59]. The role of TLR4 in opioid-
induced sphingolipid metabolism dysregulation is under
investigation.

Our findings in this study were limited to the effects
of S1PR1 signaling had on the physical manifestation of
withdrawal in rodent models. These physical symptoms
parallel the somatic withdrawal symptoms in humans
that include myalgia, hyperalgesia, chills, and stomach
cramping [60]. However, opioid withdrawal syndrome
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also has negative affective aspects that include stress,
malaise, emotional pain, anxiety, and depression [60, 61].
Collectively, the physical and affective components pro-
vide a negative reinforcement that can motivate opioid
seeking behaviors [61]. The affective aspects of opioid
withdrawal are quite complex and will require extensive
studies to understand how S1PR1 signaling may impact
their development. Moreover, our studies focused on the
effects in male mice as they have been reported to ex-
hibit greater physical withdrawal symptoms and sensitiv-
ity to naloxone (i.e., less naloxone to induce withdrawal)
than females [60, 61]. Future studies will need to include
the effects in females to parse out any potential sex-
dependent difference. Despite these limitations, our
current findings remain very exciting because they iden-
tify a new area of investigation with a high potential for
quick development of desperately needed therapies to
treat and prevent opioid withdrawal. Several S1PR1
functional and competitive antagonists have been devel-
oped over the last decade. Two S1PR1 functional antag-
onists are now FDA-approved for the treatment of
multiple sclerosis: the pro-drug FTY720 (fingolimod;
Gilenya®, Novartis) that was approved in 2010 [31] and
ozanimod (RPC1063, Zeposia®, Celgene) that was ap-
proved in 2020 [62, 63]. SIPR1 competitive antagonists
such as NIBR-15 [19] and TASP0277308 [64] are in ad-
vanced preclinical development for a variety of disease
states.

Conclusions

Our findings provide evidence that activation of the de
novo pathway and activation of the S1IP/S1PR1 axis con-
tributes functionally to morphine-precipitated withdrawal
through increased glial cell reactivity and neuroinflamma-
tion in male mice. Our findings are promising and warrant
further in depth investigation in that they offer a potential
strategy whereby FDA-approved S1PR1 antagonists may
be used as opioid adjuncts addressing a pressing and un-
met medical need.
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