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Abstract

Objective: Autoantibodies against ribosomal P proteins (anti-P antibodies) are strongly associated with the
neuropsychiatric manifestations of systemic lupus erythematosus (NPSLE). The present study was designed to assess
whether anti-P antibodies can induce abnormal brain electrical activities in mice and investigate the potential
cytopathological mechanism.

Methods: Affinity-purified human anti-ribosomal P antibodies were injected intravenously into mice after blood-
brain barrier (BBB) disruption. The auditory steady-state response (ASSR) was evaluated based on
electroencephalography (EEG) signals in response to 40-Hz click-train stimuli, which were recorded from electrodes
implanted in the skull of mice. Immunofluorescence staining was used to examine the morphology and density of
neurons and glia in the hippocampus and cortex. The presence of apoptosis in the brain tissues was studied using
the TUNEL assay. A PLX3397 diet was used to selectively eliminate microglia from the brains of mice.

Results: Circulating anti-P antibodies caused an enhancement of the ASSR and the activation of microglia through

the disrupted BBB, while no obvious neural apoptosis was observed. In contrast, when microglia were depleted,
anti-P antibodies induced a serious reduction in the ASSR and neural apoptosis.

Conclusion: Our study indicates that anti-P antibodies can directly induce the dysfunction of auditory-evoked
potentials in the brain and that microglia are involved in the protection of neural activity after the invasion of anti-P
antibodies, which could have important implications for NPSLE.
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Introduction

Diffuse brain dysfunction without overt brain inflamma-
tion frequently occurs in systemic lupus erythematosus
(SLE) and might involve pathogenic autoantibodies, espe-
cially those against neuronal surface components [1, 2].
Previous studies have shown that anti-ribosomal P (anti-
P) antibodies are associated with neuropsychiatric SLE
(NPSLE) [3, 4]. Anti-P antibodies are specific markers for
SLE [5] and are detected predominantly in patients during
the active phases of SLE [6, 7]. An association between
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circulating anti-P antibodies in the blood and NPSLE
manifestations has been confirmed [8-12]. Anti-P anti-
bodies have also been found in the cerebrospinal fluid of
patients with NPSLE, indicating blood—brain barrier
(BBB) permeation [11, 13].

Several animal experiments have been conducted to re-
veal the pathogenetic roles of anti-P antibodies in the cen-
tral nervous system (CNS). The results show that the
passive transfer of human anti-P antibodies to mice can
cause cognitive, emotional, and memory dysfunction [14,
15]. The extent of anti-P antibody-induced dysfunction is
dependent on the concentration of these antibodies. This
may be attributable to the fact that anti-P antibodies bind
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to neuronal surface proteins [16], leading to calcium influx
and neural apoptosis or functional perturbation [15, 16].

However, there is still a lack of direct in vivo evidence of
the pathogenic effect of anti-P antibodies on neural elec-
trophysiological activity. Although Gaburo et al. recently
reported that the intraventricular injection of human anti-
P antibodies in rats can induce electroencephalogram
(EEQ) alterations [17], the EEG results were not quantita-
tively analyzed and cannot be used as a marker to reflect
psychiatric changes.

Clinically, one commonly used method of evaluating
brain electrical activity is the auditory steady-state re-
sponse (ASSR), which is an EEG signal entrained to peri-
odic auditory stimuli (a train of clicks) [18]. The power
(magnitude) of the ASSR can reflect the functional integ-
rity of the neural circuits that support synchronization
across frequencies [19, 20]. For this, the ASSR can be used
to evaluate the sensory and cognitive functions of the
CNS [21-24]. EEG measurement of the ASSR, particularly
in the gamma frequency range (30-80 Hz), has been
commonly used in the clinical examination of mental
illness [25-28] and in neuropharmacological experi-
ments in animal models [29-31]. To further investigate
how anti-P antibodies disturb neural functions, we re-
corded the ASSR from mice using chronic electrodes
implanted in the skull over the primary auditory cortex
(A1). Al is the first station in cortical auditory process-
ing and plays a key role in sound representation and
auditory perception [32, 33]. We recorded the ASSRs
from A1l of each mouse to monitor changes in the EEG
signal induced by the passive transfer of human anti-P
antibodies to the mice. By combining electrophysio-
logical and histochemical methods, we revealed the de-
tailed effects of anti-P antibodies on brain electrical
activity and the protective role of microglia.

