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Abstract

Background: Chitinase 3-like 1 (CHI3L1), chitinase 3-like 2 (CHI3L2), and neuronal pentraxin II (NPTX2) are
inflammatory biomarkers of Alzheimer’s disease (AD). Although studies have demonstrated that cerebrospinal fluid
levels of these proteins are changed in AD, no studies have undertaken a detailed examination of alterations in
protein levels, cellular expression, and interaction with amyloid in the brain during the progression of AD.

Methods: The study evaluated levels of both CHI3L1 and CHI3L2, NPTX2, ionized calcium-binding adapter molecule
1 (Iba1), complement component 1q (C1q), glial fibrillary acidic protein (GFAP), and CD44, in the frontal cortex of
people who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive
impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD) using immunoblot and immunohistochemical
techniques.

Results: CHI3L1-immunoreactive (-ir) astrocyte numbers were increased in the frontal cortex and white matter in
sAD compared to NCI. On the other hand, increases in GFAP and Iba1-ir cell numbers were observed in MCI
compared to NCI but only in white matter. Western blot analyses revealed significantly lower frontal cortex CHI3L2
levels, whereas CD44 levels were increased in sAD. No significant differences for CHI3L1, GFAP, C1q, and NPTX2
protein levels were detected between clinical groups. Strong significant correlations were found between frontal
cortex CHI3L1 and Iba1-ir cell numbers in white matter and CHI3L1 and C1q protein levels in the early stages of the
disease. C1q and Iba1, CD44 with CHI3L2, and GFAP protein levels were associated during disease progression.
CHI3L1 and Iba1 cell numbers in white matter showed a significant associations with episodic memory and
perceptual speed.

Conclusions: White matter CHI3L1 inflammatory response is associated with cognitive impairment early in the
onset of AD.

Keywords: Alzheimer’s disease, Astrocytes, Chitinase, Cognitive impairment, Frontal cortex, Gray matter, Microglia,
Neuroinflammation, Pentraxin, White matter

Introduction
Alzheimer’s disease (AD) is an irreversible, progressive
neurodegenerative disorder resulting in cognitive decline
leading to extreme societal costs [1, 2]. With a rapidly
growing older population worldwide, defining the cellular
mechanism(s) driving the onset of AD is of paramount
importance. AD-related cognitive decline is manifested by

deficits in working memory and executive function modal-
ities associated, in part, with the frontal cortex (FC) [3].
The FC is a hub of the default mode network that displays
extensive amyloid pathology associated with cognitive de-
cline early in AD [4, 5]. However, the underlying cellular
mechanism(s) driving FC dysfunction remains unknown.
AD is pathologically characterized by the accumula-

tion of amyloid-beta (Aβ) plaques, tau neurofibrillary
tangles (NFTs), synaptic and neuronal loss, glial activa-
tion, and neuroinflammation [6–11]. Aβ plaques and
NFTs induce an immune response associated with
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astroglia and microglia activation and increased inflam-
matory mediators, tumor necrosis factor α [12], S100,
interleukin 1 [13, 14], such as triggering receptor
expressed on myeloid cells 2 (TREM2) [15, 16], and
complement activation (C1q to C5b-9) [17] in AD
[18–20]. Recently, the chitinase family of inflamma-
tory proteins, particularly chitinase 3-like 1 (CHI3L1,
YKL-40, or HC gp-39), chitinase 3-like 2 (CHI3L2 or
YKL-39), and pentraxin II (NPTX2 or Narp), a mem-
ber of the pentraxin family, has been associated with
AD pathogenesis [21, 22]. Although their functions
are not well understood, it is hypothesized that chiti-
nases are involved in pro-inflammatory and pro-
angiogenic tissue remodeling in cancer [23, 24] as well
as in several neurodegenerative diseases [25–32].
CHI3L1 found in the cerebral spinal fluid (CSF) ob-
tained from preclinical and prodromal cases of AD
[33–35] has been suggested as a biomarker for dis-
cerning cognitively normal from mild cognitive im-
pairment (MCI) individuals [25, 36, 37]. Human
tissue-based studies revealed that CHI3L1 is expressed
in astrocytes in close apposition to blood vessels, Aβ
plaques and NFTs in AD [38]. However, the role that
chitinases play in cognitive impairment during the
progression of AD remains under-investigated.
The protein NPTX2, a member of the pentraxin

