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Abstract

Background: Ischemia can induce rapid activation of microglia in the brain. As key immunocompetent cells,
reactive microglia play an important role in pathological development of ischemic stroke. However, the role of
activated microglia during the development of ischemia remains controversial. Thus, we aimed to investigate the
function of reactive microglia in the early stage of ischemic stroke.

Methods: A Rose Bengal photothrombosis model was applied to induce targeted ischemic stroke in mice.
CX3CR1<"*F:R26™°™ mice were used to specifically deplete resident microglia through intragastric administration of
tamoxifen (Ta) and intraperitoneal injection of diphtheria toxin (DT). At day 3 after ischemic stroke, behavioral tests
were performed. After that, mouse brains were collected for further histological analysis and detection of mRNA
expression of inflammatory factors.

Results: The results showed that specific depletion of microglia resulted in a significant decrease in ischemic infarct
volume and improved performance in motor ability 3 days after stroke. Microglial depletion caused a remarkable
reduction in the densities of degenerating neurons and inducible nitric oxide synthase positive (iNOS™) cells.
Importantly, depleting microglia induced a significant increase in the mRNA expression level of anti-inflammatory
factors TGF-31, Arg1, IL-10, IL-4, and Ym1 as well as a significant decline of pro-inflammatory factors TNF-q, iNOS,
and IL-13 3 days after stroke.
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the treatment of cerebral ischemia.

Conclusions: These results suggest that activated microglia is an important modulator of the brain’s inflammatory
response in stroke, contributing to neurological deficit and infarct expansion. Modulation of the inflammatory
response through the elimination of microglia at a precise time point may be a promising therapeutic approach for
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Background

Cerebral ischemic stroke is caused by occlusion or nar-
rowing of cerebral arteries which lead to insufficient
blood and oxygen supply. Currently, only a minority of
patients are eligible for thrombolysis treatment or de-
compressive surgery, which is known as the most effect-
ive clinical means for acute reperfusion and decreasing
life-threatening edema, respectively [1-3]. For most pa-
tients, effective strategies to rescue or protect injured
neurons are not available due to the complicated patho-
logical changes in ischemic tissue. Various cerebral resi-
dent and infiltrating cells contribute to the complex
pathological events in the infarct tissue. As the main im-
munological cells of the central nervous system (CNS),
microglia are activated and sensitive to ischemic insults
and play a key role in the development of ischemic path-
ology [4, 5].

Microglia are regarded as one of the major players dur-
ing pathological progression of neurodegenerative diseases
and ischemic stroke [6]. Our previous work has shown an
intense and continuous microgliosis response in the sub-
acute phase of ischemic stroke, which is mainly derived
from local expansion of resident microglia [7]. However,
there is still an extensive debate about whether microglia
are beneficial or detrimental to tissue repair or functional
recovery, especially in ischemic stroke [8-15]. With
regards to the function of the activated microglia, some
studies propose that reactive microglia enhance their re-
lease of superoxide, matrix metalloproteinases, and some
cytokines to act as neurotoxic elements after injuries [16].
Activated microglia can directly phagocytose endothelial
cells and further potentiate damage to blood brain barrier
constituents and cause secondary hemorrhage after ische-
mia, leading to a worse injury [14, 17]. In addition, acti-
vated microglia are also considered as the primary
executors of the inflammatory response and participate in
the neurogenesis progress and neuronal loss [18-20].
However, other studies have shown that activated micro-
glia exert neuroprotection under brain ischemic condi-
tions and contribute to post-stroke recovery, via
production of various anti-inflammatory cytokines and
growth factors to promote the restoration of injured brain
[4]. Administration of exogenous microglia increases the
expression of neurotrophin and protects against neuronal
injury in vivo [21]. Some reports have shown that

microglia serve as vital scavengers of cellular debris, par-
ticipating in restoration of tissue homeostasis after ische-
mic stroke [22, 23]. Furthermore, microglia with pro-
neurogenic phenotype are engaged in neurogenesis, which
may be important for the restoration of damaged brain
after stroke [24]. In general, although reactive microglia
are acknowledged to affect ischemic damage, the exact
role of microglia remains unclear.

In this study, we took advantage of the CX3CR1“™®:
R26'™°™® mice to investigate the role of reactive microglia
during ischemic injury. Based on our previous work
which indicated that reactive microgliosis increased con-
tinuously in the early stage after ischemia, we selectively
depleted microglia in the first 3 days after stroke. Our
results demonstrated that depletion of resident microglia
in the early stage of ischemic stroke led to a decrease in
infarct volume and degenerative neurons, and an im-
proved performance in motor ability. The reduction in
ischemic damage after depleting microglia was accom-
panied with a decrease in the density of iNOS™ cells and
a significant decline in mRNA expression of several key
pro-inflammatory cytokines, as well as a markedly in-
crease in mRNA expression of several anti-inflammatory
cytokines. Altogether, our data suggest that selective de-
pletion of resident microglia at an early stage after ische-
mic stroke relieves cerebral injury and that regulating
microglia-mediated inflammatory response may be used
as a strategy to treat ischemic cerebrovascular disease.