Materials and methods

Mice

Experiments were performed using 8-12-week-old
C57BL/6 male mice (Vital River Laboratory, Beijing,
China). All animals were maintained in standard animal
cages under conventional laboratory conditions (12-h/
12-h light/dark cycle, 22 °C) with ad libitum access to
food and water. The animals were maintained and
treated in compliance with the policies and procedures
detailed in the “Guide for the Care and Use of Labora-
tory Animals” of the National Institutes of Health. The
animal experimental protocols of the “Guide” and the
treatment procedures were reviewed and approved by
the Animal Care and Use Committee of China Medical
University (No. KT2018060). All surgeries were per-
formed under anesthesia, and all efforts were made to
minimize animal suffering.
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Source of human sera

Serum samples from six patients who fulfilled the Ameri-
can College of Rheumatology criteria for SLE [34] and five
healthy individuals were used in the present study. Pa-
tients who showed severe psychiatric disturbances and
high levels of anti-P antibodies (92 + 25 IU/ml, n = 6)
were selected from the 150 SLE patients attending the De-
partment of Rheumatology and Immunology in the First
Affiliated Hospital of China Medical University. The pres-
ence of anti-P antibodies was further tested by western
blot analysis using the SDEDMGFGLEFD peptide of the 11
carboxy-terminal residues of ribosomal P proteins as the
antigen [16]. The serum level of anti-P antibodies in
healthy individuals was 12 + 10 IU/ml (n = 5).

Purification of anti-P antibody IgG

IgG was isolated from the pooled sera of patient or
healthy subjects using protein A-resin (genScript, Piscat-
away, NY) and concentrated using Amicon Ultra Centri-
fugal Filter Units (Millipore, Billerica, MA). Anti-P
antibody IgG (anti-P IgG) was purified from patients’
IgG using a sepharose column to which the ribosomal P
antigen had been conjugated. IgG from healthy individ-
uals was used as a control. The IgG concentration was
adjusted to 1.7 mg/ml with buffer for the experiments.

Electrode implantation

Mice were handled according to the criteria of the ethics
committee at our institution. Following a period of 2 weeks
of handling at least once a day for 5 min, animals under-
went surgery for the long-term implantation of single-wire
electrodes. Mice were anesthetized with isoflurane in con-
junction with air (3% for induction and 1-2% for mainten-
ance). Atropine sulfate (0.1 mg/kg) was administered at the
beginning of the surgery to reduce the viscosity of bronchial
secretions. Body temperature was monitored rectally and
maintained at 37 °C using a feedback-controlled blanket.
After placing the animal in a stereotaxic frame (#68001,
RWD Life Science, Shenzhen, China), the skull was ex-
posed. Two stainless screws were separately inserted into
A1 of both hemispheres (AP = - 2.3-3.5 mm and ML = +
3.5-45 mm) according to a standard mouse stereotaxic
atlas. One end of a silver microwire (#785500, A-M Sys-
tems, Hofheim, USA) was used as an electrode and fixed to
the bone by the screws. The other end of the microwire
was soldered to a pin connector, which was secured to the
skull using dental acrylic resin. A stainless-steel screw elec-
trode placed over the cerebellum served as a ground. Four
additional skull screws were implanted and served as an-
chors. Animals were allowed to recover for 2 weeks.

Electrophysiological recordings and sound stimuli
After recovery from surgery, animals were acclimated to
a sound-attenuated recording room. Briefly, the animals
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were transported in their home cages to the recording
room, where they were left alone for 5 min. They were
then put in a mesh box (40 x 40 x 60 cm) and tethered
to the recording system via a flexible cable headstage for
15 min. This procedure was repeated for 4 days. Record-
ing experiments were conducted on the 5th day. The
sound stimulus used to assess the ASSR in our experi-
ments was a train of click sounds. The waveform of each
click was a rectangular pulse with a 0.2-ms duration,
which was repeated at a rate of 40 cycles/s and contin-
ued for 0.5 s. The waveforms were generated digitally at
a 100-kHz sampling rate using a custom built MATLAB
(MathWorks, Natick, MA, USA) program, transferred to
an analog signal by a D/A board (PCI-6052E, National
Instruments, Austin, Texas, USA), and then played
through a loudspeaker (K701, AKG, Vienna, Austria) on
top of the recording box. The intensity of the sound
stimulus was adjusted to 70 dB SPL when measured
from the center of the recording box (Britel & Kjeer
Type 2238 Sound Level Meter, Naerum, Danish). In one
session, 120 click train trials were presented at random
intervals between 4 and 8 s.