family [39, 40], is involved in excitatory synapse for-
mation [41, 42] and has been implicated in the regu-
lation of neuroinflammatory responses associated with
trauma and neurological disease. For example, the dele-
tion of NPTX2 produces an alteration of microglial activa-
tion following sciatic nerve transection [43]. Interestingly,
reduced CSF levels of NPTX2 were associated with medial
temporal lobe atrophy and cognitive decline in AD [44].
Although CSF chitinase and NPTX2 neuroinflamma-

tory proteins are putative biomarkers related to the
pathogenesis and cognitive decline seen in AD [45, 46],
there are virtually no detailed clinicopathological stud-
ies of these proteins in brain tissue during the clinical
onset of AD. Therefore, we examined CHI3L1 and
NPTX2 protein levels and cellular expression in the FC,
a region affected early by plaque pathology during the
progression of AD. These proteins were compared with
other glial neuroinflammatory markers such as micro-
glial ionized calcium-binding adapter molecule 1 (Iba1),
complement component 1q (C1q), TREM2, astrocytic
glial fibrillary acidic protein (GFAP), and glial surface
adhesion glycoprotein CD44, which interacts directly
with CHI3L1 [47] and drives immune responses in the
central nervous system [48]. These proteins were quan-
tified using immunoblotting and immunohistochemis-
try or immunofluorescence techniques. Changes in
these markers were correlated with case demographics
and cognitive and neuropathological variables.

Methods
Subjects
The individuals used in this study were selected based
upon a premortem clinical diagnosis of no cognitive
impairment (NCI, n = 15), mild cognitive impairment
(MCI, n = 15), and mild to moderate AD (mAD, n = 14)
from the Rush Religious Orders Study (RROS) co-
hort (Table 1) and severe AD (sAD, n = 12) from the
Rush Alzheimer’s Disease Center. Subject selection was
not based upon NFT Braak, amyloid Thal, or ApoE cri-
teria. Association of these variables with the present
findings was evaluated after the study was completed to
avoid pathological bias. The Human Research Commit-
tees of Rush University Medical Center approved this
study, and informed consent for research and autopsy
was obtained from RROS participants or family/
guardians.

Clinical and neuropathological characteristics
Table 1 shows the demographic, clinical and neuro-
pathological characteristics of the RROS cases examined.
Clinical and neuropathological criteria for NCI, MCI,
and AD diagnosis were reported previously [49–53].
Briefly, after a review of the clinical data and examin-
ation of the participant, clinical diagnoses were made by
a board-certified neurologist with expertise in gerontol-
ogy. The neurologist reviewed medical history, medica-
tion use, neurologic examination information, results of
cognitive performance testing, and the neuropsycholo-
gist’s opinion of cognitive impairment and the presence
of dementia. Each participant was evaluated in his/her
home, emphasizing clinically relevant findings. AD diag-
nosis of dementia followed the recommendations of the
joint working group of the National Institute of Neuro-
logical and Communicative Disorders and the Stroke
and the Alzheimer’s Disease and Related Disorders As-
sociation (NINCDS/ADRDA) [54]. Although there are
no consensus criteria for the clinical classification of
mild cognitive impairment, the criteria used in the
present study are compatible with those used by many
others in the field to describe those persons who are not
cognitively normal, but do not meet the accepted criteria
for dementia [55–60]. Here, MCI was defined as persons
rated as impaired on neuropsychological testing by the
neuropsychologist but were not found to have dementia
by the examining neurologist. Average time from the last
clinical evaluation to death was ~ 8months.
Clinical neuropsychological testing included Mini-Mental

State Examination, global cognitive score, composite z-
score compiled from 19 cognitive tests [61], and z-scores
from episodic memory, semantic memory, working
memory, perceptual speed, and visuospatial tests. Post-
mortem neuropathology was performed as reported
previously [15, 49–51, 53], which included Braak
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staging [62], NIA-Reagan criteria [63], and the Consor-
tium to Establish a Registry for Alzheimer’s Disease
(CERAD) [64]. A board-certified neuropathologist ex-
cluded cases with other pathologies (e.g., cerebral amyl-
oid angiopathy, vascular dementia, dementia with Lewy
bodies, hippocampal sclerosis, Parkinson’s disease, and
large strokes) and those treated with acetylcholinester-
ase inhibitors. The RROS neuropathology core includes
the transactive response DNA-binding protein of
43 kDa (TDP-43) [65] in their diagnosis. A similar de-
tailed clinical and neuropathological evaluation were
not available for the sAD cases.

