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Abstract

strategies for ischemic stroke therapy.

The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3)
inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can
detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known
as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-kB) pathways and
the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins
related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including
an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASQ);
and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous
proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell
death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being
observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the
clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and
approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for
ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and
activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding
drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new
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Introduction

Stroke is a disease with high mortality and disability
rates worldwide. Its prevalence rate increases annually,
and the affected population is becoming increasingly
younger. Stroke imparts heavy economic burdens on the
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families of patients and on society as a whole [1, 2].
According to its different etiologies and pathogeneses,
stroke is clinically divided into hemorrhagic stroke,
which is caused by cerebral vascular rupture, and ische-
mic stroke, which is triggered by arterial embolization or
thromboembolism in the cerebrum. Ischemic stroke
accounts for more than 80% of stroke cases, while
hemorrhagic stroke accounts for fewer than 20% of
cases. In this review, we focus on ischemic stroke
because it is the condition with the second-highest

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-021-02137-8&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:xiaoxingxiong@whu.edu.cn
mailto:gulijuan@whu.edu.cn

Xu et al. Journal of Neuroinflammation (2021) 18:123

mortality rate in the world after heart disease [3]. Focal
ischemic stroke is the most common type of ischemic
stroke [4—6]. There are many genetic and environmental
risk factors for stroke. A study on single-gene diseases
has suggested that common variants in approximately 35
sites are strongly related to the risk of stroke [7]. Add-
itionally, various health-related and environmental fac-
tors, such as high blood pressure, diabetes, high
cholesterol, high body mass index (BMI), smoking, and a
history of stroke, all increase the risk of stroke [8]. The
poststroke pathophysiological process is complicated
and includes intracellular ion homeostasis disruption,
acidosis, increased cytoplasmic Ca®" concentrations,
toxicity mediated by reactive oxygen species (ROS),
bioenergy failure, arachidonic acid production, cytokine-
mediated cytotoxicity, neuron and glial cells activation,
complement activation, blood-brain barrier (BBB) de-
struction and leukocyte extravasation [9]. Above all,
these factors can affect the functions and molecules of
neurons, glial cells, and vascular cells [10]. Ischemic
brain tissue injury is associated with the degree and dur-
ation of decreased blood flow. Greater severity and lon-
ger durations of obstruction are associated with more
severe brain tissue injuries, including brain tissue edema,
nerve cell dysfunction, and irreversible cerebral infarc-
tion, which lead to cognitive dysfunction and movement
disorders [11]. Cerebral edema can also result in hernia-
tion and death [3]. When ischemic brain tissue is reper-
fused with blood, the cellular metabolic rate and oxygen
consumption increase, leading to mitochondrial damage,
increased ROS generation, increased cytoplasmic Ca**
concentrations, and neutrophil infiltration and in turn
aggravating cell damage via the inflammatory response
[12]. This process is called cerebral ischemia/reperfusion
(I/R) injury (IRI), which can be treated by targeting and
attenuating inflammation through a series of therapeutic
methods [13]. In addition, the ischemic penumbra has
received much research attention. The penumbra is an
area that can be saved to limit the negative effects of is-
chemic stroke [14], but there is a risk of the penumbra
transforming into an ischemic zone, so interventions in-
volving reperfusion of the penumbra after acute ische-
mic stroke warrant further consideration [15]. To date,
there are no effective drugs for stroke treatment that do
not elicit severe side effects. Intravenous tissue plas-
minogen activator (tPA) treatment and intravascular
thrombectomy have been shown to be efficient for the
treatment of acute ischemic stroke. However, tPA treat-
ment is restricted to a narrow window, which limits its
clinical application [16, 17]. In addition, treatment of
stroke with tPA increases the risk of cerebral
hemorrhage and induces neuronal excitotoxicity [18].
Studies in vitro and in vivo have demonstrated that the
single-chain form of tPA (sc-tPA) selectively strengthens
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transduction of the N-methyl-D-aspartate receptor
(NMDAR) signal and enhances NMDAR-mediated
Ca”" influx and neurotoxicity in cultured cortical neu-
rons [19]. Neuroprotectors reduce infarct volume and
inhibit neuronal death in cultures and stroke animal
models but have failed in clinical trials because of
their harmful effects and inefficiency [20, 21]. Mo-
lecular danger signals called damage-associated mo-
lecular patterns (DAMPs), such as high-mobility
group box 1 (HMGBI), are released after multiple
types of cell damage. In addition, pathogen-associated
molecular patterns (PAMPs) derived from bacteria
can activate the innate immune system through pat-
tern recognition receptors (PRRs), which has recently
been highlighted as an important inflammatory mech-
anism. The PRRs of neurons and astrocytes then acti-
vate the mitogen-activated protein kinase (MAPK)
and nuclear factor kappa B (NF-«xB) pathways [22,
23]. The NLRP3 inflammasome is a key intermediate,
and treatments targeting upstream and downstream
signaling pathways of NLRP3 may be novel strategies
for stroke therapy [24]. In this review, we describe
the composition and activation of the NLRP3 inflam-
masome in ischemic stroke and the molecules in-
volved in associated inflammatory pathways. In
addition, possible targets and new strategies related to
the NLRP3 inflammasome for the therapy of ischemic
stroke are described.

The NLRP3 inflammasome

NLRP3, a classic nucleotide-binding oligomerization do-
main (NOD)-like receptor (NLR), is the most widely
studied inflammatory complex and is believed to be
closely associated with aseptic inflammation [25]. The
NLRP3 inflammasome includes three protein subunits,
the adaptor protein, apoptosis-associated speck-like pro-
tein containing a CARD (ASC), the receptor NLRP3,
and the effector pro-caspase-1 [26], and participates in
various infectious, inflammatory, and immune diseases
[27]. The NLRP3 receptor comprises three domains, in-
cluding a central NAIP, CIITA, HET-E, and TP1
(NACHT) domain; an N-terminal pyrin domain (PYD);
and a C-terminal leucine-rich repeat (LRR) domain [28].
NLRs are members of the PRR family. NLRs are intracel-
lular microbial receptors, and some NLRs can perceive
danger signals, such as the presence of bacterial RNA
and flagella, through both PAMP recognition and
DAMP recognition [29]. Particles such as silicon dioxide,
aluminum hydroxide, and amyloid fibers cause lysosomal
membrane rupture, which helps microbial molecules
enter the cytoplasm, thereby activating the NLRP3
inflammasome [30, 31]. The NACHT domain partici-
pates in the formation of the NLRP3 receptor and forms
the central core of the inflammasome with the
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participation of adenosine triphosphate (ATP) after acti-
vation of oligomerization. The PYD is necessary for the
binding of the NLR protein to the adaptor protein
ASC [32, 33]. The inflammasome acts as a molecular
platform to activate caspase-1 and then modulate the
innate immune response [34]. Caspase-1 serves as an
effector agent to cleave proteins and process pro-
interleukin (IL)-1B and pro-IL-18 into the mature
forms IL-1B and IL-18, respectively, and these mature
cytokines are secreted into the extracellular space to
perform their functions. ASC, which is visible as
specks in apoptotic cells [35], mediates pro-caspase-1
self-hydrolysis and subsequent pro-IL-1p maturation
but is not significantly involved in caspase-1-mediated
neuronal death [33]. One study has indicated that
caspase-12 can suppress the NLRP3 inflammasome by
disturbing caspase-1 activation, which is associated
with susceptibility to sepsis [36]. MCC950, an NLRP3
inhibitor, can reduce the expression of NLRP3 in is-
chemic brain tissue, and we have discovered that an
NLRP3 inhibitor can reduce neuronal apoptosis, cere-
bral infarct size, and neurological dysfunction [37].
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Molecular and other mechanisms involved in
activation of the NLRP3 inflammasome

