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Abstract

Background: Immune-mediated neuropathies, such as chronic inflammatory demyelinating polyneuropathy (CIDP)
are treatable neuropathies. Among individuals with diabetic neuropathy, it remains a challenge to identify those
individuals who develop CIDP. Corneal confocal microscopy (CCM) has been shown to detect corneal nerve fiber
loss and cellular infiltrates in the sub-basal layer of the cornea. The objective of the study was to determine
whether CCM can distinguish diabetic neuropathy from CIDP and whether CCM can detect CIDP in persons with
coexisting diabetes.

Methods: In this multicenter, case-control study, participants with CIDP (n = 55) with (n = 10) and without (n = 45)
diabetes; participants with diabetes (n = 58) with (n = 28) and without (n = 30) diabetic neuropathy, and healthy
controls (n = 58) underwent CCM. Corneal nerve fiber density (CNFD), corneal nerve fiber length (CNFL), corneal
nerve branch density (CNBD), and dendritic and non-dendritic cell density, with or without nerve fiber contact were
quantified.

Results: Dendritic cell density in proximity to corneal nerve fibers was significantly higher in participants with CIDP
with and without diabetes compared to participants with diabetic neuropathy and controls. CNFD, CNFL, and CNBD
were equally reduced in participants with CIDP, diabetic neuropathy, and CIDP with diabetes.

Conclusions: An increase in dendritic cell density identifies persons with CIDP. CCM may, therefore, be useful to
differentiate inflammatory from non-inflammatory diabetic neuropathy.
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Background
Immune-mediated neuropathies are a heterogeneous
group of conditions mediated by inflammatory processes
resulting in impaired sensation and muscle weakness
which impose a significant burden of disease [1]. The
most common immune-mediated neuropathy is chronic
inflammatory demyelinating polyneuropathy (CIDP),
with a prevalence of around 1–2/100,000 people [2]. The
diagnosis of CIDP relies primarily on nerve conduction

studies; however, diagnostic challenges can lead to a
considerable degree of mis- and under-diagnosis [3, 4].
In some cases, neurophysiology may not clearly differen-
tiate CIDP from other demyelinating neuropathies, such
as demyelinating diabetic neuropathy or demyelinating
hereditary neuropathies [5]. Furthermore, epidemio-
logical data suggest an increased prevalence of CIDP
among individuals with diabetes [6]. This, coupled with
the difficulty of diagnosing CIDP in persons with dia-
betic neuropathy, may preclude the application of timely
and specific treatment options such as intravenous im-
munoglobulins for CIDP [7].
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Corneal confocal microscopy (CCM) is a relatively rapid
non-invasive ophthalmic imaging technique that is repro-
ducible [8, 9] and well tolerated [10]. This technique has
demonstrated nerve fiber loss and provided good diagnostic
utility for diabetic neuropathy in larger cohorts [11–13],
comparable to intraepidermal nerve fiber density [14] and
also has shown predictive utility for the development of dia-
betic neuropathy [15]. CCM also identifies corneal nerve
loss in a range of peripheral neuropathies including idio-
pathic small fiber neuropathy [16], Charcot-Marie-Tooth
disease type 1A [17], HIV neuropathy [18], chemotherapy-
induced peripheral neuropathy [19], amyloid neuropathy
[20], and Friedreich’s ataxia [21].
There is currently no non-invasive technique that can

act as a surrogate measure of ongoing inflammation to
assess disease progression or treatment response and
dose adjustment of therapies. Experimental data indicate
that the presence of dendritic cells and their contact
with the sub-basal nerve plexus may trigger nerve fiber
damage [22]. More recently, we have shown an increase
in corneal dendritic cells in individuals with CIDP and
suggested that this may help to stratify CIDP subtypes,
clinical course, and disease activity [23]. In a prospective
study of 17 individuals with CIDP who were followed
over 18 months, the presence of > 30 cells/mm2 at base-
line identified clinical progression with a sensitivity and
specificity of 100% [24]. Moreover, in one person with
anti-neurofascin-155 neuropathy, treatment with rituxi-
mab was associated with a reduction in the serum anti-
body titer with a clinical and electrophysiological
improvement and reduction of corneal inflammatory cell
infiltrates [25].
The present study was undertaken to assess whether

CCM can differentiate CIDP from diabetic neuropathy
and whether it can detect CIDP in persons with
coexisting diabetes.