Quantification of pathological lesions
Neuritic plaques, diffuse plaques, and NFT counts were
performed within a 1-mm2 area (×100 magnification) per
neocortical region blinded to clinical data [66–68] using
Bielschowsky silver stain and AT8 immunohistochemistry.
Amyloid precursor protein (APP)/Aβ was used to analyze
the Aβ load [69]. Standardized plaque and tangle counts
from each area were converted to standard scores by
dividing the standard deviation of mean raw counts per
marker and region from the entire deceased cohort.
Quantitation of amyloid load was performed by using

images from Aβ labeled sections [69] to determine percent
area occupied using Object-Image 1.62p15 [70].

Antibodies
Characteristics of primary and secondary antibodies used
for immunohistochemical, immunofluorescence, and
western blotting experiments are described in Table 2.

Western blotting
FC (Brodmann’s area 10) CHI3L1, CHI3L2, NPTX2,
GFAP, C1q, Iba1, and CD44 protein levels were measured
in 15 NCI, 15 MCI, 13 mAD, and 7 sAD samples [15].
Briefly, frozen samples were homogenized (150mg/mL) in
phosphate buffer containing protease inhibitors (Sigma, St.
Louis, MO) and denatured in SDS loading buffer to a final
concentration of 5mg/ml. Proteins (50 μg/sample) were
separated by SDS-PAGE (Lonza, Rockland, ME) and elec-
trophoretically transferred to polyvinylidene fluoride mem-
branes (Millipore) [71]. Membranes were blocked in tris-
buffered saline/0.05% Tween-20/5% milk (1 h) at room
temperature (RT). Antibodies were added to blocking
buffer and membranes incubated overnight (4 °C), washed,
incubated with horseradish peroxidase-conjugated goat
anti-mouse IgG secondary antibody or goat anti-rabbit IgG
secondary antibody at room temperature (RT), visualized

Table 2 Antibodies
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by chemiluminescence (Kodak Image Station 440CF;
Perkin-Elmer, Wellesley, MA), and quantified with Kodak
1. Protein signals were quantified and normalized to β-
tubulin across groups in three independent experiments
[71]. Controls consisted of either pre-absorption or dele-
tion of the primary antibody.

Immunohistochemistry
Two 8-μm-thick paraffin-embedded FC sections were
processed for immunocytochemistry to visualize inflam-
matory markers, NFTs, and plaques. We chose CHI3L1
as opposed to CHI3L2 for immunohistochemical stain-
ing since the commercial CHI3L2 antibodies failed to
react with the human brain tissue. Briefly, sections were
pretreated with either citric acid (pH = 6) for 20 min as
antigen retrieval for the CHI3L1 antibody and 80% for-
mic acid for the APP/Aβ (6E10) antibody. Afterward,
sections were incubated with primary antibodies against
rabbit anti-CHI3L1, rabbit anti-GFAP, rabbit anti-Iba1,
and mouse anti-APP/Aβ or AT8 overnight at RT in a
tris-buffered saline/0.25% Triton X-100/1% goat serum
solution. After several washes in tris-buffered saline, tis-
sue samples were incubated with a goat anti-rabbit/anti-
mouse biotinylated secondary antibody, then incubated
in Vectastain ABC kit (1 h) (Vector Labs) and developed
in acetate-imidazole buffer containing 0.05% 3,3′-diami-
nobenzidine tetrahydrochloride (DAB, Sigma, MO).