Activation of NLRP3 is thought to involve a variety of
advanced signals, most of which are mutually synergistic
but not exclusive. Studies have shown that NLRP3
receptors can sense disturbances in homeostasis and
respond through several processes, as follows: (1) a low
K" concentration in the cytoplasm can trigger NLRP3
activation, (2) intracellular Ca®* accumulation can in-
duce harmful signaling pathways and activate the NLRP3
inflammasome, (3) lysosomal instability can stimulate
cathepsin release and induce NLRP3 activation, and (4)
mitochondrial injury-induced ROS production can acti-
vate NLRP3 and damage mitochondrial DNA (Fig. 1).

K*-mediated activation of NLRP3

A decreased intracellular K* concentration is a signifi-
cant factor in NLRP3 inflammasome activation [38].
Studies have shown that reducing K* levels in the cyto-
plasm induces NLRP3 inflammasome activation in vitro
[39, 40]. Reductions in intracellular K* levels can activate
the NLRP3 inflammasome by influencing pore-forming
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Fig. 1 Mechanisms of NLRP3 inflammasome activation. Decreases in intracellular K™ concentrations, increases in intracellular Ca’* concentrations,
and excessive ROS production activate the NLRP3 inflammasome. As an inhibitor of the TRX system, TXNIP has been proven to mediate
generation of large amounts of ROS and to activate the NLRP3 inflammasome. The activation of P2X7R caused by elevated ATP concentrations
leads to increased intracellular Ca®" concentrations and K™ outflow, resulting in activation of the NLRP3 inflammasome. Cathepsin is released into
the cytoplasm after lysosomal membrane rupture, which induces activation of the NLRP3 inflammasome via cleavage of NLRP3 receptor-
associated inhibitory domains or inhibitory proteins. dsRNA, increased intracellular Ca’* levels, K* outflow, increased ROS and other cellular stress
factors activate PKR, and PKR activates the NLRP3 inflammasome. Anaerobic glycolysis results in the accumulation of large amounts of H* and
lactic acid, causing acidosis and ultimately activating the NLRP3 inflammasome
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or endogenous ion channels [41]. Notably, the K* chan-
nel inhibitor glyburide efficiently inhibits inflammasome
activation [42, 43]. Passive ATP release may be con-
nected to P2X4 receptors in the plasma membranes of
adjacent neurons and glial cells, closing receptors and
resulting in K efflux [44, 45]. Damaged cells also pas-
sively release K*. Together, these mechanisms lead to in-
creases in extracellular K* concentrations and activation
of membrane pannexin 1 channels [46]. Closure of pan-
nexin 1 channels contributes to further ATP release and
purinergic ligand-gated ion channel 7 receptor (P2X7R)
activation, which restimulate the pannexin 1 channels to
form a positive feedback loop, thus causing excessive K*
outflow and reducing inflow [44, 45, 47].

Ca’*-mediated activation of NLRP3

Some studies have indicated that an increasing intracellu-
lar Ca®* concentration activates the NLRP3 receptor both
in vitro and in vivo [48]. During focal brain ischemia, high
intracellular Ca®" levels may be caused mainly by in-
creased intracellular Ca** influx and decreased Ca>* efflux
due to increased intracellular Ca”** release in damaged
neurons and glial cells [49, 50]. Ca®* release by injured
cells can lead to intracellular Ca>* overload through a spe-
cific mechanism. Briefly, necrotic cells in the ischemic
core passively release Ca®*, increasing the extracellular
Ca®* concentration. The Ca** binds to and activates Ca**-
sensing receptors (CaSRs) and GPR6CA molecules on ad-
jacent neuronal cells and glial cells, indirectly mediating
NLRP3 receptor activation and simultaneously reducing
intracellular cyclic adenosine monophosphate (cAMP)
concentrations [51, 52]. Reductions in cytoplasmic cAMP
concentrations can promote activation of the NLRP3 re-
ceptor [53-55]. After activation of cAMP and NLRP3,
membrane-bound phospholipase C (PLC), which cleaves
phosphatidylinositol-4,5-diphosphate (PIP2) into inositol
triphosphate (InsP3) and diacylglycerol (DAG), can be ac-
tivated [56, 57]. InsP3 interacts with the InsP3 receptor
(InsP3-R) located in the endoplasmic reticulum (ER) to
stimulate Ca®* release [48, 52, 56, 57]. Experiments have
shown that both ER Ca®* release and extracellular Ca**
influx are necessary for activation of the NLRP3 inflam-
masome. Pretreatment or incubation in Ca®*-free medium
with brief exposure to thapsigargin (Tg), a suppressant of
the sarcoplasmic/ER Ca®*-ATPase (SERCA) pump, atten-
uates activation of the NLRP3 inflammasome. ER-released
Ca®* can trigger extracellular Ca** influx through store-
operated Ca%t entry (SOCE) [58]. In addition, the in-
creased concentration of Ca>* leads to Ca** accumulation
in the mitochondrial matrix through the mitochondrial
Ca%t uniporter (MCU) and the loss of mitochondrial
transmembrane potential, thus activating the NLRP3
inflammasome. Other studies have shown that after the
membrane attack complex (MAC) is formed, some Ca%
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is released through the ER via ryanodine receptors [59]. In
conclusion, Ca®** can indirectly activate the NLRP3
inflammasome through functional changes in the ER and
mitochondria. The low-affinity Na*/Ca®* exchanger
(NCX) and high-affinity Ca**-ATPase in the plasma mem-
brane are the major transporters responsible for regulating
intracellular Ca®* levels and returning plasma Ca®* con-
centrations to resting levels to maintain homeostasis [60].
Under conditions of excessive intracellular Na*, NCX acti-
vates its reverse exchange mode, mediating Ca>* influx
and Na* efflux, which results in intracellular Ca** over-
load [61]. Selective inhibitors of the NCX reverse mode
have been developed and tested in animal models of
stroke and have been conclusively shown to reduce brain
damage [62, 63].

