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Abstract

Background: Accumulating evidence has documented that microRNA-7 (miR-7) plays an important role in the
pathology of various diseases. However, the potential role of miR-7 in brain tissue inflammation (BTI) remains
unclear.

Methods: We detected the expression of miR-7 in LPS-induced murine BTI model and observed the possible
effects of miR-7 deficiency on the pathology of BTI. To elucidate the mechanism, the target gene of miR-7 was
screened out by Gene chip assay and its potential roles in BTI were evaluated by Western blot,
immunofluorescence, and RNAi assay, respectively.

Results: MiR-7 was upregulated in brain tissue in BTI mice and its deficiency could significantly aggravate the
pathology of brain tissue. Moreover, RORα, a new target molecule of miR-7, was upregulated in brain tissue from
miR-7 deficiency BTI mice. Of note, downregulation of RORα could remarkably exacerbate the pathology of brain
tissue and elevate the transduction of NF-κB and ERK1/2 signaling pathways in brain tissue from miR-7 deficiency
BTI mice. Furthermore, RORα and miR-7 were dominantly co-expressed in neurons of BTI mice. Finally, RORα
synergized with miR-7 to control the inflammatory reaction of neuronal cells in response to LPS stimulation.

Conclusions: MiR-7 expression is upregulated in BTI model. Moreover, miR-7 synergizes with its target gene RORα
to control the inflammation reaction of neurons, thereby orchestrating the pathology of BTI.
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Background
Brain tissue inflammation (BTI), a complicated process
including a series of integrated steps, is closely related to
the occurrence and development of various brain dis-
eases [1–3]. Up to now, the underlying mechanism of
pathology of BTI remains elusive. Recent evidence has
shown that microRNAs (miRNAs), small endogenous
RNAs of 21–25 nucleotides capable of guiding the post-
transcriptional silencing of their target mRNAs through
base pairing encompassing mature mRNA 3′-untrans-
lated region (3′-UTR), play essential regulatory roles in

the development of BTI [4–6]. For instance, miR-126 is
implicated in brain vascular inflammation and intra-
cerebroventricular (I.C.V) administration of miR-126-3p
mimic can significantly suppress the upregulation of
phosphoinositide-3-kinase regulatory subunit 2, as well
as reduce blood-brain barrier permeability and brain
edema [7]. Moreover, Peli1 is an important E3
ubiquitin-protein ligase contributing to neuroinflamma-
tion. MiR-142a-3p and miR-155-5p can directly suppress
Peli1 expression and protect against the inflammatory
effects of METH treatment partially through activating
p38 MAPK and NF-κB inflammatory pathways [8].
These studies indicate that miRNAs might be potential
candidates for therapy against BTI. Therefore, further in-
vestigation on the possible roles of distinct miRNA mol-
ecules in the development of BTI will not only benefit to
the understanding on pathology of BTI, but also be
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valuable for the development of novel therapeutic strat-
egies against brain diseases.
MicroRNA-7 (miR-7) was first identified by Lagos-

Quintana in 2001 [9] and has been reported to regulate
the biology of various tumor cells and the development
of inflammation diseases by repressing the expression of
different target molecules [10, 11]. For instance, Fan
et al. found that miR-7 suppressed angiogenesis of colo-
rectal cancer cells through ERK signaling by downregu-
lation epidermal growth factor receptor [12]. Moreover,
Ye et al. reported that miR-7 deficiency promoted p65-
mediated aberrant NF-κB activation to facilitate gastric
cancers metastasis and ultimately resulted in the worse
clinical outcome in human gastric cancer [13]. Our pre-
vious study also showed that miR-7 regulated TLR9 sig-
naling and affected the growth and metastatic potential
of human lung cancer cells [14]. Importantly, many re-
cent studies have reported that miR-7 is dominantly
expressed in brain tissue and involved in the biological
functions of brain [15–17]. Moreover, miR-7 also plays
an important role in the development of brain diseases
[18–20]. For example, Chen et al. reported that miR-7
was closely related to the differentiation of neural stem
cells and the development of the cerebral cortex [21].
Moreover, Kabaria et al. found that miR-7 exerted a
cytoprotective effect by elevating the expression level of
Nrf2 through inhibiting Keap1 expression [22]. However,
the exact role of miR-7 involved in the development of
BTI has yet to be fully elucidated.
To this aim, in the present study, we analyzed the

expression level of miR-7 in LPS-induced murine BTI
model and observed the possible influence of miR-7
deficiency on the pathology of BTI. We found that
miR-7 was upregulated in brain tissue in BTI model
and its deficiency could significantly aggravate the de-
velopment of brain inflammation. Moreover, RORα, a
new target molecule of miR-7, was upregulated in
brain tissue from miR-7 deficiency BTI mice. Of note,
we found that downregulation of RORα could re-
markably exacerbate the pathology of brain tissue, ac-
companied by elevated transduction of NF-κB and
ERK1/2 signaling pathways in miR-7 deficiency BTI
mice. Thus, our data suggested a novel network
model in which miR-7 synergizes with, but not antag-
onizes, its target gene RORα to control the pathology
of BTI, which could ultimately aid the understanding
of the pathogenesis of BTI and the development of
new therapeutic strategies against clinical inflamma-
tory brain diseases.

Materials and methods
Mice
C57BL/6 wild-type (WT) mice and C57BL/6 background
miR-7 deficiency (miR-7def) mice (both 8–10 weeks of

age) were housed under specific pathogen-free (SPF)
conditions at Zunyi Medical University [23].

LPS-induced murine BTI model
WT mice andmiR-7def mice were intraperitoneally
injected with LPS (2.5 mg/kg of body weight, Escherichia
coli 0111: B4; Sigma) and control group with vehicle
(PBS) [24]. After 12 h, the brain tissue was collected.