Dual immunostaining
After visualization of APP/Aβ (see above), the tissue was
incubated with an avidin/biotin blocking kit (Vector
Labs) and second primary antibody (rabbit anti-CHI3L1)
overnight at RT [72]. The next day tissue was placed in
the appropriate biotinylated secondary antibody for 1 h at
RT, incubated in ABC kit solution, and developed in
acetate-imidazole buffer containing 0.05% 3,3′-DAB and
1% of nickel ammonium sulfate (Sigma). Dual staining
produced a two-colored profile: APP/Aβ (brown) and
CHI3L1 (black). Immunohistochemical controls consisted
of primary antibody omission resulting in the absence of
immunoreactivity. Additional sections were stained with
Gill’s hematoxylin (1min) to identify cortical layers.

Immunofluorescence
Sections were double-labeled with a mouse anti-GFAP
or anti-CD44 and a rabbit anti-CHI3L1 antibody over-
night. The appropriate secondary antibody was applied
[Cy3-donkey anti-rabbit IgG for CHI3L1 and Cy2-
donkey anti-mouse IgM for GFAP] and incubated in a
0.1 thioflavin solution (10 min) to visualize aggregated
amyloid. Auto-fluorescence was blocked with Auto-
fluorescence Eliminator Reagent (Millipore) and sections
cover-slipped with aqueous mounting media (Thermo
Scientific). Dual immunofluorescence was visualized,

and images were acquired using the Revolve Fluorescent
Microscope (Echo Laboratories, San Diego, CA, USA)
with excitation filters 405, 489, and 555 nm for thiofla-
vin, Cy2, and Cy3, respectively.

Quantitation of CHI3L1, GFAP, and Iba1 profiles
CHI3L1 and GFAP-immunoreactive (-ir) cell counts
were performed in five random fields within an area of
0.14 mm2 per field in both gray matter and white matter
(WM) in two sections from the same 15 NCI, and MCI,
14 mAD, and 5 sAD cases. APP/Aβ plaque loads and
numbers and counts of AT8-positive cells within the
gray matter were performed as above using tissue from
the same cases. Counts of Iba1 profiles in gray matter
and WM were evaluated in 6 cases/per clinical group.
FC gray matter CHI3L1-ir cell counts were performed in
the different cortical layers (I–II, III–IV, V–VI, and
WM), while GFAP and Iba1 counts, were counted inde-
pendent of cortical layer. All images and counts were ac-
quired using a Nikon Eclipse 80i coupled with NIS-
Elements Imaging software (Nikon Americas Inc., NY).
Images were corrected for contrast and luminosity using
Adobe Photoshop CS4 software (Adobe Systems Inc.,
CA).

Statistical analysis
Data evaluated across clinical groups used Mann-Whitney,
Kruskal-Wallis, Chi-square, and Wilcoxon signed-rank test
followed by Conover-Inman, Holm-Šidák, Tukey, and
Dunn’s post hoc tests for multiple comparisons and Spear-
man rank for correlations (Sigma Plot 12.5, Systat Software,
San Jose, CA, USA). A false discovery rate was used to ad-
just for multiple comparisons between correlations. Statis-
tical significance was set at p < 0.05 (two-tailed) and data
graphically represented using GraphPad Prism 5 (GraphPad
Software, San Diego, CA, USA).

Results
Demographic, cognitive, and neuropathological
characteristics
RROS clinical groups did not differ by age, gender, edu-
cation, postmortem interval, or brain weight. There were
no significant differences in the number of cases carry-
ing the ApoE ε4 allele. Mini-Mental State Examination
score, global cognitive score, and perceptual speed were
significantly lower (p < 0.001) in mAD compared to MCI
and NCI cases. Episodic memory z-score was signifi-
cantly lower (p < 0.001) in mAD compared t NCI, and
the visuospatial z-score was significantly lower (p < 0.03)
in mAD and MCI compared to that of NCI. Braak
scores, CERAD, and NIA Reagan diagnosis did not differ
among the clinical groups. Neuropathology revealed that
80% of NCI, 73.3% of MCI, and 50% of mAD cases were
Braak stages III/IV. Using NIA-Reagan criteria, 100% of
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NCI, 86% of MCI, and 78.5% of mAD were classified as
low to intermediate likelihood of AD. CERAD criteria
revealed that 33.3% of NCI, 20% of MCI, and 50% of
mAD cases were probable or definitive AD (Table 1).
The sAD cases averaged 78.33 ± 4.47 years of age at

death (range 71–86 years), 5.55 ± 3.34 h for postmortem
interval (range 2–12 h), 1122.72 ± 124 g (range 1320–
980 g) brain weight, 58.3% were female and aver-
age MMSE was 2.2 (range 0–9).