ROS-mediated activation of NLRP3

ROS play important roles in inflammation, oxidative
stress, changes in blood vessel tension, and oxidation of
low-density lipoprotein cholesterol (LDL-C) [64, 65].
ROS are also necessary for NLRP3 inflammasome activa-
tion. When the brain undergoes ischemic and hypoxic
damage, large amounts of ROS are generated due to
mitochondrial damage or insufficient oxygen supply, and
these ROS in turn further disrupt mitochondrial func-
tion and structure [66]. There is evidence that mito-
chondria may be important sources of ROS related to
NLRP3 inflammasome activation [67]. As byproducts of
oxidative phosphorylation, ROS can be produced by
mitochondria; these ROS not only continuously activate
the NLRP3 inflammasome but also continue to damage
mitochondria. When the ER is under stress, nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase
(NOX) in the ER can induce ROS generation to restore
ER homeostasis [68]. Excessive ROS production in the
ER leads to mitochondrial Ca** deposition and further
aggravates mitochondrial damage [69]. Mitochondrial
autophagy is a crucial adjuster of NLRP3 activation be-
cause it eliminates dysfunctional and damaged mito-
chondria, thus ultimately reducing ROS levels. Increases
in the numbers of damaged and dysfunctional mitochon-
dria after treatment with mitochondrial autophagy
inhibitors can enhance activation of the NLRP3 inflam-
masome [70]. Oxidized mitochondrial DNA can also
lead to excitation of the NLRP3 receptor, consistent with
the role of mitochondria in the signal transduction of
the NLRP3 inflammasome [71]. During cerebral ische-
mia, ROS levels can increase through disturbance of the
electron transport chain or activation of NOX, xanthine
dehydrogenase, phospholipase A2 (PLA2), or nitric oxide
synthase (NOS) [72-74]. A variety of experiments in-
volving interference with mitochondrial function and
uncoupling of the electron transport chain have proven
that mitochondrial dysfunction can enhance ROS
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production and ultimately activate the NLRP3 receptor;
this situation may occur after cerebral ischemia. When
mitochondrial autophagy is disrupted, ROS production
increases significantly, and the NLRP3 receptor is acti-
vated [75]. Some studies have shown that nuclear factor
erythrocyte 2—related factor 2 (NRF2) is also necessary
for NLRP3 activation [76, 77]. However, other studies
have shown that NRF2 regulates antioxidant gene levels
to support cell survival during oxidative stress while also
inhibiting NLRP3 activity by limiting ROS levels [78].

TXNIP-mediated activation of NLRP3

Thioredoxin (TRX)-interacting protein (TXNIP) is an
endogenous suppressor of the TRX system that mainly
inhibits cellular mercaptan production and has antioxi-
dant and anti-inflammatory effects. However, increasing
evidence has shown that TXNIP exerts its proinflamma-
tory effect by activating the NLRP3 inflammasome [79].
In addition, numerous studies have shown that TXNIP
may act as a primary mediator linking various undesir-
able stimuli, such as oxidative stress [80] and inflamma-
tion [81], to the NLRP3 inflammasome. TXNIP is a
significant molecular site and signaling molecule in ER
stress (ERS) and the inflammatory response [82]. In the
context of ERS, TXNIP produces large amounts of ROS,
which activate the NLRP3 inflammasome, resulting in
IL-1B secretion [82, 83]. After ischemic stroke, TXNIP
exacerbates cerebral injury through redox imbalance and
subsequently activates the NLRP3 inflammasome [84].
In unaffected cells, TXNIP binds to and inhibits redox-
related TRX, and the presence of the complex is associ-
ated with elevations in cytoplasmic ROS levels, which
cause TXNIP to bind to NLRP3 receptor domains
(mainly the LRR domain) and thus induce activation of
NLRP3 receptors [5, 67, 85]. Recent evidence also sug-
gests that NRF2, which is regarded as a pivotal molecule
in the antioxidant stress system, inhibits TXNIP and
NLRP3 inflammasome activation in IRI of the cerebrum
[86]. This suggests that TXNIP-mediated activation of
the NLRP3 inflammasome is a key factor in ischemic
stroke. Therefore, the associated signaling pathway could
be a new target for the treatment of ischemic stroke.

P2X7R-mediated activation of NLRP3

P2X7R is a nonselective ATP-gated cation channel lo-
cated on the membranes of various immune cells. Acti-
vation of P2X7R produces a range of harmful effects,
including intracellular Ca** concentration increases, glu-
tamate release, and NLRP3 inflammasome activation
[37, 87]. These adverse effects may lead to aggravation
of ischemic brain tissue injury and excitotoxicity and
even to irreversible damage. Brilliant Blue G (BBG), an
antagonist of P2X7R, can significantly reduce neuronal
apoptosis, cerebral infarct size, and nerve function
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defects and save brain tissue. After ischemic stroke, ATP
accumulates in damaged and inflamed tissue, and the in-
crease in ATP concentration activates P2X7R, leading to
intracellular K* efflux that activates the NLRP3 inflam-
masome [88]. Therefore, the NLRP3 inflammasome has
been reported to be a potential downstream signaling
factor of P2X7R [89]. Thus, blocking P2X7R activation is
a novel strategy for neuroprotection in the context of is-
chemic stroke.

Cathepsin-mediated activation of NLRP3

The lysosomal cysteine protease cathepsin, a sterile par-
ticle, is released into the cytoplasm following lysosomal
membrane destruction and rupture caused by stimula-
tion with DAMP particulate crystals [90-92]. The
released cathepsin induces NLRP3 inflammasome activa-
tion by cleaving the inhibitory domain or repressive pro-
tein associated with the NLRP3 receptor [93-95]. Sterile
particles (including crystals and other factors originating
from cholesterol clefts released by cerebral atheroscler-
otic vessels) as well as uric acid and Ca** released from
crystals formed by necrotic tissues in the ischemic area
can be absorbed into the lysosomes of various types of
cells (including recruited astrocytes, microglia and infil-
trating white blood cells) via engulfment, phagocytosis
or scavenger receptor-mediated membrane absorption,
which subsequently causes lysosomal instability [96—99].
In addition, some exogenous particulates, such as silica,
alum, and asbestos, do not dissolve but are instead re-
peatedly phagocytosed and transported into lysosomes,
which can cause lysosomal rupture and continuous ca-
thepsin release [31]. The cathepsin lysosomal cysteine
protease family is a family of 11 enzymes that were ini-
tially thought to function only in lysosomes; however, re-
cent studies have shown that cathepsins have additional
lysosomal and extracellular functions [100-102].
Cathepsin-B plays a crucial role in NLRP3 inflamma-
some activation, and a cathepsin-B inhibitor has been
shown to specifically inhibit this process [103]. In
addition, studies using combinations of multiple cathep-
sin inhibitors have indicated that multiple cathepsins
can effectively activate the NLRP3 inflammasome [91,
104, 105]. Overall, the evidence indicates that cathepsins
play key roles in NLRP3 activation, which provides new
ideas for stroke treatment.