Histopathology
Brain tissue was fixed in 4% (w/v) paraformaldehyde,
followed by routine dehydration and embedded in paraf-
fin, and cut into 4 μm thick. Then, slices were subjected
to xylene dewaxing, gradient ethanol dehydration, rou-
tine hematoxylin-eosin staining (H&E), and again dehy-
drated with gradient ethanol, followed by xylene
transparency and mounting. Pathological changes in
brain tissue were observed under a light microscope
(Olympus, Tokyo, Japan). Two investigators blinded to
group assignments analyzed the samples and determined
levels of brain inflammation injury.

Quantitative real-time PCR analysis
For miR-7 expression analysis, cDNA was synthesized by
TaqMan MicroRNA Reverse Transcription Kit (Ther-
moFisher Scientific) using S1000TM Thermal cycler
PCR Amplifier (Bio-Rad). Next, real-time PCR was per-
formed to quantify miR-7 expression by miR-7 probe of
TaqMan (Life Technologies) according to the instruc-
tions of the manufacturer using C1000TM Thermal cy-
cler Quantitative Real-time PCR Amplifier (Bio-Rad). U6
as endogenous control was used for normalization. For
mRNA analysis, cDNA was synthesized using a Prime
Script RT reagent kit (Takara, Kusatsu, Japan) according
to the manufacturer’s instructions. Real-time PCR was
carried out by SYBR Premix Ex Taq II (Takara, Kusatsu,
Japan) according to the instructions of the manufacturer.
GAPDH as endogenous control was used for
normalization. The relative expression levels of miR-7
and mRNAs were determined using the standard 2−ΔΔCT

(cycle threshold) method. The sequences of the primers
used for real-time PCR were shown in Table 1.

Fluorescence in situ hybridization (FISH)
To evaluate the cellular distribution of pre-miR-7-2 in
the brain, FISH assay was performed based as our previ-
ous description with some modifications [23]. Briefly,
before hybridization incubation, all solutions were pre-
pared with diethylpyrocarbonate-treated water. After
deparaffinization and rehydration, tissue sections were
treated by pepsin digestion. Sections were next incu-
bated or heated in the microwave, and then were incu-
bated with hybridization cocktail containing miR-7-2
probe (1:1000; EXIQON; no. 38485–01) at 42 °C for
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overnight. Next, the sections were washed in PBS and
incubated with a secondary antibody of Cy3 conjugated
goat-anti-rabbit IgG (1:250; Invitrogen) in the dark, at
room temperature for 1 h. Then, the slides were rinsed
with PBS-T three times, for 5 min each and counter-
stained, mounted with Slow Fade Gold Antifade Reagent
with DAPI (1:1000) in the dark, at room temperature for
10 min, before examination by fluorescence microscopy
(Zeiss Axioplan 2).

Enzyme-linked immunosorbent assay (ELISA)
The brain tissue was homogenized in 100mg/mL cold
PBS. The samples were centrifuged at 14,000×g for 15
min. The brain tissue supernatant or neuronal PC12
cells culture supernatant was collected for a protein
assay using a BCA protein assay reagent kit (Solarbio,
Beijing, China). The concentration of IL-1β, IL-6, TNF-
α, and TGF-β were determined using Quantikine Im-
munoassay kit (eBioscience) according to the manufac-
turer’s instructions, respectively. The ELISA results were
normalized to total protein concentration.

Multiplexed fluorescent immunohistochemical staining
According to Opal protocol of multiplexed fluorescent
staining, slides were deparaffinized in xylene and rehy-
drated in ethanol. Antigen retrieval was performed in 10
mmol/L citric acid buffer (pH 6.0) for 10 min using a
750-W microwave and rinsed with PBS-T three times,
for 5 min each, slides were blocked with 10% normal
goat serum at room temperature for 30 min and then,
incubated with rabbit anti-mouse RORα antibody (1:400;
Abcam; no. ab60134) overnight at 4 °C. After the over-
night incubation, slides were rinsed with PBS-T three
times and incubated with Goat anti-Rabbit IgG H&L
(HRP) secondary antibody (1:1000 dilution; Abcam; no.
ab6721) at room temperature for 1 h. Later, RORα was
visualized using PPD520 tyramine signal amplification

Table 1 The primer sequence used for real-time quantitative
PCR

Gene Primer sequence (5′-3′)

TGF-β F: CCCCATTCCTACTTCTCC

R: ACGCACCTTTCTGGTTACAC

IL-6 F: AGACAAAGCCAGAGTCCTTCAG

R: GGTCTTGGTCCTTAGCCACTC

TNF-α F: TGTCTACTGAACTTCGGGGTG

R: CTGCTCCTCCACTTGGTGGTT

IL-1β F: GAGCTTCAGGCAGGCAGTAT

R: TTGTTCATCTCGGAGCCTGTA

TROVE2 F: GAAGTGTGTCGCATTCCGACC

R: GGACAGTCGGAGGAGATCTTT

RORα F: GGAGACAAATCGTCAGGAATC

R: ACCAAACTTGACAGCATCTCG

Col4a3bp F: TTGAAGCTGCTCTTGACAGAC

R: TCTATGCGTCCCGACAGAAGA

Gpr158 F: AATTAGAAGCAGCCCAATGG

R: TTTCACGAACAGCACAAAGAA

Zfp212 F: ACCAAGTCACCCACCATCTCT

R: GAGAACCTGCTTCGAAACAA

Socs4 F: CCCCAGTGCCTGTATGTTCTT

R: CTGCTGCTCTGGCACATCAAT

C2cd2 F: TCAGGCCTTAGCCATGTGT

R: CGTGGGGACTTGAGTTTCA

Syt4 F: GAGAAGCTGGGGACACTCTT

R: ACGGGTCAGAGGTCATGGATT

Spock3 F: CAGTCTGTGGTTCTGATGGGC

R: GACTTATCGGAGGGACATGG

Gpr22 F: GCAAAACACCAACTGCTCCAA

R: ACTGCATGTTGATTTCCAGAA

Basp1 F: CTCTTTGACGGCCACGCTTTG

R: CTGAGCAAGAAGAAGAAGGGCT

Tmed5 F: TCGATCTCCAACGATGCCTT

R: TCACACCCTCTTTGGACAGTG

Ptprj F: TGCCATTTGCATTGCTCCAG

R: CTTAAGCCCAGGCACTTCGT

Zfp606 F: TCATGGACCAGTCTTGGGGG

R: ATCTCACCTCGACTTGGGCTA

Aqp11 F: TGCAGGAATCCCATCCACAC

R: CCCTCCTGCATAGGCCAAAA

1110059G10Rik F: TCTTCAGCTGTTAGGTCTCCC

R: GAGCAAGCGGAACCAAGTGT

Gtdc1 F: CACCCTTCTGTGTGGAGCTGA

R: TTACGGGGTAAGTAGCCCCA

GAPDH F: GAAGGTCGGAGTCAACGGATT

Table 1 The primer sequence used for real-time quantitative
PCR (Continued)