FC amyloid plaque and NFT pathology
FC diffuse and neuritic plaques were observed in 69.2%
of NCI, 53.3% of MCI, and 100% of mAD RROS cases,
while only 23% of NCI, 35.71% of MCI, and 45.5% of
mAD displayed NFTs. All severe AD cases displayed
neuritic plaques and NFTs.

FC CHI3L1, GFAP, and Iba1 distribution and counts during
AD progression
The topographic location of CHI3L1-ir cells was exam-
ined in FC white and gray matter across groups. In NCI
(Fig. 1a, e, i, m), MCI (Fig. 1b, f, j, n) and mAD (Fig. 1c,
g, k, o) numerous CHI3L1-ir astrocytes were observed in
layers I and II and WM with lesser numbers in layers
III–VI. Statistical analysis revealed that the number of
CHI3L1-ir cells were significantly greater in all lamina
and WM in sAD (Fig. 1d, h, l, p) compared to NCI (p <
0.01). In contrast, the numbers of Iba1-positive (Fig. 2a,
b, e, p < 0.01) and GFAP-positive glial cells (Fig. 2c, d, f,
p < 0.01) were significantly increased in MCI WM com-
pared to that in NCI. In addition, WM Iba1-ir cells were
significantly higher in mAD compared to NCI (Fig. 2e,
p < 0.01).
Dual immunofluorescence revealed that not all GFAP-

ir astrocytes associated with plaques were also CHI3L1-
positive (Fig. 3a–f), indicating that CHI3L1 co-occurs
within a subset of GFAP-ir astrocytes regardless of amyl-
oid plaques. Although a similar cortical distribution of
CHI3L1-ir cells and the adhesion surface astrocyte
marker CD44 was seen, not all CHI3L1-ir astrocytes co-
expressed CD44 across groups (Fig. 3g–i).
Although not all CHI3L1-ir astrocytes were associated

with amyloid plaques (Fig. 4a–c), CHI3L1-ir astrocytes
in gray and WM were associated with blood vessels
(Fig. 4d–f).

FC neuroinflammatory protein levels during the
progression of AD
Although western blot analysis revealed no significant
differences in FC CHI3L1 levels between groups, there
was a trend towards an increase in AD (Fig. 5a). Con-
versely, CHI3L2 protein levels were significantly reduced
between NCI and sAD (Fig. 5b, p < 0.01). GFAP levels
were unchanged across groups (Fig. 5c), whereas CD44

protein levels were significantly increased in sAD than in
NCI (Fig. 5d, p < 0.01). C1q and NPTX2 did not change
across clinical groups (Fig. 5e, f). A subanalysis compar-
ing protein levels between low (I–III) and high (IV–VI)
Braak scores within each clinical group [73] found that
NPTX2 levels were significantly higher in mAD cases
with high rather than low Braak scores (p = 0.001).

Neuroinflammatory, clinical, and neuropathological
associations
A significant correlation was found between CHI3L1 and
C1q protein levels (Fig. 6a, r = 0.44, p = 0.004) and
CHI3L1- and Iba1-ir cell numbers in WM (Fig. 6b, r =
0.61, p = 0.009) across NCI, MCI, and mAD. We found a
significant correlation between NPTX2 and CHI3L1 pro-
tein levels across NCI and MCI (Fig. 6c, r = 0.54, p =
0.003), but not mAD. C1q and Iba1 (r = 0.57, p = 0.00005),
CHI3L2 and CD44 (Fig. 6d, r = − 0.65, p = 0.00001), and
GFAP and CD44 protein levels (r = − 0.49, p = 0.002) cor-
related across groups. Total numbers of amyloid plaque
and NFTs did not correlate with CHI3L1, CHI3L2, GFAP,
and C1q protein levels at any clinical stage. By contrast,
we found a significant correlation between NPTX2 and
total plaque load (r = − 0.46, p = 0.01) and diffuse plaque
number (r = − 0.50, p = 0.007). In addition, a strong associ-
ation was found between CHI3L2 and age (r = − 0.44, p =
0.0048) and CHI3L1- and Iba1-ir cell numbers were sig-
nificantly correlated with episodic memory (CHI3L1, r =
− 0.45, p = 0.003 and Iba1, r = − 0.66, p = 0.003) (Fig. 6e, f)
and perceptual speed (CHI3L1, r = − 0.46, p = 0.002 and
Iba1, r = − 0.69, p = 0.002) (Fig. 6g, h) across groups.