PKR-mediated activation of NLRP3

Protein kinase R (PKR) belongs to the serine/threonine-
protein kinase family, which is commonly activated by
double-stranded RNA (dsRNA) [106, 107]. During cere-
bral ischemia, PKR is activated by various cellular stress
factors, such as increased intracellular Ca>* levels, K* ef-
flux, and elevated ROS levels; activated PKR then partici-

pates in the inflammatory response. PKR is an
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indispensable component for inflammasome assembly
and activation [108]. A recent experiment demonstrated
that complement 5a receptor 2 (C5aR2) promotes
NLRP3 activation by increasing dsRNA-dependent PKR
expression [109, 110]. We demonstrated that Epacl reg-
ulates PKR phosphorylation, leading to inactivation, in
retinal lysates generated from retinal endothelial cells
(RECs) with Epacl-specific knockout. PKR inhibition
experiments have demonstrated that PKR deficiency
reduces the expression levels of NLRP3, caspase-1, and
IL-1P. In addition, some studies have indicated that PKR
modulates the NLRP3 inflammasome in RECs. Epacl
regulates PKR phosphorylation, leading to PKR inactiva-
tion and significantly reducing NLRP3 signaling [111].
PKR has also been reported to mediate harmful palmitic
acid (PA)-induced inflammation through the Jun N-
terminal kinase (JNK)/NF-kB/NLRP3 signaling pathway
in cultured cardiomyocytes [112]. P58 can inhibit PKR
and is associated with activation of inflammasomes. A
comparison of primary bone marrow—derived macro-
phages (BMDMs) between p58-knockout mice and wild-
type mice showed that p58 deficiency increases PKR and
NE-kB activation and increases proinflammatory gene
expression [113]. However, studies have also shown that
activation of PKR is not required in ASC oligomers or
the NLRP3 inflammasome when macrophages exposed
to nonactivated anthrax lethal toxin undergo pyroptosis
[114]. Moreover, in PKR-deficient macrophages, pro-IL-
18 is still transformed into IL-18, indicating that PKR is
not necessary in this context [115]. The above findings
demonstrate that the roles of PKR in NLRP3 inflamma-
some activation and the inflammatory response still need
to be clarified in future studies.

Acidosis-mediated activation of NLRP3

After stroke, anaerobic glycolysis occurs due to vascular
obstruction, cerebral tissue ischemia, and hypoxia. This
process provides compensatory and transient energy
support but produces large amounts of lactic acid and
H", leading to local pH decreases that cause irreversible
cerebral cell death [116]. Lactic acidosis is thus strongly
associated with ischemic stroke [117]. Acidosis is also
regarded as an inducer of NLRP3 inflammasome activity.
The NLRP3 receptor is activated by intracellular acidosis
and reductions in intracellular K™ concentrations, al-
though the mechanism remains to be clarified [118]. An
acidic extracellular environment can trigger cell signal-
ing events through changes in the surface or intracellular
environment. On the cell surface, acid-sensitive ion
channels (ASICs) directly activated by protons are trig-
gered by acidosis to induce cell reactions [119]. ASICs
are widely expressed in the central nervous system
(CNS), including in the cerebral cortex, hippocampus,
and cerebellum [120]. Ischemic cerebral acidosis leads to
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neuronal damage, and the damaging effect is mediated
partly by ASICs [121, 122]. In cerebral ischemia, the
passive release of H" from necrotic cells results in extra-
cellular acidosis in the ischemic area [118, 123]. Compo-
nents of the acidic extracellular environment can bind to
neurons and glial cells via H"-activated ASICs [124]. In
the CNS, ASIC1 is the most widely distributed member
of the ASIC family; in particular, the ASICla isomer is
Ca®" permeable and is associated with neuronal injury
mediated by acidosis under ischemic conditions [121,
122, 125]. The use of ASIC blockers significantly reduces
brain infarct volume, prevents damage, and has protect-
ive effects on the ischemic brain [121]. In addition,
ASIC1 does not depend on the conduction of Ca**, and
ASICla-induced phosphorylation of receptor-interacting
protein 1 (RIP1) has been found to be a new type of in-
jury that occurs through the interaction of ASICla with
the serine/threonine kinase RIP1 and subsequent induc-
tion of pyroptosis to mediate acidosis and ischemic cell
death [126].

Role of the NLRP3 inflammasome in ischemic
stroke

NLRP3 inflammasome-related neuronal death in ischemic
stroke

Pyroptosis is a kind of programmed cell death that dif-
fers from necrosis and apoptosis and is induced entirely
by cleaved caspase-1 to cause inflammatory cell death
[127]. Caspase-1 dependence is characteristic of pyrop-
tosis. Necrotic morphological changes, including mem-
brane rupture, pore formation, and edema, promote the
release of materials within inflammatory cells and
damage to the actin cytoskeleton. In contrast, pyroptosis
results in complete mitochondrial destruction and bal-
looning (small bubble formation) without the release of
cytochrome-c (Cyt) [128-131]. At the molecular level,
pyroptosis is characterized by gasdermin D (GSDMD)-
mediated cell death [132]. Activated caspase-1 cleaves
GSDMD and triggers intracellular GSDMD-N domain
oligomerization, which results in the formation of pores
to release IL-1pB, IL-18, and HMGBI. In addition, active
caspase-1 mediates pro-IL-13/IL-18 maturation into IL-
1B/IL-18, leading to inflammation [129, 133]. Caspase-1
thus cleaves and activates GSDMD, IL-1p, and IL-18,
which then escape into the extracellular space through
pores generated by GSDMD [132] (Fig. 2). Hence,
GSDMD may be a potential therapeutic target to inhibit
caspase-1-mediated pyroptosis [134]. After stroke, extra-
cellular and intracellular environments undergo meta-
bolic changes, including reductions in ATP, efflux of
intracellular K*, increases in intracellular Ca", high
mitochondrial production of ROS that cannot be elimi-
nated via normal methods, and leukocyte recruitment to
damaged sites. In the contexts of these stresses, the
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Fig. 2 Metabolic changes in the intracellular and extracellular environments activate the NLRP3 inflammasome, leading to pyroptosis. Pyroptosis
is characterized by GSDMD-mediated cell death. Extracellular and intracellular environments undergo metabolic changes, including reductions in
ATP, efflux of intracellular K*, increases in intracellular Ca®*, and production of large amounts of ROS by mitochondria; the ROS cannot be
normally removed, and the NLRP3 inflammasome is activated, prompting pro-caspase-1 to self-cleave into caspase-1. Then, caspase-1 lyses and
activates GSDMD, leading to pore formation, membrane lysis, and DNA breakage.