Methods

Mice and microglia specific depletion system
CX3CR1“"*FR:R26™™ mice were used to specifically
delete microglia from the CNS, with Ta and DT admin-
istration [25]. The CX3CR1“"**®:R26™™ mice were gen-
erated based on the same insertion site as the
CX3CR1€F?P transgenic mice [25], where brain microglia,
peripheral monocytes, and a subset of NK cells were
fluorescence labeled [26]. After genotype identification,
only heterozygous mice containing both CreER-IRES-
EYFP and Rosa26-stop-DTR were used in subsequent ex-
periments. The primer sequences used were listed in
Table 1. Mice aged 12-14 weeks (23 + 3 g) were chosen
for this study. To deplete microglia from the brain, Ta
(0.4 g/kg mouse, Sigma, Cat# T5648) was firstly given by
intragastric administration twice over 3 days. In order to
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Table 1 Primer sequences used to validate
CX3CR1<F*R26P™* transgenic mice

Gene name

Primer
5-AAGACTCACGTGGACCTGCT-3'
5-AGGATGTTGACTTCCGAGTTG-3'
5-CGGTTATTCAACTTGCACCA-3'

Cre ert-common
Cre ert-WT

Cre ert-mutant

DTR-common 5-AAAGTCGCTCTGAGTTGTTAT-3'
DTR-WT 5"-GGAGCGGGAGAAATGGATATG-3'
DTR-mutant 5-GCGAAGAGTTTGTCCTCAACC-3'

preserve monocytes and NK cells in blood circulation,
we waited 10 days for them to renew [25]. After that,
DT (0.04 mg/kg mouse, Sigma, Cat# D0564) was intra-
peritoneally injected for three consecutive days to de-
plete only microglia but not newborn peripheral cells.
All animals were bred at the animal core facility of
Lanzhou University, under a 12 h light/12 h dark cycle
at 22 + 2 °C, with clean water and rodent chow ad
libitum.

Fluorescence-activated cell sorting analysis

Before sacrificed, 100 pl blood of each mouse was col-
lected from the orbital vein. Then mice were transcardially
perfused with 0.01M phosphate-buffered saline (PBS) for
dissection of spleen. Spleen were homogenized in PBS and
filtered through 70 pm cell strainers. After erythrolysis
and centrifugation, leukocytes from the blood samples
and homogenized spleens were collected respectively and
then stained with anti-CD11b (PE, marker of monocytes
and a subset of NK cells, 1:35, Biolegend, Cat# 101207)
antibody. The samples were assayed by a BD FACSverse
flow cytometer (BD, LSRFortessaTM) to measure the per-
centage of CD11b-positive cells. FACS data were analyzed
by the Flow]Jo software.

Ischemic stroke model

Ischemic stroke surgery was conducted 10 min after the
first DT administration. A modified photothrombosis
model was applied to induce acute ischemic stroke as
described previously [7]. In brief, a cranial window ~50
um in thickness was thinned over the right somatosen-
sory cortex on the ketamine-xylazine anesthetized
mouse (20 mg/ml ketamine, 2 mg/ml xylazine, 0.1 ml/20
g mouse), following intravenous injection of Rose Bengal
(0.03 mg/g mouse, Sigma, Cat# R3877). The thinned cra-
nial window was then exposed to a beam of exciting
light (530 + 20 nm) in a ~0.4 mm? area for 2.5 min to
activate the photoactive dye Rose Bengal. Singlet oxygen
generated from irradiated Rose Bengal causes focal
endothelial damage, platelet activation and aggregation.
These reactions result in embolization of blood vessels
within the illuminated region to form acute ischemic
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stroke. Three days after stroke, the mice were sacrificed
for subsequent experiments.

Histological analysis

After anesthesia with an overdose of urethane, mice
were transcardially perfused with PBS followed by 4%
paraformaldehyde. Mouse brains were harvested and
fixed in 4% paraformaldehyde for 48 h at 4 °C and
then sectioned into 30 pm slices by a vibrating micro-
tome (Leica, VT1000S). Sections were stained with
Ibal (microglia marker, 1:500, Wako, Cat# 019-
19741), iNOS (1:300, BD, Cat# 610328) or Argl (1:
300, Boster, Cat# BA3796-2) primary antibodies
followed by fluorescently labeled secondary antibodies,
and then imaged under an epifluorescence (Olympus,
BX51) or a confocal microscope (Olympus, FV1000).
For cell density analysis, cells in randomly selected
areas (200 pm x 100 pm) in the periphery of dam-
aged zone were counted.