Discussion
Although studies implicate chitinase proteins and
NPTX2 in the pathogenesis of AD, their role in preclin-
ical AD remains under-investigated. In the present
study, we found that the numbers of FC CHI3L1-
positive astrocytes, mainly in gray matter layers I and II
and WM, were unchanged in MCI and mild AD,
whereas in sAD, CHI3L1 cell numbers were significantly
increased in all cortical layers and WM. Furthermore,
FC CHI3L1 protein levels showed a positive trend to in-
crease during disease progression, whereas CHI3L2 was
significantly reduced in sAD compared to NCI. In con-
trast, others have shown that protein and RNA levels for
these chitinases were increased in the entorhinal cortex,
hippocampus, superior frontal gyrus, primary visual cor-
tex, middle temporal gyrus, and posterior cingulate cor-
tex in advanced AD compared to age-matched controls
[74]. These observations, when taken together, suggest
that chitinase levels vary between cortical regions, per-
haps related to the extent and type of AD pathology. Al-
though several studies revealed an increase in CSF
CHI3L1 levels, which correlated with CSF markers for
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tau and amyloid in AD [75, 76], we did not find a correl-
ation between CHI3L1 levels/counts and neuritic and
diffuse plaques or NFTs. Similar to that in other reports
[77], we observed CHI3L1-positive astrocytes in close

apposition to amyloid plaques in MCI and AD. However,
many CHI3L1-ir astrocytes were independent of plaque
pathology, suggesting that amyloid is not a necessary
precondition for the onset of CHI3L1 expression in

Fig. 1 a–h Photomicrographs showing immunolabeling for CHI3L1 in the frontal cortex (FC) layers I–II, III–IV, and V–VI as well as WM in NCI, MCI,
mAD, and sAD cases. Note CHI3L-ir cells appear mainly in layer I–II and WM in NCI, MCI, and mAD, while in sAD cells were also observed in layers
III–IV and V–VI. Insets show high-power images of CHI3L-ir cells (arrows) in panels a–d, h, and i–p. q Graphic representation displaying the
average numbers of CHI3L1-ir cells in the FC layers and WM in NCI, MCI, mAD, and sAD. Note the significantly higher numbers of CHI3L1-ir-
positive cells in all FC layers and WM in sAD compared to NCI (p = 0.003). The tissue in a, e, i, and m panels were counterstained with Gill’s
hematoxylin. Scale bar in panel p = 100 μm and inset = 10 μm, which applies to all other panels and insets in the figure. Abbreviations: NCI, no
cognitive impairment; MCI, mild cognitive impairment; mAD, mild to moderate AD; sAD, severe AD
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astrocytes. Moreover, we demonstrated that CHI3L1 was
present in a subset of GFAP astrocytes, but neither
CHI3L1 nor CHI3L2 protein levels were related to
GFAP during the progression AD. In addition, GFAP
levels correlated with the astrocytic surface glycoprotein
adhesion molecule CD44 and the latter negatively corre-
lated with CHI3L2. Both CHI3L2 and CD44 showed op-
posite effects that reached significant levels in later
stages of AD.
Interestingly, cortical CD44 was reported in a subset