NLRP3 inflammasome is activated, prompting pro-
caspase-1 self-cleavage for maturation. Caspase-1 then
cleaves pro-IL-1f and pro-IL-18 into IL-1p and IL-18,
respectively. In addition, during stroke, necrotic cells se-
crete danger signals called DAMPs that activate PRRs,
resulting in expression of inflammasome components,
which causes caspase-1 activation and IL-1p cytokine
production through a process mediated by NOD1 or
NOD2 and Toll-like receptors (TLRs) [127, 135].
Notably, hypothermia inhibits pyroptosis and thus can
alleviate pyroptosis after cerebral ischemia. A151, an in-
hibitor of cyclic GMP-AMP (cGAMP) synthase (cGAS),
markedly reduces the expression of calcitonin gene—re-
lated peptides (CGRPs) and decreases the activity of
absent in melanoma 2 (AIM2) and the expression of
pyroptosis-associated  proteins, including GSDMD,
caspase-1, IL-1f, and IL-18 [136]. Because pyroptosis is
an important neuronal death process, the specific pyro-
phosphate inhibitor Vx765, which targets the typical
inflammasome, has potential therapeutic value for ische-
mic stroke [137]. These findings show that targeted pyr-
optosis can improve neurological function in animal
models of ischemic stroke. Taken together, these reports
suggest that targeting cellular pyroptosis pathways is a
novel approach for treating ischemic stroke.

Role of NLRP3 in COVID-19- or cytokine storm-
associated stroke

In November 2019, a severe respiratory illness with a
high mortality rate, coronavirus disease 2019 (COVID-
19), began to spread worldwide. The pathogen respon-
sible for the disease is severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). In humans, death from
COVID-19 can result from an excessive systemic inflam-
matory response, or “cytokine storm,” which is a sign of
severe disease [138]. In addition, patients with COVID-
19 often present with neurological clinical manifesta-
tions, including headache, loss of smell, and even stroke.
COVID-19 has been suggested to increase the incidence
of stroke; the incidence of stroke in critical patients is as
high as 6% [139]. In addition, studies have shown that
COVID-19-associated ischemic stroke is more severe
and has a higher mortality rate than non-COVID-19-as-
sociated ischemic stroke [140]. SARS-CoV-2 can affect
the nervous system in a number of ways. For example, it
can penetrate the CNS through olfactory nerve endings
(dysosmia is considered a precursor of COVID-19)
[141]. Some authors have suggested that SARS-CoV-2
may enter the lung-gut-brain axis of the vagus nerve or
enter the CNS via the hematogenous pathway during
viremia in severely affected patients [142, 143]. On the
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one hand, a large number of inflammatory cytokines are
released to destroy the BBB and promote the entry of
the virus. Astrocytes can be directly attacked by SARS-
CoV-2 [144, 145]. On the other hand, astrocytes and
microglia are highly sensitive to systemic proinflamma-
tory cytokines and receive proinflammatory signals from
endothelial cells to induce the expression of proinflam-
matory genes, thereby promoting neuroinflammation
and neurodegeneration [142, 146]. The angiotensin-
converting enzyme type 2 (ACE-2) receptor has been
proven to exist in nerve tissue and vascular endothelial
cells; SARS-CoV-2 can bind to brain cells through this
receptor and then attack the cells, resulting in nervous
system disorders [147]. In human ACE-2-transgenic
mice, SARS-CoV-2 can infect neurons and cause neur-
onal death in an ACE-2-dependent manner [148]. Some
studies have also failed to detect SARS-CoV-2 in any
cerebrospinal fluid samples, indicating that the nervous
system is involved through immune mechanisms rather
than through direct viral infection [149]. The levels of
various circulating cytokines have been found to be up-
regulated in the context of COVID-19 through observa-
tional studies [150, 151]. In severe cases of SARS-CoV-2
infection, cytokine release syndrome, namely, a cytokine
storm, can be observed [139, 152]; the storm is accom-
panied by increases in circulating C-reactive protein
(CRP) levels and erythrocyte sedimentation rates (ESRs)
[153]. It is believed that activation of macrophages
caused by SARS-CoV-2 infection results in the produc-
tion and consequent accumulation of inflammatory cyto-
kines, including IFN-a, I[FN-y, IL-6, IL-1f, IL-17, TNEF-
a, transforming growth factors (TGF-B) and chemokines
(CXCL10, CXCL8, CXCL9, CCL2, CCL3, and CCL5). It
has also been reported that IL-6 and the NLRP3 inflam-
masome are the main immune components that mediate
the immune response and inflammatory cytokine storm
during pathogen infection [154]. We believe that the
NLRP3 inflammasome might be one of the triggering
factors of the cytokine storm during COVID-19. Viruses,
as PAMPs, invade the body and activate dysregulated
and excessive immune reactions through a variety of re-
ceptors (including NLRs, TLRs and cGAS), which causes
overactivation of the NLRP3 inflammasome and then
strongly induces the secretion and release of excessive
amounts of proinflammatory cytokines and chemokines,
resulting in a cytokine storm [155]. The whole SARS-
CoV-2 virus or its components can also activate the
NLRP3 inflammasome by increasing extracellular ATP
levels and activating P2X7R, which is widely expressed
in CNS cells, such as microglia and oligodendrocytes.
P2X7R activation is induced by increases in angiotensin
II (Ang-1I) resulting from loss of ACE-2 function due to
binding with SARS-CoV-2; the increases in Ang-II lead
to activation of the NLRP3 inflammasome, ultimately
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promoting neuroinvasion and neuroinflammation [156].
Both viruses and their protein components can cross the
BBB and enter the CNS to initiate neuroinflammation
[157]. Recently, it has been reported that a SARS-CoV-2
protein binds to mannan-binding lectin (MBL) and acti-
vates the complement cascade (ComC) and the coagula-
tion cascade (CoaC) through the MBL-MBL-associated
serine protease 2 (MASP-2) protease complex, thereby
activating the NLRP3 inflammasome [158]. Activated
NLRP3 releases DAMPs through GSDMD. For example,
high levels of the nuclear protein HMGB1, a DAMP
downstream of NLRP3, reflect excessive inflammation
during viral infection [159].

COVID-19 is reported to be related to clotting disor-
ders [160]. Coagulation and thrombosis may begin in
the lung and other infected organs with endothelial
damage, complement activation complicated by the pro-
coagulant effects of IL-6 and neutrophilic granulocyte
recruitment [161]. As a result, the levels of D-dimers
(fibrinogen breakdown products that form in blood ves-
sels) increase, and disseminated intravascular coagula-
tion occurs [162, 163]. Patients with COVID-19 show
hypercoagulability, so SARS-CoV-2 may cause thrombus
formation at different sites in patients with thrombotic
propensity [164], which may also increase the risk of
stroke. In view of the above information, we speculate
that targeting the immune cascade, the NLRP3 inflam-
masome, and hypercoagulability may be beneficial for re-
ducing the incidence of stroke.