Gene Primer sequence (5′-3′)

R: ATGGGTGGAATCATATTGGAA

miR-7 F: CGGCGGTGGAAGACTAGTGATT

U6 F: AGAGAAGATTAGCATGGCCCCTG

Common reverse R: ATCCAGTGCAGGGTCCGAGG

Note: TROVE2 TROVE domain family, member 2; RORα RAR-related orphan
receptor alpha; Col4a3bp collagen, type IV, alpha 3 (Goodpasture antigen)
binding protein; Gpr158 G protein-coupled receptor 158; Zfp212 Zinc finger
protein 212; Socs4 suppressor of cytokine signaling 4; C2cd2 C2 calcium-
dependent domain containing 2; Syt4 synaptotagmin IV; Spock3 sparc/
osteonectin, cwcv and kazal-like domains proteoglycan 3; Gpr22 G protein-
coupled receptor 22; Basp1 brain abundant, membrane attached signal protein
1; Tmed5 transmembrane emp24 protein transport domain containing 5; Ptprj
protein tyrosine phosphatase, receptor type, J; Zfp606 zinc finger protein 606;
1110059G10Rik RIKEN cDNA 1110059G10 gene; Gtdc1 glycosyltransferase-like
domain containing 1; F forward primer; R Reverse primer
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Plus (1:100). Subsequently, slides were placed in citrate
buffer (pH 6.0) and subjected to microwave again, and
then incubated with primary rabbit antibodies for IBA-1
(1:1000 dilution; Abcam; no. ab178847) in a humidified
chamber at room temperature for 1 h. After incubating
with Goat Anti-Rabbit IgG H&L (HRP) secondary anti-
body for 1 h. IBA-1 was then visualized using PPD570
tyramine signal amplification. After washing in PBS
three times, sections were counterstained, mounted with
Slow Fade Gold Antifade Reagent with DAPI, and left
for 10 min in the dark at room temperature before
examination by fluorescence microscopy.

RORα RNAi transfer experiments in vivo
According to previous reports [25–27], the stereotaxic
coordinates were 0.8 mm posterior, 1.2 mm lateral to the
bregma, and 3mm ventral to the surface of the skull.
Twelve mice were divided randomly into two groups
(n = 6 per group), 5 μL RORα siRNA or negative control
(NC) siRNA was diluted with the same volume of trans-
fection reagent in vitro (Invivofectamine 3.0; Thermo-
Fisher, Scientific). After mixing gently, the solution was
I.C.V. through a micro syringe according to the guidance
of stereotaxic instrument (Kent Scientific Co., Torring-
ton, CT, USA) under anesthetized.

Cell culture
Neuronal PC12 cells and human embryonic kidney
cell line HEK 293T cells (saved in our lab) were cul-
tured in completed Roswell Park Memorial Institute
(RPMI-1640; GIBCO) medium containing 10% (v/v)
FBS, penicillin (100 IU/mL), and streptomycin
(100 μg/mL) on 100-mm dishes at 37 °C under 5%
CO2 humidified atmosphere.

Plasmid construction and luciferase reporter assay
The luciferase reporter assay was performed to deter-
mine whether RORα (Gene ID, 1988338) was a direct
target of miR-7. The possible sites (1806 bp–1812 bp
segment, ACTTGTT) of binding between RORα 3′-
UTR and miR-7 were predicted using miRDB database
(http://www.mirdb.org). A fragment of 200 bp contain-
ing wild-type RORα 3′-UTR (5′-ACTTGTT-3′) or a
random mutation sequence of mutant RORα 3′-UTR
(5′-GTCCACC-3′) was directly synthesized (Sangon,
Shanghai, China). Two fragments were ligated to pEZX-
FR02 reporter vector (GeneCopoeia, Rockville, MA,
USA), respectively. Then, the wild-type (RORα 3′-UTR
WT) or mutant reporter vector (RORα 3′-UTR MUT)
was co-transfected into HEK-293T cells in 12-well plates
with 100 nm miR-7 mimics or negative control (NC)
mimics by Lipofectamine 3000 (Invitrogen), respectively.
After 48 h, cells were lysed and subjected to luciferase

assays using the Dual Luciferase Reporter Assay System
(Promega).

Tissue immunohistochemistry (IHC)
Immunohistochemical staining was done using the SP
method (universal immunohistochemical staining kit,
Zhong-shan Golden Bridge BioTechnology Beijing,
China). Slices were subjected to xylene dewaxing and
gradient ethanol dehydration. Antigen retrieval was per-
formed in 10-mmol/L citric acid buffer (pH 6.0) for 10
min using a 750-W microwave and incubated with 3%
(v/v) methanol-hydrogen peroxide to block endogenous
peroxidases at room temperature for 15 min. Next, slices
were incubated with rabbit anti-mouse antibodies at
appropriate dilution in TBST overnight at 4 °C. The
primary antibodies used were as follows: IBA-1 (1:
8000; Abcam; no. ab178847), GFAP (1:500; Abcam;
no. ab68428), NeuN (1:1000; Abcam; no. ab177487),
RORα (1:1000; Abcam; no. ab60134), and NF-κB (1:
1000; Abcam; no. ab32536). PBS instead of primary
antibody served as a control. Slices were rinsed with
PBS-T three times and incubated with Goat Anti-
Rabbit IgG H&L (HRP) secondary antibody (1:1000;
Abcam; no. ab6721) at room temperature for 1 h.
Finally, slices were incubated with streptavidin-biotin
protein and peroxidase (1:200) and counterstained
with hematoxylin before observed under a light
microscope.