of astrocytes in FC layers I–II and WM in humans with-
out cognitive impairment [78], similar to the CHI3L1
distribution observed in the present NCI cases. Although
the distributions of CD44-positive and CHI3L1-positive
astrocytes were similar, these two astrocytic markers did
not colocalize. A previous study reported that CD44-
positive astrocytes were increased and associated with
Aβ plaques in AD [79]. In the present study, although
astrocytes surrounding plaques expressed GFAP, not all
GFAP-positive astrocytes displayed CHI3L1 or CD44.
Functionally, CD44 and chitinase-like proteins are im-
plicated in nervous system development, homeostasis,
repair, and response to injury [80, 81] and have the

same natural ligand, hyaluronan, a component of the
extracellular matrix [82]. Since we found a strong cor-
relation between CHI3L2 and CD44 during disease pro-
gression, we speculate that the expression of these
markers in astrocytes is linked to extracellular matrix
disturbances. The exact mechanism that triggers the
expression of these inflammatory markers and their
relationship with amyloid in AD requires
further investigation.
We found that NPTX2 correlated negatively with

plaque load and was significantly higher in mAD cases
with high Braak scores. Interestingly, toxic, soluble Aβ
oligomers disrupt glutamatergic synaptic function that
leads to cognitive deficits [83–85]. NPTX2 also occurs in
cortical pyramidal neurons, which are severely affected
by tau aggregation in AD [86, 87], suggesting a role for
NPTX2 in NFT formation. These observations and the
present findings of a negative correlation between NPTX2
levels and plaque load, suggests that Aβ deposition modi-
fies NPTX2 production. The significant correlation be-
tween CHI3L1 and NPTX2 in MCI and NCI suggests an
interaction between astrocytes and neurons during the
early stage of cognitive decline. Interestingly, changes in

Fig. 2 Photomicrographs showing Iba1 immunoreactive (-ir) microglia (a, b) and GFAP-ir astrocytes (c, d) in FC WM in NCI (a, c) and MCI (b, d)
cases. Note that many more Iba1-ir microglia and GFAP-ir astrocytes were observed in MCI than NCI. Insets show high-power images of Iba1-ir
microglia (a, b) and GFAP-ir astrocytes (arrows) (c, d). e, f Graphic representations showing the average number of Iba1-ir microglia (e) and GFAP-
ir astrocytes (f) in WM across clinical groups. The iba1-ir numbers were significantly higher in MCI and mAD compared to NCI (p < 0.01), whereas the
GFAP-ir cell numbers were significantly higher in MCI compared to NCI (p = 0.003). Scale bars in panel d = 25 μm and 5 μm in inset d, which apply to
all panels and insets in this figure. Abbreviations: NCI, non-cognitive impairment; MCI, mild cognitive impairment
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Fig. 3 a–i Double immunofluorescent images show single CHI3L1 (a, d, g) (red), GFAP (b, e) (green), and CD44 (h) (green) labeling and merged
(c, f, i) (orange) images in the FC in sAD. Plaques were stained with thioflavin (blue). Note that not all GFAP-positive astrocytes (white arrows)
were CHI3L1-positive (g–i), and not all the CHI3L1-positive astrocytes (white arrow) were CD44-positive. Scale bar in c = 10 μm and applies to
panels a and b, and 30μm scale bars in f and i also apply to d, e, g, and h

Fig. 4 a–f Photomicrographs of astrocytes dual immunolabeled for CHI3L1 (blue/black) and APP/Aβ (brown) seen in plaques (a–c) as well as in
areas without plaques (d–f) in sAD. Note that not all CHI3L1-positive astrocytes were associated with amyloid-positive plaques and blood vessels
(arrows). Scale bar in e = 50 μm and applies to a, b, d. Scale bar in f = 100 μm and applies to c
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CSF CHI3L1 and NPTX2 levels are potential biomarkers
for AD [88, 89] and MCI [22].
Here, we report a correlation between CHI3L1 and