Targeting various components of inflammasome
pathways for ischemic stroke treatment

At present, effective treatments for ischemic stroke are
scarce. The current treatment for acute ischemic stroke
involves intravenous tPA administration for blood flow
restoration. However, this strategy is limited by the nar-
row therapeutic window and high risk of intracerebral
hemorrhage associated with tPA treatment [16]. Oxida-
tive stress and inflammation participate in cerebral IRI,
and proper regulation of inflammation could contribute
significantly to stroke protection and therapy [13]. Re-
searchers have identified NLRP3 as a critical mediator of
neuronal damage and inflammation after stroke, and ex-
periments targeting the NLRP3 inflammasome pathway
have shown promising results. These findings have re-
vealed a new path for researchers in the search for ef-
fective and reliable treatments for ischemic cerebral
apoplexy [165]. The new approaches can be divided into
treatments targeting gene products and treatments tar-
geting gene expression (Fig. 3) (Table 1). In addition,
studies have demonstrated that distinctive drugs can tar-
get different neurocyte types and pathways to yield cor-
responding effects (Table 2). The feasibility of using
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Fig. 3 Possible drug actions targeting the different mechanisms of NLRP3 inflammasome activation. EPA: eicosapentaenoic acid; MNS: 3,4-
methylenedioxy-beta-nitrostyrene; w-3FAs: omega-3 fatty acids; ARC: arctigenin; SINO: sinomenine; Nrf2: nuclear factor erythrocyte 2-related factor
2; BHB: B-hydroxybutyrate; NM: nafamostat mesilate; IFN-B3: interferon-f3; UMB: umbelliferone; Eze: ezetimibe; IVIG: intravenous immunoglobulin;
GDL: ginkgo diterpene lactones; DAMP: damage-associated molecular pattern; GPR40/GPR20: G protein—coupled receptor (GPCR) 40/20; ASIC:
acid-sensing ion channel; CasR/GPR6CA: Ca”*-sensing receptor/GPCR family C group 6 member A; NCX: Na*/Ca”* exchanger; IL-18R: interleukin-
18 receptor; IL-1R: interleukin-1 receptor; TLR4: Toll-like receptor 4; NF-kB: nuclear factor kappa B; MAPK: mitogen-activated protein kinase; PIP2:
phosphatidylinositol-4,5-diphosphate; PLC: phospholipase C; DAG: diacylglycerol; InsP3: inositol triphosphate 3; ROS: reactive oxygen species; ASC:
apoptosis-associated speck-like protein with a CARD; PKR: protein kinase R; TXNIP: thioredoxin-interacting protein; Bcl-2: B-cell lymphoma 2; Casp

small molecules and drugs for stroke therapy needs to
be further investigated.

Treatments targeting gene expression products to impact
NLRP3 inflammasome activation

MCC950, which is known for its action on the NLRP3
inflammasome, can inhibit not only the ASC
oligomerization induced by typical or atypical NLRP3
activation but also the processing, secretion, and release

Table 1 Inhibitors of the NLRP3 inflammasome in ischemic stroke

of II-1p and IL-18 [166]. During ischemic stroke,
MCC950 can reduce neurological defects and cerebral
edema, improve the integrity of the BBB, and decrease
neuronal and glial cell death after stroke [199]. In
addition, the NLRP3 receptor can be excited by K* ef-
flux; thus, suppressing K* efflux or increasing the extra-
cellular K™ concentration can inhibit NLRP3 receptor
activation. Research has shown that suppression of
voltage-gated K* channels (using ethyl phenyl ketone)

Categories Drugs or molecules

Acting on gene expression products MCC950, parthenolide, Bay 11-7082, MNS, omega-3 fatty acids, atorvastatin, Nrf2, ethylphenyl ketone,
glibenclamide, IMM-H004, eicosapentaenoic acid, geniposide, sinomenine, corylin, minocycline, arcti-

genin, nicorandil, curcumin

Acting on the process of gene expression IVIG, aloe vera, A151, chrysophanol, umbelliferone, apocynin, IFN-B, JQ1, meisoindigo, ezetimibe, edar-
avone, ginkgo diterpene lactones, ketone metabolite hydroxybutyrate, probenecid, nafamostat mesi-
late, ruscogenin, 17 (-estradiol

Acting on gene expression processes and miR-223, microRNA20a, miR-155-5p, miR-216a, miR-19a-3p, miR-155, miR-874-3p, procyanidins, astra-
gene expression products galoside IV, resveratrol, sulforaphane

MNS, 3,4-methylenedioxy-beta-nitrostyrene; Nrf2, nuclear factor erythrocyte 2-related factor 2; IVIG, intravenous immunoglobulin; IFN-B, interferon-8
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Table 2 Cell categories of drugs acting on and related effect/pathways after ischemic stroke

Categories Models Effects/pathways References
MCC950 Microglia ICH models in mice Inhibiting ASC oligomerization and secretion and [166]
release of II-13 and IL-18
Parthenolide, Bay = Macrophages Mice BMDM (named NG5) Inhibiting the activity of caspase-1 [167]
11-7082
MNS Macrophages Mice BMDM Inhibiting ASC speck formation and oligomerization  [168]
Omega-3 fatty Macrophages Mice BMDM Inhibiting the production ofproinflammatory [169]
acids cytokines
Isoliquiritigenin Neurons Rats model Inhibiting NLRP3 inflammasome activation mediated [78, 170]
(ILG) by NF-kB
IMM-HO004 Neurons pMCAO rats model Anti-inflammatory pathway dependent on CKLF1 [171]
Eicosapentaenoic  Neurons, Microglia MCAO mice, OGD model of BV2 Obstructing GPR40 and GPR20 [172]
acid cell line
Geniposide Microglia BV2 cell line OGD/R model Reducing inflammatory cytokine levels; increasing [173]
the autophagic activity
Sinomenine Astrocytes, Microglia  MCAO mice model, Astrocyte, Inhibiting the NLRP3 inflammasome mediated by [174]
Microglia OGD model AMPK pathway
Corylin Microglia LPS-induced BV2 cell line Alleviating LPS-induced inflammation [175]
inflammation
Minocycline Microglia tMCAQO mice model; OGD/R model  Stoping microglial activation; inhibiting maturation [176]
of BV2 cell line and release of proinflammatory cytokines
Arctigenin Neurons MCAQ rats, OGD/R neuron model  Inhibiting sirtuin-1 and decreasing activation of the ~ [177]
NLRP3 inflammasome
Nicorandil Microglia OGD/R model of BV2 cell line Opening K*-ATP channel; inhibiting the TLR4 [178]
signaling pathway
Curcumin Macrophages Mice BMDM Stopping K* efflux; inhibiting caspase-1 activation [179]
and IL-1 secretion
IVIG Neurons, primary MCAO/R mice; OGD/R model of Increasing the expression level of the antiapoptotic ~ [24, 180]
cortical neurons neuron protein Bcl-2
Aloe vera Macrophages Inhibiting specific signal transduction pathways and  [181]
derived from proinflammatory cytokines
monocytes
A151 Macrophage derived BMDM OGD model Downregulating the levels of iNOS and NLRP3 [182]
from bone marrow inflammasome
Chrysophanol Neurons tMCAQ mice Inhibiting the expression of NLRP3, caspase-1, and [183]
IL-1B3
Umbelliferone Neurons MCAO rats Reducing TXNIP expression [172]
Apocynin Neurons, Astrocytes, MCAO/R model, astrocyte, BV2 cell  Inhibiting the phosphorylation and degradation of ~ [184]
Microglia line IkBa and nuclear translocation of NF-kBp65
IFN-B Neurons tMCAO in IFN-B knockout (IFN-( Inhibiting the STAT1 phosphorylation [185]
KO) mice
JQ1 Neurons, Astrocytes, MCAO/R model, astrocyte, BV2 cell ~ BRD4 inhibitor; inhibiting NF-kB [186]
Microglia line
Meisoindigo Neurons, Microglia MCAO mice stroke model, OGD/R  Suppressing the TLR4/NF-kB signaling pathway [187]
models of HT-22 and BV2 cell lines
Ezetimibe Neurons, Microglia MCAO rats Increasing the expression of p-AMPK, Nrf2, and Ho-1  [188]
and decreasing that of TXNIP
Edaravone Neurons, Microglia Rats ICH Reducing the generation of IL-1(3, caspase-1 and [189]
inhibiting NF-kB
Ginkgo diterpene  Neurons, Astrocytes, MCAO/R mice, Primary astrocyte Downregulating of TLR4/NF-kB signaling [190]
lactones Microglia OGD/R model
Ketone metabolite BMDM Inhibiting K* outflow [191]
hydroxybutyrate
Probenecid Astrocytes Primary astrocyte OGD/R model Pannexin 1 inhi201caspase-1 and AQP4 [192]
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Table 2 Cell categories of drugs acting on and related effect/pathways after ischemic stroke (Continued)