Western blotting analysis
After brain tissue was homogenates, total protein was
extracted, and protein concentration was quantified
using the BCA Protein Quantitation Kit. Total protein
was mixed with 5 × SDS protein sample buffer solution
(4:1) and heated at 100 °C for 10 min and stored at −
20 °C. Protein samples were subjected to SDS-PAGE and
transferred to polyvinylidene difluoride (PVDF) mem-
branes (Bio-Rad). The membranes were blocked with 5%
skim milk in PBS plus 0.05% Tween 20 (PBS-T) at room
temperature for 90 min, and then incubated with rabbit
anti-mouse antibodies at appropriate dilution in TBST
overnight at 4 °C. The primary antibodies used were as
follows: RORα (1:1000; Abcam; no. ab60134), NF-κB
(1:1000; Cell Signaling Technology; no. 4764), phos-
NF-κB (1:1000; Cell Signaling Technology; no. 3039),
ERK (1:1000; Cell Signaling Technology; no. 4695),
phos-ERK (1:1000; Cell Signaling Technology; no.
4370), AKT (1:1000; Cell Signaling Technology; no.
4691), phos-AKT (1:1000; Cell Signaling Technology;
no. 4060), and GAPDH (1:5000; Abcam; no. ab8245).
PBS instead of primary antibody served as a control.
After overnight incubation, the membrane was rinsed
with PBS-T three times and incubated with Goat
Anti-Rabbit IgG H&L (HRP) secondary antibody (1:
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Fig. 1 The expression of miR-7 is upregulated in BTI model. a Schematic representation of the animal experiments. b WT mice (n = 6 per group)
were intraperitoneally injected with LPS (2.5 mg/kg of body weight) and control group with PBS. After 12 h, the pathology of brain tissue was
observed by H&E staining (n = 3 per group; arrows indicate hemorrhage foci). c–f The relative expression levels of cytokines (IL-1β, IL-6, TNF-α,
and TGF-β) were detected by real-time PCR assay and calculated (n = 6 per group; t test). g The expression levels of pre-miR-7-1, pre-miR-7-2, and
pre-miR-7-b in brain tissue were determined by real-time PCR assay and calculated (n = 6 per group; t test). h The expression level of pre-miR-7-2
in brain tissue was determined by FISH (n = 3 per group). i The relative expression of mature miR-7 in brain tissue was analyzed by real-time PCR
assay and calculated (n = 6 per group, *P < 0.05, **P < 0.01)
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2000; Abcam; no. ab6721) at room temperature for 1
h. Finally, the signals were determined by chemilu-
minescence image system (Bio-Rad).

Immunofluorescence (IF)
Sections were hydrated and rinsed with PBS three
times, for 5 min each, then blocked with 10% normal
goat serum at room temperature for 30 min and

incubated with rabbit anti-mouse antibodies at appro-
priate dilution in TBST overnight at 4 °C. The pri-
mary antibodies used were as follows: RORα (1:100;
Abcam; no. ab60134), NeuN (1:100; Abcam; no.
ab177487), and GFAP (1:100; Cell Signaling Technol-
ogy; no. 80788). PBS instead of primary antibody
served as a control. Then, slices were rinsed with cold
PBS three times, for 5 min each, and incubated with a

Fig. 2 MiR-7 deficiency aggravates the pathology of BTI model. Animal experiments were performed according to Fig. 1a. a The expression level
of miR-7 in brain tissue was determined by Real-time PCR assay and calculated, respectively. b The expression level of pre-miR-7-2 was
determined by FISH (n = 4 per group). WT mice and miR-7def mice were intraperitoneally injected with LPS and control group with PBS. After 12
h, c the pathology of brain tissue was observed by H&E staining (n = 3 per group). Arrows in c indicate hemorrhage foci. d–k The expression
levels of IL-1β, IL-6, TNF-α, and TGF-β were analyzed by real-time PCR and ELISA assay (n = 6 per group; one-way ANOVA, *P < 0.05, **P < 0.01)
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Fig. 3 (See legend on next page.)
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secondary antibody of Alexa Fluor 488-conjugated
Goat Anti-Rabbit IgG (1:500; Invitrogen), Cy3-labeled
Goat Anti-Rabbit IgG (H+L) (1:500; Beyotime) in the
dark, at room temperature for 1 h. Finally, sections
were mounted with Slow Fade Gold Antifade Reagent
with DAPI, and examination by fluorescence micros-
copy (Zeiss Axioplan 2).

Gene expression microarray
Global gene expression array data was available in the
National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) under accession num-
ber GEO: GSE122114.

Nissl staining
Brain tissue was fixed in 4% (w/v) paraformaldehyde,
paraffin-embedded, and sliced in sections of 4-μm
thickness. After dewaxing in xylene and rehydration
through graded ethanol, the sections were hydrated in
1% (w/v) toluidine blue at 50 °C for 20 min. Two in-
vestigators blinded to group assignments analyzed the
samples and determined the level of brain inflamma-
tion injury. All brain fields at original magnification
× 100 and × 400 were examined for each example.

Statistical analyses
Data were expressed as the mean ± SEM from at least
three independent experiments. Statistical analysis was
performed by unpaired Student’s test (two-tailed) for
two groups Student’s t test or one-way analysis of vari-
ance (ANOVA) with Bonferroni’s correction for three or
more groups to evaluate statistical significance using
GraphPad Prism 7.0 software. P < 0.05 was considered
statistically significant.