Methods
Study design and participants
The study was performed in accordance with the
principles of the Declaration of Helsinki, and the local
Ethics Committees approved the study plan (Ethics
Committee University of Essen, #16-7289-BO, North
Manchester Ethics Committee). Participants who pro-
vided written informed consent were included. All
participants were over 18 years of age. A total of 55
patients with CIDP, 58 patients with type 2 diabetes
and 58 healthy controls were investigated. Within the
CIDP group, 10 patients also had type 2 diabetes, and
11 had monoclonal gammopathy of undetermined sig-
nificance (MGUS+), (Table 1). CIDP was diagnosed
according to the European Federation of Neurological
Societies/Peripheral Nerve Society criteria [26].
Patients with diabetes underwent assessment of the

neuropathy symptom profile (NSP) and modified
neuropathy disability score (NDS) to assess pinprick,
vibration perception, temperature sensation and ankle
reflexes. Nerve conduction studies (NCS) were under-
taken and diabetic neuropathy was defined according
to the Toronto consensus, which requires the pres-
ence of symptoms (abnormal NSP) or signs of neur-
opathy (NDS > 2) and abnormal peroneal nerve
conduction velocity (PMNCV < 40 m/s) and the
patients were subdivided into those with diabetic
neuropathy (n = 28) and those without (n = 30) [27].
Patients with CIDP who were positive for anti-MAG

antibodies were excluded. In the healthy control group, a
full blood workup and clinical, neurological, and neuro-
physiological examination were performed to exclude
neuropathy. Patients and controls were recruited from the
Department of Neurology, University Hospital of Essen,
Germany, and from the Centre for Endocrinology and
Diabetes, University of Manchester, UK.

Corneal confocal microscopy
Corneal images were captured using a Heidelberg Retina
Tomograph (HRT III, Rostock Cornea Module, Heidel-
berg Engineering, Heidelberg, Germany). Corneal integ-
rity was confirmed by slit-lamp examination. Local
anesthetic (0.4% benoxinate hydrochloride) was used to
anesthetize the eye, and a drop of Viscotears Liquid Gel
was used between the lens and the disposable lens cover.
CCM is a corneal contact technique which has a very
low risk for corneal injury or keratitis; however, none of
our patients developed any of these complications. Four
scan cycles were conducted across the entire depth of
the central cornea, especially the sub-basal nerve layer.
At least 15 images per patient, meeting established qual-
ity criteria were analyzed [10]. Automated corneal nerve
quantification was undertaken using established software
(ACCMetrics Image Analysis tool v1.1, University of
Manchester, UK) to evaluate the following: corneal nerve

Table 1 Subgroups and demographics of participants.

Cohort (total n = 171) n Age Sex Male (%) Female (%)

CIDP 55 58 ± 12.7 60 40

CIDP + diabetes 10 55 ± 8.3 90 10

CIDP −diabetes 45 59 ± 12.3 53 47

CIDP + MGUS 11 58 ± 9.3 66 34

Diabetes 58 52 ± 16.7 47 53

Diabetes +to 28 61 ± 10.8 43 57

Diabetes −to 30 43 ± 16.6 47 53

Healthy controls 58 49 ± 15.3 34 66

Abbreviations: CIDP chronic inflammatory demyelinating polyneuropathy,
MGUS monoclonal gammopathy of undetermined significance, DN diabetic
neuropathy, patients with (+to) and without (−to) neuropathy according to the
Toronto criteria