Categories Models Effects/pathways References

Nafamostat Microglia tMCAQ rats Inhibiting the NF-kB signaling pathway and inflam-  [193]

mesilate masome activation

17 B-estradiol Neurons MCAO/R mice Reducing the expression of components of the [194]
NLC4 inflammasome

Procyanidins Neurons, Microglia OGD/R and MCAO/R rats, BV2 cell Inhibiting TLR4-NF-kB-NLRP3 signaling pathways [195]

line

Astragaloside IV Neurons, Microglia tMCAQO/R mice Inhibiting TLR4 pathway; reducing ROS production  [196]

Resveratrol Neurons MCAO/R rats Downregulating TXNIP expression; decreasing [84, 197]
autophagic activity

Sulforaphane Neurons MCAO/R rats Inhibiting NLRP3 inflammasome activity; [198]

downregulating the expression of caspase-1, IL-18,
and IL-1B

MNS, 3,4-methylenedioxy-beta-nitrostyrene; IVIG, intravenous immunoglobulin; IFN-B, interferon-f3; pMCAO, permanent middle cerebral artery occlusion; tMCAO,
transient middle cerebral artery occlusion; MCAO/R, middle cerebral artery occlusion/reperfusion; OGD/R, oxygen glucose deprivation/reperfusion; ICH, intracerebral
hemorrhage; BVDM, bone marrow-derived Macrophages; K*-ATP channel, ATP-sensitive potassium channel; iNOS, inducible nitric oxide synthase; STAT], signal
transducers and activators of transcription 1; BRD4, bromodomain-containing protein 4; AQP4, aquaporin 4; CKLF1, chemokine-like factor 1; GPR40, G protein—
coupled receptor 40; AMPK, adenosine monophosphate-activated protein kinase; LPS, lipopolysaccharide; TLR4, Toll-like recepetor; IL-10, interleukin-1(3; TXNIP,
thioredoxin-interaction protein; NF-kB, nuclear factor kappa B; ROS, reactive oxygen species

prevents activation of the NLRP3 receptor in mouse
macrophages [42, 200]. In addition, a study has reported
that glibenclamide inhibits the NLRP3 inflammasome
and effectively reduces edema development [201]. More-
over, nicorandil, an ATP-sensitive K* channel (K™ ATP)
opener, inhibits the TLR4 signaling pathway and NLRP3
inflammasome activation, thereby reducing IL-1p pro-
duction. In in vitro experiments, nicorandil has been
shown to inhibit inflammasome activation and TLR4 sig-
nal transduction to combat oxygen-glucose deprivation
(OGD)-induced neuroinflammation [178]. However, the
roles of various K" channels in the treatment of stroke
still need to be explored in more detail. 3,4-Methylene-
dioxy-p-nitrostyrene (MNS) has been shown to specific-
ally stop NLRP3-induced ASC speck formation and
oligomerization, but it does not block the K* flow in-
duced by NLRP3 agonism. Moreover, NLRP3 ATPase
activity can be inhibited by the administration of MNS
in vitro, indicating that MNS blocks the NLRP3 inflam-
masome to alleviate the inflammatory response [168].
Parthenolide and Bay 11-7082 directly inhibit activation
of the protease caspase-1 to inhibit the various inflam-
masomes in macrophages [167]. Omega-3 fatty acids
also arrest the NLRP3 inflammasome-dependent inflam-
matory response [169]. A randomized controlled study
has shown that immediate administration of atorvastatin
after atherosclerotic ischemic stroke significantly reduces
the activation of immune inflammation in the acute
phase of stroke [202]. The results of an experimental
study have suggested that geniposide might reduce in-
flammatory cytokine levels and inhibit NLRP3 inflamma-
some activation by increasing the autophagic activity of
the BV2 microglial cell line, thus reducing the inflamma-
tory response after stroke [173]. Corylin inhibits NLRP3

inflammasome activation and alleviates lipopolysacchar-
ide (LPS)-induced inflammation in LPS-activated BV2
cells [175]. Curcumin, a common suppressor of NLRP3
inflammasome activation, inhibits NLRP3 by stopping
K" efflux and interfering with downstream events, which
in turn inhibits caspase-1 activation and IL-1p secretion
[179]. Some drugs can indirectly inhibit NLRP3 inflam-
masome activation through molecular mediation and
thus inhibit downstream inflammatory cytokines. In a
standard rat model of cerebral ischemia, IMM-HO004 (a
novel coumarin derivative) has been found to provide
significant protection against cerebral ischemia via an
anti-inflammatory pathway dependent on chemokine-
like factor 1 (CKLF1). IMM-HO004 downregulates the
binding of CKLF1 to C-C chemokine receptor type 4,
further inhibiting NLRP3 inflammasome activation and
the subsequent inflammatory response and ultimately
protecting against ischemic damage. This evidence pro-
vides support for human clinical trials studying IMM-
HO004 for the treatment of acute cerebral ischemia [171].
Arctigenin (ARC) therapy effectively inhibits the activa-
tion of the NLRP3 inflammasome and prevents the se-
cretion of IL-1 and IL-18 caused by ischemic stroke
in vivo and in vitro. The effects of administration of a
specific silent information regulator 1 (sirtuin-1/sirt-1)
inhibitor, EX527, prove that ARC protects against cere-
bral ischemia by inhibiting activation of the NLRP3
inflammasome in a sirtuin-1-dependent manner [177].
After 1 h of ischemia-reperfusion, minocycline can stop
microglial activation and weaken damage caused by mid-
dle cerebral artery occlusion (MCAQO) by inhibiting
NLRP3 inflammasome activation and proinflammatory
cytokine maturation/release, ameliorating neurological
disorders, reducing infarct volumes, decreasing cerebral
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edema, and relieving ischemic brain injury [176]. Sino-
menine (SINO) inhibits the NLRP3 inflammasome via
the adenosine monophosphate-activated protein kinase
(AMPK) pathway, thus exerting a neuroprotective effect
in ischemic stroke by alleviating cerebral infarction,
cerebral edema, neuronal apoptosis, and neurological
impairment after MCAO [174]. NRF2 functions at the
initiation step to downregulate ROS-induced activation
of the NLRP3 inflammasome. Isoliquiritigenin inhibits
NLRP3 inflammasome activation mediated by ROS and
NE-kB by promoting the antioxidant system of NRF2
and alleviates early brain damage after hemorrhage [78,
170]. Eicosapentaenoic acid (EPA) suppresses NLRP3
inflammasome activation by obstructing G protein—
coupled receptor 40 (GPR40) and G protein—coupled re-
ceptor 120 (GPR120); importantly, EPA can ameliorate
apoptosis induced by acute cerebral infarction [203].