Results
MiR-7 is upregulated in brain tissue of LPS-induced
murine BTI model
We first tested the expression level of miR-7 in BTI
model. As shown in Fig. 1 a and b, inflammatory cell
infiltration and hemorrhage foci were observed in
brain tissue of murine BTI model. Moreover, the rela-
tive expression levels of inflammatory cytokines IL-1β,
IL-6, TNF-α, and TGF-β in brain tissue also increased
significantly (Fig. 1c–f, P < 0.05), indicating BTI model
was successfully constructed [24]. As shown in Fig. 1 g,
Real-time PCR assay showed that the relative

expression levels of pre-miR-7-1 and pre-miR-7-2 in-
creased obviously, especially for pre-miR-7-2. Next, we
further determined the expression of pre-miR-7-2 in
brain tissue by FISH assay and obtained similar results
(Fig. 1h). Importantly, the relative expression level of
mature miR-7 also increased significantly in brain tissue
in murine BTI model (Fig. 1i, P < 0.05). These results
demonstrate that miR-7 is upregulated in brain tissue
in BTI model.

MiR-7 deficiency aggravates the pathology of BTI
Next, we further investigated the potential role of miR-7
in the pathology of BTI. As shown in Fig. 2 a and b, the
expression level of miR-7 significantly decreased in the
brain tissue of miR-7defmice, which was consistent with
our previous work [23]. Importantly, compared with WT
BTI model, the number of inflammatory cells and
hemorrhage foci increased obviously the brain tissue of
miR-7def BTI model (Fig. 2c). Real-time PCR analysis
further showed that the expression levels of pro-
inflammatory factor IL-1β, IL-6, and TNF-α in brain tis-
sue also increased significantly in miR-7defBTI model
(Fig. 2d, f, h, P < 0.05). By contrast, the expression level
of anti-inflammatory factor TGF-β decreased noticeably
(Fig. 2j, P < 0.05). Meanwhile, similar results were ob-
tained by ELISA assay (Fig. 2e, g, i, k, P < 0.05). These
data indicate that miR-7 deficiency aggravates the path-
ology of BTI.
It is well known that astrocytes and microglia play

an important role in brain inflammation [28–30]. To
further investigate the effect of miR-7 deficiency on
the pathology of BTI, we observed the possible
changes on astrocytes and microglia in brain tissue
and found that the number of astrocytes and micro-
glia were elevated in miR-7def BTI model (Fig. 3a–h,
P < 0.05). Previous literatures have demonstrated that
some signaling pathways, including AKT, ERK1/2, and
NF-κB signaling pathways, were involved in the devel-
opment of inflammatory diseases [31–33]. Thus, to
elucidate whether miR-7 deficiency resulted in the
change on these signaling pathways, the expression
levels of AKT, phos-AKT, ERK1/2, phos-ERK1/2, as
well as NF-κB and phos-NF-κB, were analyzed, re-
spectively. As shown in Fig. 3 i and j, compared with
those in WT BTI model, the expression levels of
phos-NF-κB and phos-ERK1/2 increased significantly
in miR-7def BTI model (P < 0.05). These results

(See figure on previous page.)
Fig. 3 MiR-7 deficiency alters the composition of immune cells and the transduction of NF-κB, ERK signaling pathways in BTI model. WT mice
and miR-7def mice were intraperitoneally injected with LPS (2.5 mg/kg of body weight) and control group with PBS. After 12 h, a–h the number
of astrocytes in hippocampus and microglia in cerebral cortex were analyzed by IF and IHC and calculated (n = 3, one-way ANOVA, **P < 0.01). i, j
The protein levels of AKT, phos-AKT, ERK1/2, phos-ERK1/2, NF-κB, and phos- NF-κB in brain tissue were analyzed by Western blot assay and
calculated, respectively (n = 3, one-way ANOVA, **P < 0.01)
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Fig. 4 (See legend on next page.)
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indicate that miR-7 deficiency aggravates the path-
ology of BTI by altering the transduction of the NF-
κB and ERK1/2 signaling pathways.

RORα is a novel direct target of miR-7 in BTI model
In order to explore the underlying mechanism of miR-7
deficiency on the pathology of BTI, we analyzed the glo-
bal gene expression profile in brain tissue of BTI model
(Fig. 4a, b). As shown in Fig. 4 c, given a twofold change
(up and down) in differential expression as a cutoff, 519
genes were upregulated, and 479 genes were downregu-
lated. Then, as shown in Fig. 4 d, we used miRDB data-
base and Venn analysis software to screen out 16
upregulated genes, including RAR-related orphan recep-
tor alpha (RORα), TROVE domain family, member
2(Trove2), Collagen, type IV, alpha 3 (Goodpasture anti-
gen) binding protein (Col4A3Bp), C2 domain-containing
protein 2 (C2Cd2), Zinc finger protein 606 (ZFP606),
suppressor of cytokine signaling (SOCS4), Receptor-type
tyrosine-protein phosphatase eta (PTPRJ), G protein-
coupled receptor 158 (GPR158), 111005, Brain abundant
membrane attached signal protein 1(BASP1), sparc/
osteonectin, cwcv and kazal-like domains proteoglycan
3(SPOCK3), Glycosyltransferase-like domain-containing
protein 1(GTDC1), Aquaporin11(Aqp11), transmem-
brane emp24 protein transport domain containing 5
(TMED5), G protein-coupled receptor22(GPR22), and
Synaptotagmin-4 (Syt4), which were closely associated
with inflammatory diseases according to previous litera-
tures [34–37]. To further investigate the putative target
of miR-7, we verified the expression levels of these 16
predicted target genes, respectively. Notably, in all pre-
dicted target genes of miR-7, RORα was significantly up-
regulated more than eightfold in the brain tissue of miR-
7def BTI model compared with WT BTI model (Fig. 4e,
P < 0.05). Furthermore, IF and IHC analysis also showed
that the expression level of RORα increased significantly
in brain tissue of miR-7def BTI model (Fig. 4f–i, P <
0.01). Finally, luciferase gene reporter assay showed that
miR-7 could directly regulate RORα expression (Fig. 4g).
Collectively, these data demonstrate that RORα is a
novel target of miR-7 in BTI model.