Fleischer et al. Journal of Neuroinflammation           (2021) 18:89 Page 2 of 8



fiber density (CNFD; no./mm2), corneal nerve fiber
length (CNFL; mm/mm2), and corneal nerve branch
density (CNBD; major no./mm2). Cell quantification was
performed in a blinded manner without knowledge of
patient diagnosis using ImageJ software (version 1.41,
National Institutes of Health, USA). Cells were classified
as dendritic cells with fiber contact (DCF), dendritic cells
in the periphery without fiber contact (DCP), non-
dendritic cells with fiber contact (NCF), or non-
dendritic cells in the periphery without fiber contact
(NCP), as described previously [23]. Dendritic and non-
dendritic cells were counted per mm2. F/mm2 comprises
all cells/mm2 with fiber contact (DCF and NCF),
whereas P/mm2 combines all cells per mm2 without
fiber contact (DCP, NCP).

Statistical analysis
All data are presented as mean, standard error of the
mean, and P values, which were calculated using Graph-
Pad Prism software version 9.0 (GraphPad Software,
Inc., La Jolla, CA, USA). Differences between groups
were assessed using Kruskal-Wallis one-way analysis of

variance with Dunn’s multiple comparison post hoc
tests, after analyzing for parametrical distribution with
Shapiro-Wilk test. A P value < 0.05 was considered to be
significant (*< 0.05, **< 0.01, and ***< 0.001). Specificity,
sensitivity, and positive predictive value were calculated
for distinguishing CIDP from DN and healthy controls
with the parameter DCP and DCF by using the lower z
value of two times the SEM from the median as the cut-
off value.

Results
The mean age of patients with CIDP was 58 ± 12.7 years
and 60% were males, compared to the group of patients
with diabetes who had a mean age of 52 ± 16.7 years
and 47% were males. The groups and subgroups (CIDP
± diabetes, CIDP ± MGUS, diabetes ± to) were matched
with regard to demographic characteristics and did not
differ significantly. The mean age of healthy controls
was 49 ± 15.3 years and 58% were males (Table 1). The
potential effect of age or sex as a confounding factor was
examined by multiple regression analysis (method enter)

Fig. 1 Corneal infiltrating cells and nerve fiber parameters in participants with chronic inflammatory demyelinating polyneuropathy (CIDP) or
diabetes. Corneal cellular infiltrates were classified as dendritic cells (without [DCP] or with [DCF] fiber contact) or non-dendritic cells (without
[NCP] or with [NCF] fiber contact) in participants with CIDP, diabetes and control participants a–d. Corneal nerve fiber density (CNFD), corneal
nerve branch density (CNBD), and corneal nerve fiber length (CNFL) were quantified e–g. The number of infiltrating cells with proximity to nerve
fibers h, the number of cells without nerve fiber contact i, and the total corneal cell count j were determined. Mean ± SEM, *P < 0.05, **P < 0.01,
***P < 0.001, ns indicates not significant
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and logistic regression analysis. Neither factor was
shown to have any influence on relevant parameters.

CIDP and diabetes
Patients with CIDP had a significantly higher DCP
and DCF compared to patients with diabetes and
healthy controls (Fig. 1a, b). There were no significant
differences among groups for NCP (Fig. 1c) or NCF
(Fig. 1d). However, all corneal nerve fiber parameters
(CNFD, Fig. 1e; CNBD, Fig. 1f; CNFL, Fig. 1g) were
significantly reduced in patients with CIDP and dia-
betes compared to controls, with no significant differ-
ence between CIDP and diabetes. The number of
infiltrating cells in proximity to nerve fibers (DCF +
NCF, Fig. 1h), the number of cells without nerve fiber
contact (DCP + NCP, Fig. 1i), and the total cell
number (Fig. 1j) was significantly higher in patients

with CIDP compared to patients with diabetes or
compared to control.
To test whether the detection of CIDP could be

further improved, as per pre-specified analysis, we nor-
malized infiltrating cell numbers to nerve fiber
parameters. For the ratio of total cell numbers to nerve
fiber parameters, there was no significant improvement
in identifying CIDP (Supplementary Figure 1a-c). There
was a significant difference for cells in proximity to
nerve fibers (DCF + NCF) and their ratio for CNFD,
CNBD, and CNFL between patients with CIDP and
diabetes (Supplementary Figure 1D-F). There was no
significant difference for cells in the periphery (DCP
+ NCP) and their ratio to nerve fiber parameters
between patients with CIDP and diabetes (Supple-
mentary Figure 1g-i).
By comparing effect sizes (d), the ratio of DCF +