To assess the infarct volume, every fourth brain slice
was collected for Nissl staining and then photographed.
The infarct area was identified by light staining of cresyl
violet (the normal tissue was darkly stained). For the cal-
culation of ischemic infarct volume, the overestimation
of infarct area due to edema in ischemic zone was cor-
rected referring to the method of Lohil et al. [27]. The
area of the total left hemisphere (non-ischemic, TLH)
and the non-infarct region of the right hemisphere
(NRH) of each slice were measured by the ImageJ soft-
ware. The infarcted area of the right hemisphere (IRH)
of each slice was calculated as follow: IRH = TLH-NRH.
The total infarct volume of brain was calculated by
multiplying the sum of infarct area in each slice by the
sampling interval distance (120 pm).

To evaluate neurodegeneration, 3-4 coronal slices of
the injured region per mice were randomly selected
and stained with Fluoro-Jade C (FJC, Sigma, Cat#
AG325), which is a high affinity fluorescent marker
for degenerating neurons [28]. A modification of
staining procedure was performed as follows: in brief,
slices were immersed for 3 min in 100% ethanol, 1
min in 70% ethanol, and rinsed in distilled water.
Slices were then incubated in 0.06% potassium per-
manganate solution for 20 min followed by rinsing in
distilled water. Slices were then placed into a 0.0001%
solution of Fluoro-Jade C (Merck, Cat# AG325) dis-
solved in 0.1% acetic acid vehicle for 25 min to stain
the degenerative neurons. The slices were rinsed, air
dried at 37 °C for at least 30 min, cleared in xylene,
and then cover-slipped with DPX. For density analysis
of FJC-positive cells, randomly selected rectangles
(200 pm x 100 pm) were picked on the borders of
the infarct area, starting from the interface between
FJC-positive and FJC-negative tissue. The number of
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FJC-positive cells and the area were measured in each
rectangle using the Image] software.

Quantitative real-time polymerase chain reaction
Anaesthetized mice were sacrificed at scheduled time
and transcardially perfused with PBS, and then the
mouse brains were separated and frozen in liquid nitro-
gen for 30 s. The injured area of brain was dissected out
immediately and stored at -80 °C. To evaluate the
mRNA expression level of immunomodulatory mole-
cules after ischemia in the presence and absence of resi-
dent microglia, brain tissues were ground in liquid
nitrogen. RNA extraction, reverse transcription, and
qRT-PCR were performed by a modified procedure as
described previously [29, 30]. Briefly, total RNA was
extracted from homogenate brain tissue using the RNA-
prep pure Tissue Kit (TTANGEN, DP431) and reverse-
transcribed into c¢cDNA using the PrimeScript”™ RT
reagent Kit with gDNA Eraser (TAKARA, Cat#
RR047A) following manufacturer’s protocols. qRT-PCR
was performed using a commercial mix (SYBR@ Premix
Ex Taq'™ II, TAKARA, Cat# RR820A) and a CFX96
Real-Time PCR Detection system (Bio-RAD). The vol-
ume of qRT-PCR was 10 ul, comprised of 0.5 pl of each
primer (10pmol/l), 1 ul of cDNA, 3ul of ddH,O, and 5
ul of SYBR Mix. The PCR amplification process was as
follows: denaturation at 95 °C for 30 s, 40 PCR cycles of
95 °C for 5 s, 60 °C for 30 s. Then, a melting step was
performed consisting of 5 s at 60 °C and slow heating at
a rate of 0.5 °C/s to 95° C with continuous fluorescence
measurement. Quantification was performed using the
comparative CT method (1000/2°<T, ACT=CTarget gene
—CTgappn)- Corresponding primers were self-designed
and sequences were shown in Table 2.

Behavioral tests

The grip strength test was utilized to evaluate the
muscle strength. The forelimb grip strength was tested
by a modified device which is composed of a grasping

Table 2 Primer sequences of inflammatory factors
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triangle frame and a sensitive force transducer (Xinhang,
China, JZ300). Mouse tail was dragged backwards with a
constant force when its forelimbs gripped the metal bar
of a triangular frame. The maximal power of forelimb
grip strength was recorded by the Biological Data Acqui-
sition & Analysis System (Taimeng BL-420F, China)
when the mouse loosened its forelimbs. Grip strength of
each mouse was measured at the scheduled time and the
mean value of five replicates was taken for statistics.