Breakdown of the BBB and the passive transfer of IgG to
mice

After completing one session of EEG recording under
normal conditions, the mice received IgG by passive
transfer. Before IgG transfer, the blood—brain barrier
was disrupted using a previously described method [35].
In brief, 50 pg complete Freund’s adjuvant (CFA, Sigma-
Aldrich, USA) containing heat-killed H37Ra Mycobacter-
ium tuberculosis (Difco, USA) in 50 pl was subcutane-
ously injected into each of four sites on the hind flank.
In addition, mice received an intraperitoneal (i.p.) injec-
tion of 200 ng pertussis toxin (PTx, List Biological La-
boratories, USA) in 0.2 ml PBS. The injection of PTx
was repeated again 3 days later. On the 7th day after the
injection of CFA, animals were injected intravenously
with PBS (as vehicle) or test or control IgG (200 pg in
0.2 ml PBS). Electrophysiological recording was con-
ducted again 1, 24, 48, and 72 h after the injection of
IgG.

Electrophysiological data acquisition and analysis

EEG signals were acquired using a flexible, low-noise
cable connected to the pin connector implanted in the
skull of the mice. The microwire output was delivered to
a multichannel preamplifier (PBX Preamplifier; Plexon,
Dallas, Texas, USA) and then to a digital multichannel
acquisition processor (MAP; Plexon). The EEG wave-
forms were amplified and low-pass filtered using a 300-
Hz cutoff frequency and then imported into MATLAB
for analysis.
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First, the EEG was visually checked to exclude artifacts.
The EEG fragments within a 500-ms epoch before the on-
set of the sound stimulus and 500 ms after stimulus offset
were averaged for all trials without artifacts. The mean
amplitude from the 500 ms before stimulus onset was
used as the baseline value (baseline correction). The EEG
spectrum analysis was conducted with a wavelet-based
analysis algorithm implemented in custom-written code
using the EEGLAB toolbox (https://sccn.ucsd.edu/eeglab/
index.php). The power of the evoked EEG spectrum was
presented as a relative estimation of the ratio between the
values after stimulus onset and the prestimulus values
(stimulus/prestimulus).

Microglial depletion

For the microglial depletion experiments [36, 37], mice
were fed a PLX3397 (MedChemExpress) diet (290 ppm;
290 mg/kg chow) for 3 weeks.

Immunofluorescence

We used another set of mice to examine the effects of
anti-P IgG on the morphology of neurons and glial cells.
Twenty-four hours after the injection of IgG, mice were
anesthetized and perfused transcardially with 10-20 ml
of 0.09% NaCl to eliminate the blood and then with 4%
paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, to
fix the brain. The fixed brain was isolated and postfixed
for 2 h in 4% PFA. Twenty-five-micrometer-thick sec-
tions were immunostained at room temperature for 1 h
with antibodies against mouse neuronal nuclear antigen
(NeuN, 1:500, Abcam), glial fibrillary acidic protein
(GFAP, 1:500, Abcam), and ionized calcium-binding
adaptor molecule-1 (Ibal, 1:100, Abcam) followed by the
appropriate fluorescent secondary antibody (1:300, Pro-
teintech). Tissue sections were examined with a fluores-
cence microscope (BX53, Olympus). NeuN-, GFAP-, and
Iba-1-immunonegative areas were defined by hand and
quantified using Image]. TUNEL staining was performed
using a TUNEL Bright Green Apoptosis Detection kit
(Vazyme, China). We selected five sections containing
the hippocampus between 1.8 and 2.3 mm posterior to
bregma at 100-um intervals from each mouse brain. We
selected this brain area because previous studies have
demonstrated that intravenously injected anti-P anti-
bodies can enter the brain through the disrupted BBB
and react with the hippocampus and surrounding corti-
ces [14-16]. The density of immunopositive cells was
determined in the hippocampus and parietal cortex
above the hippocampus using Image]J software. The data
from the five sections were averaged to obtain a single
data point for each individual mouse. All quantifications
were performed in a blinded manner. The data are pre-
sented as the area (mm?) of the immunonegative area.
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Statistical analysis

Statistical analysis was performed using SPSS for Win-
dows (Chicago: SPSS, Inc.). The data are presented as
the mean + SE. Differences between the results of two
groups were detected by Student’s ¢ test. Differences be-
tween the results of multiple groups were detected using
one-way analysis of variance (ANOVA). Each ANOVA
that revealed significant effects was followed by Tukey’s
post hoc multiple comparisons test. Statistical signifi-
cance was defined as p < 0.05.