C1q protein levels in early AD. C1q is the first compo-
nent of the complement pathway [90], and microglia
and astrocytes are sources of C1q in the AD brain [91,
92]. Complement-associated factors are implicated in
pathogen presentation, neurodegeneration, and micro-
glia resolution of tissue injury [93]. Here, we found a
strong correlation between C1q and microglia Iba1 pro-
tein levels during AD progression. Microglia activation,
associated with high Iba1 levels that modulate synapse
loss [94] and microglia reactivity, maybe related to the
induction of pro-inflammatory genes and the expres-
sion of complement-associated factors following neur-
onal death [95]. Perhaps, microglia activation together

with C1q expression activates CHI3L1 in astrocytes,
which in turn plays a role in neuronal repair during AD
progression.
We found a significant increase in Iba1 and GFAP

profile numbers in the WM in MCI compared to NCI.
We also observed a strong negative correlation between
CHI3L1-positive astrocytes and Iba1-positive microglia
numbers and perceptual speed and episodic memory
[96] in early AD, indicating an association between WM
degeneration and early memory deficits in AD [97–100].
Since CHI3L1 is highly expressed in WM perivascular
astrocytes [101] and is implicated in angiogenesis [102],
it is possible that it plays a role in blood vessel conserva-
tion and remodeling during disease onset.
Furthermore, hypoperfusion induced by small-vessel

disruption leads to degeneration of astrocytes and

Fig. 5 Representative immunoblots and box plots showing FC levels of CHI3L1 (a), CHI3L2 (b), GFAP (c), CD44 (d), C1q (e), and NPTX2 (f) in NCI,
MCI, mAD, and sAD. β-tubulin was used to normalize the immunoreactive signal obtained by densitometry. Statistical analysis revealed that
CHI3L1, NPTX2, GFAP, and C1q protein levels were stable across clinical groups, whereas there was a significant decrease in CHI3L2 levels, and
CD44 significantly increased in sAD compared to NCI (p = 0.001). Abbreviations: NCI, non-cognitive impairment; MCI, mild cognitive impairment;
mAD, mild to moderate AD; sAD, severe AD
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fibrosis of the extracellular matrix [103]. Since blood-
brain barrier (BBB) dysfunction is related to WM dam-
age [104] and CHI3L1 is related to BBB disruption
[105], we suggest that increased CHI3L1 expression in
perivascular astrocytes is an attempt to remodel the

blood vasculature. Perhaps a breakdown of the BBB in-
creases CSF CHI3L1 levels, which in turn is related to
cognitive dysfunction in preclinical AD [106].
The present study found a relationship between CHI3L1

and NPTX2 levels in the onset AD, further supporting

Fig. 6 a, b Linear regression shows a significant correlation between CHI3L1 and C1q protein levels (a), Iba1-ir and CHI3L1-ir cell numbers (b)
across NCI, MCI, and mAD. c A significant positive correlation was observed between CHI3L1 and NPTX2 (r = 0.054, p = 0.0003) protein levels
across NCI and MCI, whereas a negative correlation was seen between CD44 and CHI3L2 (d, r = − 0.65, p < 0.0001) protein levels across the four
clinical groups. In addition, positive correlations were observed between CHI3L1-ir (e, g) and Iba1-ir microglia cell numbers (f, h) with episodic
memory (p = 0.003; e, f) and perceptual speed (p = 0.002; g, h) across NCI, MCI, and mAD. Abbreviations: NCI, noncognitive impairment; MCI, mild
cognitive impairment; mAD, mild to moderate AD; sAD, severe AD
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CSF levels of these proteins as biomarkers for AD [88, 89]
and MCI [22]. NPTX2 levels marked MCI conversion to
AD [107], improved diagnostic classification of AD, and
predicted cognitive performance in MCI and AD [108].
Together, these observations suggest that CHI3L1 and
NPTX2 should be considered as novel biomarkers to im-
prove the diagnosis and prediction of cognitive decline
during the progression of AD.

Conclusion
In summary, we demonstrated that both FC CHI3L1-ir
astrocytic number and CHI3L2 and CD44 protein levels
were altered in sAD. However, white matter Iba1- and
GFAP-ir cell numbers were increased in MCI. Addition-
ally, white matter CHI3L1- and Iba1-ir glial cell numbers
were associated with cognitive performance during dis-
ease progression. These results suggest that WM inflam-
mation occurs earlier than in gray matter and CHI3L1
plays a critical role in WM neuroinflammation associ-
ated with cognitive decline in AD.
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