The rotarod test was implemented to assess motor co-
ordination and balance of mice. Before surgery and drug
treatment, all mice were subjected to pre-training on a
rotarod treadmill (Taimeng ZB-200, China) apparatus
for 3 days. The mice which were able to walk on the
rotarod (accelerated from 10 rpm to 30 rpm within 5
min) for at least 300 s were chosen for subsequent test.
For the test, the time of walking on rotarod was re-
corded three times for each mouse and the mean was
used for statistical analysis.

To measure the level of locomotor activity and ex-
ploratory behavior of mice, spontaneous activity test was
carried out in an apparatus (JLBehv-LAM-4, Shanghai)
consisted of a soundproof box, a shuttle-box (25 cm x
25 ¢cm x 30 cm), and an infrared camera mounted on
the ceiling. Each mouse was placed in the center of the
shuttle-box. After 5 min of adaption in the test chamber,
the total distance mice moved was recorded automatic-
ally for 30 min by the DigBehv 2.0 software.

Behavioral tests data were obtained on the day the
brains were harvested for each mouse. For sham groups,
behavioral performance and body weight were recorded
at the day after vehicle or DT treatment without photo-
thrombosis surgery. For results of stroke groups, behav-
iors and weight were recorded on the third day after
stroke.

Statistical analysis
GraphPad Prism software (Version 8.0.2) was used for
statistical analysis as described in a previous study [31].

Gene Forward Reverse

GAPDH 5" TGAACGGGAAGCTCACTGG-3' 5-TCCACCACCCTGTTGCTGTA-3'
TGFBI1 5"-TGTACGGCAGTGGCTGAACC-3' 5-CGTTTGGGGCTGATCCCGTT-3'
Arg1 5-TCACCTGAGCTTTGATGTCG-3' 5-CTGAAAGGAGCCCTGTCTTG-3'
IL-10 5"-TGCCTTCAGTCAAGTGAAGACT-3' 5-AAACTCATTCATGGCCTTGTA-3'
IL-4 5"-CAAACGTCCTCACAGCAACG-3' 5'-AGGCATCGAAAAGCCCGA-3'
Ym1i 5-ATGGAAGTTTGGACCTGCCC-3' 5-AGTAGCAGCCTTGGAATGTCTT-3"
TNF-a 5"-ATGGCCTCCCTCTCAGTTC-3' 5-TTGGTGGTTTGCTACGACGTG-3'
iINOS 5"-CCCTTCAATGGTTGGTACATGG-3' 5-ACATTGATCTCCGTGACAGCC-3'
IL-1b 5-GAAATGCCACCTTTTGACAGTG-3' 5"-TGGATGCTCTCATCAGGACAG-3'

MCP1 5-ACGCTTCTGGGCCTGTTGTT-3"

5"-CCTGCTGCTGGTGATTCTCT-3'
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All measurements and evaluations were conducted in a
double-blind manner. Effect of Ta and DT was com-
pared using one-way ANOVA. Behavioral tests and
qRT-PCR data were compared using two-way ANOVA.
In all case where one-, two-way ANOVA was used,
Tukey’s test was performed for multiple comparisons
[32]. Single comparisons of data were made using two-
tailed ¢ test. All data are represented as mean * sem. A p
value < 0.05 is considered statistically significant and p <
0.01 is extremely significant.

Results

The CX3CR1“ERIDTR cystem efficiently depletes cerebral
microglia

In order to evaluate the efficiency of microglia ablation
in CX3CR1“"F**:R26™™* mice, we harvested and ex-
amined brain slices after Ta and DT treatment in mice
without stroke injury (Fig. 1a). In sham™ °*~ animals,
97.68 + 1.36% of the yellow fluorescent protein (YFP)
expressing microglia (shown in green in Fig. 1) were Iba-
1 positive (Fig. 1b). After administration of Ta and DT,
only a small number of microglia were found to be scat-
tered in the cortex. The density of resident microglia
had a 91.79% reduction compared to vehicle-treated
group (sham™*PT~: 267.85 + 7.29/mm? sham’*°T*:
22.00 + 7.62/mm?) (Fig. 1c, f). In addition, we also ana-
lyzed the brains of CX3CR1“"***:R26™°™* mice sub-
jected to only Ta or DT and found no significant
difference in the microglial density among sham™**P™",
sham™P**, and sham™ "~ groups (Fig. 1b, d-f). Based
on the above results, we confirmed that only the com-
bination of Ta and DT could effectively deplete micro-
glia in the brain. Neither Ta nor DT alone affects
microglial density under this experimental procedure.
To specifically deplete microglia but not CX3CR1" cells
in blood circulation, we injected DT at 10 days after Ta
to allow recombined cells replaced by non-recombined
cells from progenitors. Similar to previous report [25],
we observed no significant difference in the percentage
of CD11b" cells in the blood or spleen between sham™®
“PT= and sham™*P™* mice (Fig. 1g, h). Thus, only
microglia but not peripheral CX3CR1" cells in the brain
were robustly and specifically depleted after Ta and DT
treatment in CX3CR1“"*/*:R26"°T%/* mice.