Results

Circulating anti-P antibodies strengthen the ASSR in mice
when the BBB is disrupted

To explore the neuropathogenic potential of circulating
anti-P IgG, we injected anti-P IgG intravenously into a
mouse model after the BBB was disrupted [35]. EEG sig-
nals from each mouse were recorded before and after
IgG treatment. Representative results from one mouse
are presented in Fig. 1. Under normal conditions, the
EEG showed a large deflection at the onset of the stimu-
lus followed by a stable oscillation synchronized to the
40-Hz click train (Fig. 1a). To compare the EEG signals
with the frequency of the stimuli, the EEG signals were
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filtered with a bandpass filter of 35-45 Hz. The filtered
EEG showed a clear oscillation synchronized to the
stimulus frequency (Fig. 1d). Power spectrum analyses of
the EEG signal also showed a clear peak at 40 Hz,
reflecting the strength of the 40-Hz ASSR (Fig. 1g). One
hour after anti-P IgG injection, the ASSR recorded from
each mouse remained unchanged (Fig. 1b, e, and h), in-
dicating that BBB disruption had no significant effect on
ASSR. However, the ASSR was obviously enhanced 24 h
after anti-P IgG injection (Fig. 1c, f, and i). Figure 2
shows the mean ASSR strength in the groups of mice
that received anti-P IgG, control IgG, or vehicle (n = 8
for each group) injection at different time points. Com-
pared to pretreatment, one injection of anti-P IgG sig-
nificantly increased the ASSR at 24 h. This increase was
maintained 48 h after injection and recovered at 72 h
(ANOVA and Tukey’s post hoc test, Fig. 2a). In contrast,
control IgG or vehicle injection did not significantly
change the ASSR (Fig. 2b and c).

Microglia are activated by anti-P IgG

We conducted immunofluorescence examination of an-
other set of mice to explore the histological changes in-
duced by anti-P IgG. Twenty-four hours after vehicle,
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Fig. 2 ASSR strength of the anti-P (a), control IgG (b), and vehicle group (c) at different time points. Bars represent the mean of ASSR strength (n
= 8) relative to the value of pretreatment. Error bar represents SE. ** indicates p < 0.01; * indicates p < 0.05 (ANOVA and Tukey's post hoc test)

anti-P or control IgG injection, the mice were sacrificed
to conduct immunofluorescence analysis on brain slices.
We gauged and compared the distribution of cells im-
munoreactive for markers of neurons (NeuN), astrocytes
(GFAP), and microglia (Iba-1) in the cortex and hippo-
campus of mice in different groups (n = 6 for each
group). Figure 3 shows immunofluorescence for NeuN,
GFAP, and Ibal. The density and morphology of NeuN-
immunopositive neurons and GFAP-immunopositive as-
trocytes were similar between the vehicle, control IgG,
and anti-P IgG injection conditions. However, the dens-
ity of Iba-1-immunopositive microglia was higher in the
mice that received anti-P IgG injection than in the mice
that received vehicle or control IgG injection. Further-
more, anti-P IgG injection induced microglia to show an
activated morphology (reduced number of ramifications
and thickened processes). The TUNEL assay did not re-
veal significant signs of apoptosis in the three groups
(Fig. 4).

Anti-P IgG results in impairments in the ASSR after the
depletion of microglia

To elucidate the role of activated microglia in response
to the transfer of anti-P IgG, we used a colony-
stimulating factor 1 receptor (CSF1R) kinase inhibitor to
deplete microglia in mice [36]. The administration of a
chow diet containing the CSFI1R antagonist PLX3397
(290 mg/kg chow) for 3 weeks resulted in an almost
complete elimination of microglia from the brains of the
mice, as confirmed by the absence of red fluorescent
protein (Ibal)-positive cells (Fig. 5).

In this experiment, mice underwent electrode implant-
ation surgery and EEG recording before microglial de-
pletion. After 21 days of microglial depletion, EEG
recordings were conducted to evaluate the effect of
microglial depletion on the ASSR. The mice then under-
went BBB disruption and IgG transfer (n = 6 for each
group). EEGs were recorded again 1, 24, 48, and 72 h
after IgG transfer. No significant changes were observed

between the ASSRs recorded before and after microglial
depletion (Fig. 6). In contrast, marked and continuous
decreases in the strength of ASSRs were observed begin-
ning 24 h after anti-P IgG injection (Fig. 6a). A few un-
stable changes were observed in the groups treated with
control IgG (Fig. 6b) or vehicle (Fig. 6¢) and in the un-
treated controls (Fig. 6d).