RORα is essential for the development of BTI
RORα belongs to a member of the NR1 subfamily of nu-
clear hormone receptors. An increasing body of

literature has documented that RORα plays an important
role in inflammatory reaction [38–40]. However, the
possible role of RORα in the pathology of BTI is still un-
known. Then, we silenced the expression of RORα by
RNAi to observe the possible change on the pathology
of BTI. As shown in Fig. 5 a and b, the relative expres-
sion level of RORα reduced significantly in brain tissue
from RORα-siRNA-treated group compared with control
group (P < 0.05). Surprisingly, the number of inflamma-
tory cells and vacuolar degeneration increased obviously
in RORα-siRNA-treated group (Fig. 5c). Moreover, the
mRNA expression levels of pro-inflammatory factor IL-
1β, IL-6, and TNF-α in brain tissue also increased sig-
nificantly (Fig. 5d, P < 0.05). By contrast, the expression
level of anti-inflammatory factor TGF-β decreased no-
ticeably (Fig. 5d, P < 0.05). Meanwhile, similar results
were also obtained by ELISA assay (Fig. 5e–h, P < 0.05).
IHC and IF assay further showed that the number of as-
trocytes and microglia elevated significantly in RORα-
siRNA-treated group (Fig. 5i–p, P < 0.05). Finally, we an-
alyzed the possible change of AKT, ERK, and NF-κB sig-
naling pathways and found that the levels of phos-NF-
κB and phos-ERK1/2 in RORα-siRNA-treated group in-
creased significantly (Fig. 5q, r; P < 0.05). These results
indicate that RORα plays an important role in the path-
ology of BTI.

Downregulation of RORα aggravates the pathology of
miR-7def BTI model
To further explore the underlying role of RORα in the
effect of miR-7 deficiency on BTI, we silenced the ex-
pression of RORα in miR-7defmice and then BTI model
was constructed as in the above description. The num-
ber of inflammatory cells and nuclear fragments in-
creased obviously in brain tissue in RORα-siRNA-
treated group (Fig. 6a). Moreover, as shown in Fig. 6 b,
the relative expression levels of pro-inflammatory factor
TNF-α, IL-1β, and IL-6 increased significantly in RORα-
siRNA-treated group while anti-inflammatory factor
TGF-β decreased noticeably compared with control
group (P < 0.05). Meanwhile, similar results were ob-
tained by ELISA assay (Fig. 6c–f, P < 0.05).
Furthermore, IHC and IF assay showed that the num-

ber of astrocytes and microglia were elevated signifi-
cantly in RORα-siRNA-treated group (Fig. 6g–n).
Finally, we analyzed the possible change of AKT, ERK,

(See figure on previous page.)
Fig. 4 RORα is a novel target of miR-7 in BTI model. WT mice and miR-7def mice were intraperitoneally injected with LPS (2.5 mg/kg of body
weight). After 12 h, brain tissue was collected. The global gene expression was analyzed by cDNA chip array. a Heatmap and b scatter plot of
gene expression. c The fold change and frequency. d Prediction of 16 target genes by using miRDB database (http://mirdb.org) and venn
analysis. e The fold change of the potential target genes of miR-7 in the brain tissue was analyzed by real-time PCR assay and calculated (n = 3,
one-way ANOVA). f, g The expression level of RORα was also determined by IF and h, i IHC assay (n = 3, one-way ANOVA). j Luciferase assay (n =
3, one-way ANOVA, **P < 0.01)
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and NF-κB signaling pathways. As shown in Fig. 6 o and
p, the protein levels of phos-NF-κB and phos-ERK1/2 in
RORα-siRNA-treated group increased significantly (P <
0.05). These results demonstrate that downregulation of
RORα exacerbates the effect of miR-7 deficiency on the
pathology of BTI.

RORα and miR-7 are co-expressed in neurons in BTI
model
Next, in order to further explore the connection between
RORα and miR-7 in pathology of BTI, we analyzed the
expression of RORα and miR-7 in neurons, microglia,
and astrocytes, which are major cell populations in brain
tissue in BTI model. Interestingly, double immunofluor-
escence labeling assay showed that RORα was domin-
antly expressed in neurons of brain tissue (Fig. 7a–c).
However, miR-7 expressed both in neurons and other
cells (Fig. 7d). Importantly, in neurons, the expression
level of RORα increased obviously in miR-7def BTI
model compared with WT BTI model (Fig. 7a), which
was consistent with our above data.
Previous studies have shown that neurons are involved

in the pathology of BTI [41–44]. And we found that
RORα and miR-7 were co-expressed in neurons of BTI
model. Then, we further observed the possible change of
neurons in brain tissue from BTI model. Data showed
that, compared with WT group, the number of neuron
cells did not change significantly in the brain tissue in
WT BTI model group (Fig. 7e, f, P > 0.05). However, we
found that, compared with WT group, the number of
Nissl bodies in neurons of WT BTI model group de-
creased obviously (Fig. 7g, h, P < 0.05), which was con-
sistent with previous literature [45]. Most importantly,
compared with WT BTI model, the number of Nissl
bodies in neurons decreased obviously in miR-7def BTI

Fig. 5 Silence of RORα aggravates the pathology and alters the NF-
κB, ERK signaling pathways. a The schematic representation of the
animal experiments. WT mice (n = 6 per group) were transfected
with RORα RNAi or negative control (NC) RNAi through lateral
ventricle. After 3 days, these mice were intraperitoneally injected
with LPS (2.5 mg/kg of body weight). Twelve hours later, brain tissue
was collected. b The expression level of RORα in brain tissue was
analyzed by real-time PCR assay and calculated (n = 6 per group, t
test, **P < 0.01). c The pathology of brain tissue was observed by
H&E staining (n = 3 per group). Arrows in c indicate vacuolar
degeneration. d The mRNA levels of cytokines (IL-1β, IL-6, TNF-α,
and TGF-β) were analyzed by real-time PCR assay and calculated
(n = 5, one-way ANOVA, **P < 0.01). e–h The protein levels of
cytokines were analyzed by ELISA assay and calculated (n = 4, one-
way ANOVA, **P < 0.01). i–p The number of astrocytes and microglia
were analyzed by IF and IHC and calculated, respectively (n = 3, one-
way ANOVA, **P < 0.01). q, r The protein levels of AKT, phos-AKT,
ERK1/2, phos-ERK1/2, NF-κB, and phos-NF-κB were analyzed by
Western blot assay and calculated (n = 3, one-way ANOVA,
*P < 0.05, **P < 0.01)
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model (Fig. 7g, h, P < 0.05), indicating that miR-7 defi-
ciency might impair the physiologic function of neurons.