Ischemic stroke has been shown to induce microgliosis
with a characteristic of rapid and prolonged accumula-
tion of reactive microglia at the lesion site [7, 33]. In
order to explore the role of reactive microglia in the
early stage of ischemia, we induced photothrombotic
stroke in CX3CR1“***:R26'°T™®* mice and depleted
microglia by treatment with Ta and DT (Fig. 2a). Three
days after stroke, brain slices of stroke™**®** mice were
collected to compare with stroke™ T~ mice. Compared
with vehicle-treated animals, we found that most
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microglia were depleted after Ta and DT treatment in
stroke™"PT* mice (Fig. 2b). The residual microglia were
found unevenly distributed in the brain (Fig. 2b). Fur-
thermore, microglial depletion made a significant effect
on the accumulation zone surrounding the ischemic
core (Fig. 2b-d). Compared with the vehicle-treated
mice, the density of microglia decreased sharply (841.15
+ 28.97/mm?* for stroke™ °T" mice versus 381.34 +
45.75/mm? for stroke™PT* mice) and the width of
microglial accumulation zone lessened (19149 + 7.60
um for stroke ™ °T" mice versus 78.34 + 2.97 um for
stroke™PT* mice) when resident microglia were de-
pleted in the first 3 days after stroke (Fig. 2c, d). These
data supported a significant decrease of activated micro-
glia following depletion after ischemia.

Microglial depletion reduced infarct volume and
degenerating neurons

To evaluate the effect of microglial depletion on the ische-
mic damage, we used Nissl staining to assess the infarct
area and Fluoro-Jade C staining to quantitate the degen-
erative neurons after stroke. Our data showed that the in-
farct volume is 8.28 + 0.29 mm® 3 days post stroke
without drug treatment (Fig. 3a, b, e). We then measured
the infarct volume in brains subjected to Ta and DT and
found the infarct size was significantly reduced to 5.19 +
0.19 mm?® (Fig. 3c-e). Moreover, we evaluated the density
of degenerating neurons in ischemic animals, finding a
marked reduction in the density of degenerating neurons
3 days post stroke when microglia were depleted (from
836.31 + 42.76/mm” in stroke'* """ mice to 57841 +
12.07/mm? in stroke™**°™* mice) (Fig. 3f, g). These results
indicated that microglia ablation was beneficial for delay-
ing the infarct area diffusion and effectively prevented
neuronal loss in the early stage post stroke.

Depletion of resident microglia benefited behavioral
recovery

Microglial activation is thought to be involved in func-
tional recovery after ischemic stroke [34-36]. To study
the effects of microglial depletion on behavioral per-
formance, we compared the differences of body weight
and motor ability between microglia-depleted mice and
vehicle-treated mice. Consistent with results in other
studies depleting microglia with small-molecule inhibi-
tors [13, 37, 38], we did not observe significant motor
dysfunction or weight loss in sham™*°™* mice (Fig. 4),
suggesting that microglia are not essential to these
physiological functions. Three days after ischemic stroke,
stroke™ T~ mice showed much worse performance in
the spontaneous activity test, grip strength test, and
rotarod test than sham groups (Fig. 4a-c). Additionally,
ischemic insult resulted in obvious loss of body weight
(Fig. 4d). Statistical analysis showed a great improvement
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without microglial depletion. (c) Represent images of microglia after Ta and DT treatment. After drug treatment, most native microglia were depleted
and the remnants exhibited appearance similar to activated state and distributed randomly. (d) Represent images of microglia only with intragastric
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after vehicle or Ta"DT" treatment. (h) Quantification of the FACS analysis results shown in (g) (n = 4)

in motor ability after microglial depletion. Compared 15.16% 3 days post stroke, while the forelimb grip
with stroke™® T~ mice, the total distance traveled in  strength showed a slight rise (Fig. 4a-c). However, the
spontaneous activity test of stroke'**®™* mice increased = mice presented no significant difference in body weight
by 57.47% and the time of walking on the rotarod by  between stroke™ T~ and stroke™"™* groups (Fig. 4d).
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and without microglial depletion (n 2 3, **p < 0.01)

These results indicated that depleting microglia was
beneficial to behavioral recovery of mice at an early time
point after stroke.