Absence of microglia results in increased neural injury
Immunofluorescence analysis showed that the absence
of microglia resulted in a striking decrease in the num-
ber of NeuN-immunopositive neurons in the anti-P in-
jection group compared to that in the vehicle and
control IgG groups (Fig. 7a and b, n = 6 for each group).
The density of GFAP-immunopositive astrocytes was
also significantly increased, and the astrocytes showed
an activated morphology (Fig. 7c and d). The TUNEL
assay revealed obvious signs of apoptosis in the hippo-
campus and cortex (Fig. 7e and f). These results suggest
that microglia may protect neurons from the attack of
anti-P IgG.

Discussion

The primary goal of this study was to examine whether
circulating anti-P autoantibodies in the blood interfere
with neural electrical activity and investigate the defen-
sive mechanisms of the brain. Herein, we provide evi-
dence that circulating anti-P antibodies increase the
strength of the ASSR when the BBB is disrupted, allow-
ing access to neurons in the CNS. Although in vitro ex-
periments showed that anti-P antibodies have the
potential to induce neuronal apoptosis as a result of cal-
cium overload [16], we found no detectable neuronal
apoptosis in the healthy mice that received transfer of
anti-P antibodies into the blood circulation. However,
the microglia were activated. When microglia were de-
pleted, anti-P IgG caused a serious reduction in the
ASSR, obvious neural apoptosis, and astrocyte activation,
suggesting a protective effect of microglia on neuronal
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function. Our results greatly expand the knowledge of
the features of the CNS that are related to the presence
of anti-P antibodies and highlight the defensive function
of microglia in NPSLE.

Anti-P antibodies and NPSLE

According to previous reports, the prevalence of anti-P
antibodies in SLE patients ranges from 6% to 36% [6,
38-40]. A link between anti-P antibodies and CNS dys-
function was first suggested by Bonfa et al. [8], who ob-
served high titers of anti-P antibodies in lupus patients
with psychosis. Since this finding, some studies have
confirmed an association between anti-P antibodies and
the psychiatric manifestations of psychosis and depres-
sion [40-46]. In addition, Yoshio et al. found a strong
association between anti-P antibodies and other neuro-
psychiatric presentations (seizures, coma, transverse
myelopathy, and aseptic meningitis) [47]. The cellular
mechanism underlying such anti-P antibody-induced

alterations remains a fundamental unresolved question.
In vitro studies have suggested that the primary effect of
these antibodies is due to direct cytotoxic action on neu-
rons that is initiated by increased calcium influx [15, 16].

One approach to examine in vivo brain activity is EEG.
The deleterious effect of antibodies on EEG signals has
been shown in previous reports [17, 48—50]. Our present
study provides two advantages over previous studies. First,
previous studies adopted a method of directly injecting
antibodies into the brain parenchyma or ventricle; in con-
trast, we injected anti-P antibodies intravenously into mice
with BBB disruption to assess the pathogenic role of circu-
lating autoantibodies. BBB disruption has been well re-
ported in SLE patients [51], suggesting that circulating
anti-P autoantibodies can enter the CNS through the dis-
rupted BBB and interrupt brain function. Our results pro-
vide effective evidence for this possibility. Second,
previous studies only evaluated alterations in spontaneous
EEG activity. In SLE patients, EEG is not a very accurate
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method of detecting CNS dysfunction [52]. However, ab-
normalities in event-related potentials have been observed
in SLE patients with emotional lability [53]. Therefore, we
evaluated brain activity using an evoked EEG signal, the
ASSR. Periodic sounds simultaneously evoke a stable os-
cillatory response called the ASSR at different levels of the
auditory system, which phase-locks to the periodic stimu-
lus [18]. The ASSR paradigm is widely used in clinical
studies of psychiatric disorders, such as schizophrenia [54]
and bipolar disorder [24]. It has been shown that the
ASSR is modulated by the state of arousal during
anesthesia [55] and emotion state [56]. Here, we recorded
the ASSR from awake mice, thus avoiding the effects of
anesthesia and emotional state.