RORα synergizes with miR-7 to control the inflammatory
reaction of neuronal cells in vitro
Finally, in order to explore the role of RORα and
miR-7 in inflammatory reaction of neurons, we ob-
serve the expression of RORα and miR-7 in neuronal
cells in response to LPS stimulation. Data showed
that, compared with that in control group, the expres-
sion level of RORα increased significantly in neuronal
cells in miR-7 inhibitor-transfected group (Fig. 8a,
P < 0.05). Importantly, we found that compared with
that in LPS-treated group, the expression level of
RORα increased dramatically in LPS-treated miR-7
inhibitor-transfected group (Fig. 8a, P < 0.05), which
was consistent with our above data. Furthermore, we
found that, after LPS stimulation, the expression of
miR-7 in neuronal cells increased rapidly to the peak
at 6 h and then gradually decreased (Fig. 8b), while
the expression of RORα decreased significantly at 6 h
and then steadily increased, displaying a contrary ex-
pression pattern to miR-7 (Fig. 8b).
Next, we detected the production of inflammatory cyto-

kines in neuronal cells in response to LPS stimulation and
found that, as shown in Fig. 8 c, the expression levels of
pro-inflammatory factor TNF-α, IL-1β, and IL-6 increased
significantly in RORα-RNAi-transfected group compared
with control group (p < 0.01). As expected, compared with
those in RORα-RNAi-transfected group, the expression
levels of pro-inflammatory factor TNF-α, IL-1β, and IL-6
increased obviously in RORα-RNAi plus miR-7 inhibitor
co-transfected group (Fig. 8c, P < 0.05). Conversely, the ex-
pression level of anti-inflammatory factor TGF-β decreased
noticeably (Fig. 8c, P < 0.05). To verify these data, we de-
tected the protein levels of these cytokines by ELISA assay
and obtained similar results (Fig. 8d–g, P < 0.05). Finally,
we also analyzed the possible change in AKT, ERK, and
NF-κB signaling pathways. Data showed that the levels of
phos-NF-κB and phos-ERK1/2 in RORα-RNAi-transfected
group increased significantly compared with those in con-
trol group (Fig. 8h, i, P < 0.05). Importantly, we found that
the levels of phos-NF-κB and phos-ERK1/2 in RORα-RNAi
plus miR-7 inhibitor co-transfected group increased

significantly compared with those in RORα-RNAi-
transfected group (Fig. 8h, i, P < 0.05). Together, these ob-
servations suggested that RORα synergizes with miR-7 to
control the inflammatory reaction of neuronal cells, which
is closely correlated with the altered transduction of the
NF-κB and ERK signaling pathways.

Discussion
Up to now, this is the first study to explore the po-
tential role of miR-7 in the pathology of BTI. Herein,
we found that the expression level of miR-7 increased
significantly in LPS-induced BTI model. Furthermore,
miR-7 deficiency could aggravate the pathology of
BTI. Importantly, the expression level of RORα, a
novel target of miR-7, was upregulated in brain tissue
of BTI model with miR-7 deficiency. Unexpectedly, si-
lence of RORα remarkably exacerbated, but not allevi-
ated, the pathology of brain tissue, as well as
promoted the transduction of NF-κB and ERK1/2 sig-
naling pathways in BTI model with or without miR-7
deficiency. Finally, RORα and miR-7 were dominantly
co-expressed in neurons from BTI mice and synergis-
tically controlled the inflammatory reaction of neur-
onal cells in response to LPS stimulation.
Recently, miR-7 has been reported to play an import-

ant role in regulating the biological process of various
diseases [46, 47]. For instance, miR-7 is a tumor sup-
pressor and increase cisplatin sensitivity of gastric cancer
cells by targeting mTOR, indicating its potential applica-
tion for the treatment of human gastric cancer in the fu-
ture [48]. Moreover, miR-7 can regulate α-synuclein
expression and downregulation of miR-7 results in the
loss of dopaminergic neuronal in the substantia nigra
[49]. In our previous study, miR-7 can regulate the path-
ology of acute lung injury [23]. Herein, we extended
these previous findings by demonstrating that miR-7 was
upregulated in BTI model. Importantly, miR-7 deficiency
could aggravate the pathology of brain tissue, indicating
miR-7 was a novel negative intrinsic regulator in BTI.
Similarly, Cao’s study found that long noncoding RNA
small nucleolar RNA host gene 1 promoted neuroin-
flammation in the pathogenesis of Parkinson’s disease
via modulating miR-7/NLRP3 pathway [18]. Zhang’s
study found that miR-7 inhibited the expression of

(See figure on previous page.)
Fig. 6 Silence of RORα aggravates the pathology of miR-7defBTI mice. MiR-7def mice (n = 6 per group) were transfected with RORα RNAi or NC
RNAi through lateral ventricle. After 3 days, these mice were intraperitoneally injected with LPS (2.5 mg/kg of body weight). Twelve hours later,
brain tissue was collected. a The pathology was observed by H&E (n = 3 per group). Arrows in c indicate nuclear fragments. b The mRNA levels
of cytokines (IL-1β, IL-6, TNF-α, and TGF-β) were analyzed by real-time PCR assay and calculated (n = 6, one-way ANOVA, **P < 0.01). c–f The
protein levels of cytokines were determined by ELISA assay and calculated (n = 5, one-way ANOVA, **P < 0.01). g–n The number of astrocytes in
hippocampus and microglia in cerebral cortex were analyzed by IF and IHC (n = 3, one-way ANOVA, **P < 0.01). o, p The protein levels of
signaling molecules including AKT, phos-AKT, ERK1/2, phos-ERK1/2, NF-κB, and phos-NF-κB in brain tissue were analyzed by Western blot assay
and calculated (n = 3, one-way ANOVA, **P < 0.01)
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TLR4 and reduced LPS-induced inflammatory response
produced by microglial cells and then alleviated the in-
flammation in the brain of rats with cerebral
hemorrhage [50]. It is well known that inflammation is a
common pathological basis for various neurological dis-
eases; therefore, our current findings might not only aid
the understanding on the role of miR-7 in pathogenesis
of BTI, but also provide a valuable clue for the develop-
ment of therapeutic strategies against neurological
diseases.
RORα localizes on chromosome 9q22.2. Recent studies