Microglial depletion decreased inflammatory cells

Inflammatory response is triggered quickly, lasting for
several days after ischemic stroke [39]. To better under-
stand the impact of microglial depletion on the ischemic
damage, we quantitated the cells expressing typical in-
flammatory molecules iNOS and Argl after stroke. As
expected, there was no iNOS" or Argl™ cells observed in
the contralateral uninjured cortex (data not shown). We
evaluated whether depleting microglia changed the dens-
ities of inflammatory cells at the lesion site. Our data
showed that ischemia caused extensive expression of
pro-inflammatory molecule iNOS and anti-inflammatory
molecule Argl on brain cells 3 days after stroke (Fig. 5a,
b). Cells expressing iNOS were found distributing
throughout the ipsilateral ischemic area, while the Argl®
cells were observed in the periphery of the ischemic area

but not in the core zone (Additional file 1: Figure S1).
The results showed that microglial depletion signifi-
cantly decreased the density of iNOS™ cells by 29.13%
(from 695.83 + 19.16/mm” in stroke™ PT~ mice to
493.13 + 7.59/mm?” in stroke **®™* mice) (Fig. 5c). By
contrast, the reduction of Argl® cells was less pro-
nounced (20.26%, from 395.83 + 27.28/mm? in stroke™®
“PT mice to 315.63 + 23.46/mm? in stroke™*PT* mice)
(Fig. 5¢). These results indicated that microglial deple-
tion in the early stage post stroke effectively reduced the
detrimental inflammatory response in the ischemic
region.

Depletion of microglia altered the immune
microenvironment in ischemic tissue

Microglia are a pivotal part of the inflammatory response
in the brain [40]. To examine the effect of microglial de-
pleting on immune microenvironment, we analyzed the
relative mRNA expression of key immunomodulatory fac-
tors in stroke mice with or without microglial depletion.



Li et al. Journal of Neuroinflammation (2021) 18:81

Page 8 of 15

Vehicle

is€Chemit

1
1
|

S
8 E
= =
= o
£ E
© S
g3
@9
Vehicle Ta+DT+
Vehicle
1000 —
50

Ta+DT+

Density of degenerating
neurons (/mm?) @

Vehicle Ta+DT+

Fig. 3 Depletion of microglia decreased the infarct volume and neuronal degeneration 3 days after ischemic stroke. (a) Representative Nissl stained
coronal brain slice of vehicle-treated mouse after stroke (scale bar = 1 mm). (b) Coronal sections in accordance to the boxed region in (a) illustrating
the whole infarct (scale bar = 2 mm). (c) Representative Nissl stained coronal brain slice of microglia-depleted mouse after stroke (scale bar = 1 mm).
(d) Coronal sections in accordance to the boxed region in (c) illustrating the whole infarct (scale bar = 2 mm). (e) Calculated brain infarct volumes 3

Ta—DT—

in the ischemic areas of stroke Ta+DT+

and stroke

days post stroke, in mice with Ta and DT treatment or not (n = 6, **p < 0.01).
mice. The boundaries between ischemic area and normal tissue were delineated by the dashed
lines (scale bar = 50 um). (g) Densities of degenerating neurons in the border area underwent microglia depletion or not. Note that
neurodegeneration greatly decreased in microglia-devoid mice 3 days after stroke (n = 3, **p < 0.01)

). (f) Representative confocal images of FJC-labeled degenerating neurons

Using qRT-PCR, we first detected low mRNA expression
of immunomodulatory factors in mice without ischemic
stroke. There was no significant difference in mRNA level
of TGF-B1, Argl, IL-10, IL-4, Yml, iNOS, and IL-1 be-
tween sham-"*""T" and shame-"**""* mice. However,
microglial depletion raised the expression of TNF-a and
MCPI even without ischemia (Fig. 6, Additional file 2: Fig-
ure S2). At the 3rd day after ischemic insult, we detected
an intense inflammatory response with all the tested fac-
tors upregulated (Fig. 6, Fig. S2). Intriguingly, microglial
depletion had differential effects on the inflammatory

factors. When resident microglia were depleted, we found
that mRNA expression of anti-inflammatory factors in-
creased (Argl for 1.8-fold, TGF-f1 for 2.1-fold, IL-10 for
5.9-fold, IL-4 for 4.5-fold, Yml for 12.8-fold) (Fig. 6a-c,
Fig. S2A, B), while pro-inflammatory factor decreased
(iNOS for 0.4-fold, IL-1f for 0.4-fold, MCPI for 0.4-fold,
TNF-a for 0.5-fold) 3 days post stroke (Fig. 6d-f, Figure
S2C). These results indicated that depletion of microglia
at an early stage after ischemic stroke diminished the pro-
inflammatory response but facilitated the anti-
inflammatory effects.
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Discussion