The exact mechanism by which anti-P antibodies cause
neuronal damage has not been elucidated, but some stud-
ies have reported that anti-P antibodies mediates a deleteri-
ous effect after binding to a neuronal protein involved in
glutamatergic synaptic transmission [16, 57]. In vitro and
in vivo studies of the ASSR have also suggested that gluta-
matergic transmission is critical for neural synchronization
[58] and may be involved in the production of the ASSR
[59]. Therefore, the abnormalities of the ASSR observed in
this study may have been due to glutamatergic transmis-
sion dysfunction induced by anti-P antibodies. This possi-
bility is worthy of further investigation.

Another important finding of our study is that micro-
glia play a protective role against anti-P antibody-
induced neural injury. Microglia are the resident im-
mune cells of the CNS, representing approximately 5-
12% of all CNS cells in the healthy brain [60]. Physiolo-
gically, microglia extend long branched processes to
sample their microenvironment and monitor the health
of surrounding cells. The core function of microglia is
the recognition, engulfment, and degradation of extracel-
lular material via phagocytosis [61]. Whether microglial
phagocytosis plays a detrimental or protective role in
brain diseases remains controversial. On the one hand,
efficient clearance of harmful debris is critical for CNS
homeostasis. This crucial beneficial role of microglial
phagocytosis in axonal regeneration has been shown
during brain development [62, 63] and recovery from
brain injury [64—66]. On the other hand, inappropriate
phagocytosis of synapses in Alzheimer’s disease has been
postulated based on mouse models [67, 68].

Here, we identify microglia as important protective
components of CNS function. Our results showed that
the selective removal of microglia led to marked deteri-
oration of the ASSR after anti-P antibody transfer, which
was associated with increased neuronal apoptosis. We
used CSFIR blockade to deplete microglia in adult mice.
CSF1R is a requisite growth factor receptor for microglia
[69], and microglia in the adult brain are fully dependent
upon CSF1R signaling for their survival [36]. It has been
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demonstrated that the systemic application of CSFIR in-
hibitors leads to the elimination of virtually all microglia
from the adult CNS with no ill effects on or deficits in
behavior or cognition [36]. Because microglia are the
only cell type that expresses CSFIR in the brain [37, 69],
the depletion of microglia has minimal effects on other
cell types in the CNS and does not lead to inflammation.
CSF1R is also expressed by macrophages and osteoclasts
[70]. CSF1 regulates the proliferation, differentiation,
and survival of macrophages [70], and mice lacking ei-
ther CSF1 or CSFI1R show reduced macrophage density
[71]. However, in wild-type mice, PLX3397 treatment
only eliminates tumor-associated macrophages and has
modest effects on macrophage numbers in other tissues
[72]. Thus, the effect of PLX3397 on macrophages is not
a main issue in this model.

It is important to note that none of the previous studies
combined selective microglial depletion with EEG record-
ing in vivo to link microglial function with neuronal injury.
Our results provide convincing evidence supporting a pro-
tective effect of microglia on anti-P antibody-induced
neural injury. Since microglial phagocytosis is an important
defense mechanism in the CNS, we hypothesize that
microglia may recognize and engulf the invaded anti-P
IgGs to protect neurons. Taken together, these results sug-
gest that the increase in ASSR strength observed in the
present study may be due to the hyperfunction of gluta-
matergic transmission induced by anti-P antibodies. Such a
change was temporal and reversible because of the protect-
ive function of microglia, which can engulf and remove
anti-P IgG. It was confirmed that no obvious neuronal
damage was observed in our immunofluorescence study.
Once protection by microglia is lost, anti-P IgG can cause
irreversible neuronal damage reflected by a decrease in
ASSR strength. It is still possible that microglia may play a
neuroprotective effect through various other functions,
such as direct contact with neurons, the clearance of re-
dundant neurotransmitters, and regulation of the levels of
neurotrophic and angiogenic factors [73-76]. These possi-
bilities and the underlying molecular mechanisms need to
be clarified in the future. Nevertheless, our present study
highlights the protective effect of microglia in anti-P-
associated NPSLE and suggests that the ASSR is a conveni-
ent and useful method to monitor neural dysfunction.

Conclusion

We found that circulating anti-P antibodies can act on
neurons in the CNS, leading to abnormalities in evoked
electrical brain activity, and that microglia protect
against this neuronal injury. Therefore, selectively target-
ing microglia-neuron interactions could have a critical
impact on the understanding of the pathophysiology of
NPSLE and the development of novel therapeutic
approaches.
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