have shown that RORα plays a vital role in the inhibition
of the NF-κB signaling pathway transduction [51, 52]. It
is well known that NF-κB pathway is critical for the de-
velopment of inflammatory response [53, 54], indicating
that RORα might be a suppressor in inflammation.
Reyes-Gibby et al. found that RORα might be a novel
target gene by analyzing single nucleotide polymor-
phisms in patients with neuropathic pain, thereby pro-
viding a new therapeutic strategy for treatment and
management of neuropathic pain [55]. In the present
study, the expression level of RORα increased in brain
tissue in miR-7 deficiency BTI model mice. Importantly,
the repression of RORα could exacerbate the pathology
of BTI, accompanied by elevated transduction of the
NF-κB signaling pathway. Consistently, literature docu-
mented that RORα could repress the transduction of
NF-κB signaling pathway [56]. Therefore, combining
these data demonstrated the important role of RORα/
NF-κB axis in the pathology of BTI. Interestingly, we no-
ticed that the repression of RORα also altered the trans-
duction of ERK1/2 signaling pathway. There is a
growing body of evidence that suggests there is connec-
tion between NF-κB pathway and ERK1/2 pathway [57–
59]. Even though, the exact role of RORα in ERK1/2
pathway still needs to be investigated in successive re-
search work, which is important for the exploration of
the pathogenesis of BTI and related inflammation brain
diseases.
In biological events, synergism and antagonism effect

are main forms of different genes in bringing into play
biological function. Numerous studies have documented
that the network among miRNA molecules and their
target genes is complex and critical for the development
of various diseases, in which miRNA usually controlled
the expression of their targets [60, 61]. However,
whether there is synergy effect between miRNAs and

target genes still remains unknown. In our study, we
found that RORα was a new target of miR-7 in BTI. Sur-
prisingly, unlike previous reports that miRNAs exerted
opposite biological function to their targets, repression
of RORα could aggravate, but not reverse, the pathology
of BTI in the condition of miR-7 deficiency, indicating
that RORα exerted negative regulation on pathology of
BTI in the absence of miR-7. Given the fact that RORα
expression was upregulated when miR-7 was deficient,
then, our current study might raise a new network
model in which miR-7 could control the pathology of
BTI, synergistically with its target RORα. To this inter-
esting phenomenon, we proposed it reflected the com-
plexity of network among miRNA and their targets in
the development of various diseases. Finally, it also
would be pointed out that other targets, through which
miR-7 controls the pathology of BTI, were not investi-
gated in current study and remain to be elucidated in
the future. Therefore, further investigation on the ex-
pression patterns of miR-7 and its different targets dur-
ing the development of BTI is valuable for the validation
of connections among miR-7 and its multiple targets in
the pathology of BTI.
Accumulating evidence has shown that the change of

biological function of neuronal cells is involved in the
development of various brain diseases [62, 63]. More-
over, the relationship among neurons and other cells
such as microglia and astrocytes is complex in the path-
ology of brain diseases [64, 65]. For instance, La et al.
found that alpha-synuclein oligomers activating glial
cells led to neuron damage and thus were emerging as
crucial factors in the pathogenesis of synucleinopathies
[66]. Wang et al. reported that HAPLN2 involved in the
pathogenesis of schizophrenia by regulating the neuron
migration and velocity of nerve conduction [67]. Simi-
larly, Komura et al. found that amyl spheroids were ac-
cumulated mainly in the trans-golgi network of
excitatory neuronal cells, causing the degeneration of ad-
jacent NAKα3-expressing neurons in Alzheimer’s disease
[68]. In the present study, we found that the number of
microglia and astrocytes were elevated in BTI model
with miR-7 deficiency. Moreover, the physiologic func-
tion of neurons was also impaired. However, we revealed
that RORα was dominantly expressed in neurons, but
not in microglia and astrocytes. Of note, miR-7 and
RORα were also co-expressed in neurons. Furthermore,
in the absence of miR-7, inhibition of RORα promoted the

(See figure on previous page.)
Fig. 7 RORα and miR-7 were co-expression in the neuron. WT mice and miR-7def mice (n = 6 per group) were intraperitoneally injected with LPS
(2.5 mg/kg of body weight) and control group with PBS, respectively. After 12 h, a–c the colocated expression of RORα and NeuN, GFAP or IBA-1
were detected by double immunofluorescence labeling assay. d The expression of pre-miR-7-2 in neuron was analyzed by IF and FISH assay (n =
6 per group). e–h The change of neuron and Nissl bodies were detected by IHC and Nissl staining, respectively (n = 3, one-way
ANOVA, **P < 0.01)
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production of pro-inflammatory cytokines of neurons in
response to LPS, which was closely correlated with the al-
tered transduction of the NF-κB and ERK signaling path-
ways. In line with these finding, some studies have
documented that LPS can stimulate neurons to secrete
pro-inflammatory cytokines, which activate microglia, as-
trocytes, and other immune cells [69–71]. Therefore, our
current data further support the important relationship
among neurons and other cells in brain diseases, which
might benefit the exploration on the cellular mechanism
of the development of inflammation brain diseases.

Conclusions
Taken together, we found that miR-7 and its target mol-
ecule RORα synergistically controlled the inflammatory
reaction of neurons, which subsequently affected the
function of other cells and ultimately orchestrated the
pathology of BTI (Fig. 8j). Importantly, our findings
might provide a new light on the network among miR-
NAs and their targets and aid the mechanistic under-
standing on BTI development, as well as the progression
of new therapeutic strategies against clinical inflamma-
tory brain diseases.
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