Previous studies revealed the rapid activation and expan-
sion of microglia in the early phase of ischemia [7, 41,
42]. However, the role of microglia in ischemic stroke
remains controversial. Many studies have shown that ac-
tivated microglia have detrimental effects on ischemia
outcomes, as inhibition of microglia activation with
some drugs attenuates neurological deficit and the asso-
ciated inflammatory response, and reduces blood-brain
barrier (BBB) disruption and infarct size [14, 43-46].
Furthermore, the voltage-gated proton channel Hv 1 in
activated microglia is responsible for ROS-mediated
brain damage after ischemia [47, 48]. Nevertheless, there
is also evidence suggesting that microglia activation is
vital for reducing neuronal apoptosis, modulating in-
flammation [49-51], phagocytizing invading neutrophils
and neuronal cell debris [52—-54]. Moreover, transplant-
ation of exogenous microglia enhances neuronal survival
and neurogenesis after stroke [55, 56]. The dual roles of
microglia are likely associated with different activation
states under different models and drug treatments after
ischemia. Experimental stroke models, such as tMCAo,
pMACo, photothrombiotic stroke, and endothelin-1

induced ischemia, may have various pathological and
cellular contexts which lead to different activation pro-
grams [57, 58]. Recently, microglia are thought to display
distinct metabolic phenotypes exposed to different stim-
uli [59]. Drugs such as minocycline, adjudin, ticagrelor,
and PNU282987 target different mechanisms related to
microglia activation [45, 46, 50, 60], which could stimu-
late microglia differently and contribute to the dual
functions of microglia. Although transplantation of ex-
ogenous microglia induces neuroprotection and behav-
ioral improvement, immortalized microglial lines and
primary cultured cells may behave differently from host
microglia in the ischemic brain [55, 56].

In recent years, the field took advantage of agents to
induce microglial ablation to investigate the effect of
microglia on several brain pathologies. Many CSF1R kin-
ase inhibitors are chosen for pharmacologic depletion of
microglia with high effectiveness, such as PLX647,
PLX3397, PLX5622, and Ki20227, with microglia rapidly
repopulating after drug removal [13, 37, 61-64]. In
addition, apoptosis inducer liposomal clodronate and
immunotoxin Mac-saporin are used to specifically elim-
inate microglia [65-67]. The other approach is
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conditional genetic manipulation of microglia with sui-
cide genes [68, 69] or to elicit their susceptibility to le-
thal drugs by the tamoxifen-inducible Cre recombinase
system [25, 70]. Here, we investigated the effect of
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Fig. 5 Depleting microglia reduced inflammatory cells at the lesion
site. (@) Representative images showing INOS* cells and Arg1™ cells at
the lesion site without microglial depletion. (b) Representative images
showing iINOS™ cells and Arg1™ cells after microglia depletion (a-b
Scale bars = 50 um). (€) Densities of INOS™ cells and Arg1™ cells in the
periphery area of lesion site with microglia depletion or not (n = 4, *p
<005, **p <0.01)

reactive microglia using a modified photothrombosis
model combined with CX3CR1"F**:R26"°T™** mijce
and a selective microglial depletion system. In contrast
to previous reports using CSFIR inhibitor and MCAo
stroke model, which support neuroprotective effects of
microglia in brain injury [13, 62], we found that selective
ablation of microglia with CX3CR1"F®/*:R26™ TR/
mice led to an evident reduction in infarct size and a
better performance in motor ability after ischemic
stroke, which reveal reactive microglia as accomplices to
aggravate ischemic injury. The difference between previ-
ous studies and our current work may be due to differ-
ent stroke models, depletion protocols, and depletion
stages. It has been demonstrated that photothrombostic
stroke lesion lacks normal penumbra and reperfusion
[58], but possesses an accumulation zone of hyper-
trophic microglia [7]. Apoptotic neurons are detected
earlier in a mouse photothrombotic stroke model than
MCAo model [71]. These may result in higher activation
of microglia and stronger inflammation in the photo-
thrombotic stroke model than MCAo. In addition,
microglial depletion method may have an impact on the
experimental outcome. Evidence suggests that an in-
crease in circulating neutrophils is detected as a result of
Ta injections [72], which may effect the pathological
progression. Given the efficacy of drugs, dosage
dependent effect should be considered in depletion
protocol. There are also concerns about the toxicity of
Ta and DT treatment. High dose of TAM of Ta or DT
may have significant toxicity and result in increased
morbidity and mortality in mice [73, 74]. But low dosage
of Ta and DT may affect the depletion efficiency [73]. It
is important to choose the dosage and delivery method
in the experimental procedure. Thus, the different im-
pact on inflammatory cells following pharmacological or
conditional genetic microglia depletion methods could
influence the subsequent experiment. Furthermore, dif-
ferent depletion stage may also contribute to the contro-
versial results. Activated microglia display different
phenotypes and present distinctive spatial and temporal
features after ischemia [42], and microglial depletion at
acute or subacute ischemic stages may have different im-
pact on stroke outcome. All of these aspects may lead to
conflicting experimental results.