NCF to CNFL was identified as the most selective

Fig. 2 Corneal infiltrating cells and nerve fiber parameters in participants with chronic inflammatory demyelinating polyneuropathy (CIDP) and
diabetic neuropathy. Corneal confocal microscopy was used to classify corneal cellular infiltrates as dendritic cells (without [DCP] or with [DCF]
fiber contact) or non-dendritic cells (without [NCP] or with [NCF] fiber contact) and to assess corneal nerve fiber density (CNFD), corneal nerve
branch density (CNBD), and corneal nerve fiber length (CNFL) in participants with diabetes who fulfilled (+to) or did not fulfill (−to) the Toronto
criteria for large fiber neuropathy, in participants with diabetes and in healthy individuals (control) a–g. Participants with CIDP were further
subdivided into those with (+) or without (−) diabetes h–k. Mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, ns indicates not significant
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(F/mm2/CNFL d = 0.857), followed by F/mm2/CNFD
(d = 0.664), F/mm2/CNBD (d = 0.408), P/mm2/
CNFL (d = 0.225), P/mm2/CNFD (d = 0.083), and P/
mm2/CNBD (d = 0.079). However, these derived pa-
rameters did not improve the ability to distinguish
CIDP from DN beyond the number of infiltrating
dendritic cells, which showed the highest effect size
(DCF/mm2: d = 1.014; DCP/mm2: d = 0.941). DCP
distinguished CIDP from DN with a sensitivity of
0.701, specificity of 0.879, and a PPV of 0.784. DCF
distinguished CIDP from DN with a sensitivity of
0.596, specificity of 0.775, and a PPV of 0.723. For
distinguishing CIDP from healthy control, DCP
showed a sensitivity of 0.701, specificity of 0.767,
and a PPV of 0.754, while DCF showed a sensitivity
of 0.596, specificity of 0.722, and a PPV of 0.693.

Patients with and without diabetic neuropathy
Patients with diabetes were further subdivided into
patients with (+to) and without (−to) neuropathy
according to the Toronto criteria. Both +to and −to
had significantly lower numbers of DCP and DCF
compared to patients with CIDP (Fig. 2a, b). There
were no significant differences between groups for
NCP and NCF (Fig. 2c, d). CNFD, CNBD and CNFL
were lower in +to compared to −to, and CNFD,

CNBD and CNFL were lower in −to group compared
to controls (Fig. 2e-g).

Influence of glycemia
There was no significant difference in corneal cellular
infiltrates in a comparison of participants with poor ver-
sus good glycemic control (HbA1c > 7.0% vs. ≤ 7.0%,
Supplementary Figure 1j-k).

CIDP and diabetes
There were no significant differences in DCP, DCF,
NCP, and NCF in a comparison of participants with
CIDP with and without diabetes (Fig. 2h–k). DCP was
significantly higher in the CIDP subgroup without dia-
betes but not in the CIDP subgroup with diabetes com-
pared to participants with diabetes alone (Fig. 2h). CIDP
individuals without diabetes had significantly higher
numbers of DCF compared to individuals with diabetes
alone (Fig. 2i). There were no significant differences for
NCP and NCF (Fig. 2j, k) as well as for CNFD, CNFL,
and CNBD in CIDP participants with or without dia-
betes (data not shown).

MGUS neuropathy
Participants with CIDP were divided into those with
(n = 11) and without (n = 44) MGUS (Fig. 3).

Fig. 3 Corneal infiltrating cells and nerve fiber parameters in participants with chronic inflammatory demyelinating polyneuropathy (CIDP) with
(+), or without (−) monoclonal gammopathy of undetermined significance (MGUS). Corneal confocal microscopy was used to classify corneal
cellular infiltrates as dendritic cells (without [DCP] or with [DCF] fiber contact) or non-dendritic cells (without [NCP] or with [NCF] fiber contact) in
participants with CIDP with (+) or without (−) MGUS, in participants with diabetes, and control individuals a–d. Corneal nerve fiber density
(CNFD), corneal nerve fiber length (CNFL), and corneal nerve branch density (CNBD) were quantified e–g. Mean ± SEM, **P < 0.01, ***P < 0.001,
ns indicates not significant
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Dendritic cell density (DCP and DCF) was signifi-
cantly higher in the CIDP subgroup without MGUS
compared to the diabetes or control groups (Fig. 3a,
b). No significant differences were observed among
any of the groups for NCP and NCF (Fig. 3c, d).
CNFD, CNFL, and CNBD were significantly lower in
the MGUS+, MGUS− and diabetes groups compared
to controls and did not differ between MGUS+ and
MGUS− groups (Fig. 3e–g).

Discussion
Up until now, there has been no non-invasive method
available to assess ongoing inflammation in the periph-
eral nervous system. Therefore, we aimed to investigate
the potential of CCM to distinguish inflammatory from
non-inflammatory neuropathies. We show an increase in
corneal dendritic cells in proximity to corneal nerve fi-
bers in participants with CIDP compared to diabetic
neuropathy.
The prevalence of CIDP is increased among individ-

uals with diabetes [7, 28]. However, the development
of CIDP in persons with diabetes is often not diag-
nosed or misdiagnosed as diabetic neuropathy and
these individuals may be denied timely and effective
treatment [3]. None of the known biomarkers or
diagnostic tools such as cerebrospinal fluid protein,
clinical, electrophysiological, and serological markers
of autoimmunity can adequately identify CIDP in
persons with demyelinating neuropathy due to an-
other condition such as diabetic neuropathy. Signifi-
cant proximal motor involvement without autonomic
involvement [29] and electrophysiological slowing may
help to establish the diagnosis of CIDP as opposed to
diabetic neuropathy [30–34]. Sural nerve biopsies can
be used to identify inflammation but remain impracti-
cal as they are invasive and, therefore, of limited use
in clinical practice [35, 36]. Immunohistochemical
studies of cells in the cornea using cell-specific sur-
face markers [37] indicate that the corneal dendritic
cells are mainly Langerhans cells [38, 39] and a previ-
ous study has shown that contact between these den-
dritic cells and corneal nerves may trigger nerve fiber
damage [22].
Our previous study showed corneal nerve loss and an

increase in dendritic cells in proximity to corneal nerve
fibers, which was associated with the severity of motor
symptoms in CIDP [23].
Here, we show moderate diagnostic utility of CCM

identification of increased corneal dendritic cell density
to differentiate CIDP from diabetic neuropathy. This
study also excluded HbA1c as a confounder in detecting
CIDP among individuals with diabetes.
CCM was also useful to detect CIDP in those individ-

uals with and without coexisting diabetes, indicating that

the increase in dendritic cells is driven by peripheral
nerve inflammation. Indeed, recent longitudinal studies
have shown that increased dendritic cell infiltration may
predict worsening outcomes in CIDP [24] and infiltrates
may be reduced in response to immune therapy [25].
Our data also show that dendritic cell density differs

in CIDP subgroups with and without MGUS supporting
the assertion that persons with CIDP and MGUS have
different clinical and electrophysiological patterns and
underlying pathophysiological mechanisms [40–42].
These findings are in keeping with our previous study
where we also showed equivalent corneal nerve loss but
lower numbers of corneal dendritic cells in those with
MGUS compared to CIDP [23].

Conclusion
Our study shows that corneal confocal microscopy, by
enabling the quantification of corneal dendritic cells,
may have clinical utility to differentiate inflammatory
from diabetic neuropathy. However, larger longitudinal
studies are required to evaluate the potential of this
method to predict disease progression and response to
treatment.
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