In line with the abatement of infarct volume upon
microglia elimination, our histological results showed
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Fig. 6 gRT-PCR analysis of mRNA expression of inflammatory factors in the presence and absence of microglia. (a-c) Relative mRNA levels of anti-
inflammatory factors TGF-B1, Argl, IL-10 with and without microglial depletion. (d-f) Relative mRNA levels of pro-inflammatory factors TNF-a, iNOS,
and /L-1B with and without microglial depletion (n 2 3, *p <0.05, **p < 0.01. n.d. = not detectable)

significant reduction in neurodegeneration and density
of INOS" cells after stroke. Moreover, depletion of
microglia had differential effects on inflammatory cyto-
kines. On one hand, our data manifested significant
downregulation of pro-inflammatory factors in the lesion
site after microglial depletion which implied reactive
microglia as the major source of pro-inflammatory mol-
ecules after stroke. Activated microglia produce a pleth-
ora of neurotoxic mediators such as NO, TNF-a, and
IL-1B which have direct effects on neurologic outcomes
of ischemic stroke [16]. Inhibition of iNOS, TNF-a, and
IL-1B could attenuate ischemic injury and ameliorate
neurological deficits [75-77]. On the other hand, we also
found evident upregulation of anti-inflammatory media-
tors after microglial depletion. Although the increase of

anti-inflammatory factors in the absence of microglia
seems paradoxical, other brain cells likely serve as
sources of inflammatory cytokines. Previous studies de-
tected rapid production of neuronal IL-4 during sub-
lethal ischemia [78] and upregulation of TGF-B1 and
Argl in ischemic brain vessels [79, 80]. Under ischemic
stress, reactive astrocyte also increases expression of
neuroprotective IL-10 and Argl [81, 82]. Out of inter-
action with microglia, the altered cross-talk among other
brain cells is likely to change and evoke their anti-
inflammatory profiles after ischemic stroke. It is note-
worthy that microglial depletion led to a significant in-
crease in the mRNA expression of Argl, but a slight
decrease in the density of Argl™ cells. This contradiction
may be due to overexpression of Argl mRNA
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concentrated in each Argl® cell, as well as post-
transcriptional control and delay of protein translation
of Argl mRNA. Although our study supported a key role
of microglial depletion in ischemic stroke, there are po-
tential repercussions induced by microglial depletion.
Evidence suggests that microglial depletion can cause a
decrease in splenic macrophages and T cells and an in-
crease in circulating neutrophils [72]. Further studies are
warranted to assess the effect induced by the change of
other cell types. Together, these data reveal that micro-
glia play an essential role in the expression of immuno-
modulatory molecules at the ischemic site. Depletion of
microglia skews the immune microenvironment of in-
farcted tissue toward an inflammation-suppressive state.
Consequently, we propose that removing microglia or
dampening microglial activation at an early stage of
acute ischemic stroke may be helpful to limit neuronal
injury and reduce cerebral ischemic damage.

Conclusions

In summary, we proposed that specific depletion of reactive
microglia effectively reduced pathological damage at the early
stage of ischemic stroke, with smaller infarct volumes, re-
duced neurodegeneration, and improvement of motor
activity in the absence of microglia. The results of immuno-
histochemistry and molecular biological assays confirmed
that the immune microenvironment inclined to be
inflammation-suppressive and neuroprotective to retard sec-
ondary damage to neurons and tissue in the lesion site when
microglia were exhausted at this time. Further research is re-
quired to shed light on microglial functions at other periods
and mechanisms of how reactive microglia impact inflamma-
tion and microenvironment in the brain after ischemia. Data
from our behavioral evaluation additionally suggested that
depletion of microglia in the early stage of ischemic stroke
was conducive to behavioral recovery. These results present
detrimental effects of activated microglia in the subacute
phase of ischemia and offer a new target for early therapeutic
strategy aimed at regulating the inflammation profile medi-
ated by reactive microglia in lesion sites to reduce neuronal
secondary damage and slow down the exacerbation of ische-
mic stroke.
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Additional file 1: Figure S1. Distribution of iINOS™ cells and Arg1™ cells
in the lesion site 3 days after stroke. (A) Representative images of brain
section stained with two typical inflammatory molecules in the presence
of microglia. A mass of iINOS™ cells distributed all over the ischemic area,
and a number of Arg1™ cells around the center. (B) Representative

images showing a decline in number of INOS cells and Arg1™ cells with
microglial depletion (A-B Scale bar = 300 um).

Additional file 2: Figure S2. mRNA expression of other inflammatory
factors in the presence and absence of microglia. Relative mRNA levels of
(A-B) anti-inflammatory factors IL-4, Ym1 and (C) pro-inflammatory factors
MCP-1 with and without microglial depletion (n = 3, *p <0.05, **p < 0.01.
n.d. = not detectable).
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