Treatments targeting expression at the transcriptional or
translational stage

In addition to treatments targeting gene expression
products, there are also some small molecules or drugs
that act on gene expression processes to regulate inflam-
matory responses by upregulating or downregulating the
expression of various downstream proteins. In ischemic
stroke models, treatment with intravenous immuno-
globulin (IVIG) has been found to reduce neuronal cell
death and infarct volume and to ameliorate brain func-
tion. In these models, IVIG increases the expression
level of the antiapoptotic protein BCL-2, which inhibits
the NLRP3 receptor by blocking binding between ATP
and the NACHT domain in the NLRP3 receptor, down-
regulates proinflammatory cytokine expression, and pro-
tects neurons and cerebral tissue [24, 180]. Al51 (a
synthetic oligodeoxynucleotide containing multiple distal
TTAGGG sequences) decreases maturation of IL-1f3 and
caspase-1, reduces the generation of IL-1f, downregu-
lates the levels of inducible nitric oxide synthase (iNOS)
and NLRP3, and inhibits depolarization of the intracellu-
lar mitochondrial membrane potential in activated
myeloid-derived macrophages stimulated with OGD and
LPS [182]. In the ischemic cerebral cortex, NADPH and
apocynin inhibit phosphorylation and degradation of
IkBa; nuclear translocation of NF-kBp65; expression of
NEF-kBp65 targets, such as iNOS and cyclooxygenase
(COX2); and expression of inflammasome proteins, in-
cluding NLRP3, ASC, and caspase-1. These effects have
been found to greatly decrease infarct size in a mouse
stroke model, increase survival after stroke, restore
neurological function, and provide relatively strong neu-
roprotective effects during ischemic stroke [184]. Chry-
sophanol, an extract of rhubarb, has a variety of
pharmacological effects, including anti-inflammatory ef-
fects. In a transient MCAO (tMCAQO) mouse model,
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chrysophanol has been shown to inhibit the expression
of NLRP3, caspase-1, and IL-1P and to protect against
ischemic brain injury [183]. Umbelliferone (UMB) ther-
apy reduces TXNIP expression, inhibits NLRP3 inflam-
masome activation, and has a beneficial neuroprotective
effect against focal cerebral ischemia [172]. Ezetimibe
(Eze) increases the expression of p-AMPK, NRF2, and
Ho-1 and decreases that of TXNIP, NLRP3, caspase-1,
and IL-1p, thus inhibiting oxidative stress and subse-
quent neuroinflammation to protect brain tissues. In
addition, ruscogenin inhibits IL-1B, NLRP3, caspase-1,
and TXNIP expression; reduces ROS production; blocks
MAPK pathway activity; relieves edema in the cerebral
obstruction area; improves impairments in neurological
function; increases cerebral blood flow (CBF); alleviates
histopathological injury; and upregulates tight junction
component expression. These findings provide a new
perspective for the therapy of ischemic stroke [188].
Meisoindigo, a derivative of indirubin, significantly in-
hibits NLRP3 inflammasome activation and blocks the
M1 polarization of microglia/macrophages by suppress-
ing the TLR4/NF-kB signaling pathway in a dose-
dependent manner, thus reducing ischemic brain injury
caused by stroke [187]. Ginkgo diterpene lactones
(GDLs) inhibit platelet aggregation, astrocyte activation,
and proinflammatory cytokine release, which may be
positively related to the downregulation of TLR4/NF-«kB
signaling [190]. The channel pannexin 1 can activate
inflammasomes in astrocytes and participate in the
process of ischemic injury. Probenecid, a pannexin 1 in-
hibitor, reduces the expression levels of NLRP3, caspase-
1, and aquaporin 4 (AQP4) in OGD astrocyte models
and inhibits IL-1p release; probenecid contributes to a
neuroprotective effect against ischemic damage by inhi-
biting inflammasome activity and reducing astrocyte
edema [192]. Nafamostat mesilate (NM) is a broad-
spectrum serine protease inhibitor. Administration of
NM leads to inhibition of proinflammatory mediators
and promotion of anti-inflammatory mediators; these ef-
fects may be partly attributable to the immunoregulatory
effects of NM, which involve NF-«xB signaling pathway
inhibition and inflammasome activation [193]. Aloe vera
(an immunomodulator) dose-dependently inhibits the
production of pro-IL-1f, caspase-1, NLRP3, and P2X7R
by inhibiting specific signal transduction pathways and
reduces the release of IL-8, TNF-a, IL-6, and IL-1B in
primary macrophages induced by LPS [181]. 17-
Estradiol remarkably reduces the expression of compo-
nents of the NLRC4 inflammasome, AIM2, ASC,
NLRP3, IL-1fB, IL-18, TNF-a, and P2X7R at the gene
and protein levels after global cerebral ischemia (GCI)
[194]. Limiting inflammation after stroke has been docu-
mented to reduce neuronal death or improve nerve
function, and IFN-Bf has been recommended as a
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candidate for stroke treatment. As IFN-B signaling
weakens inflammation and mediates peripheral immune
cell activity, it may positively affect stroke outcomes
[185]. Studies have suggested that IFN-f may inhibit IL-
1B production partly by inhibiting phosphorylation of
the transcription factor signal transducer and activator
of transcription 1 (STAT1), thereby inhibiting the
NLRP3 inflammasome and caspase-1-dependent IL-1[
maturation; thus, IFN-B targeting might be a new
approach to alleviate ischemic injury [204]. JQ1, a
bromodomain-containing protein 4 (BRD4) inhibitor,
can reduce the generation of proinflammatory agents by
inhibiting NF-kB, pyroptosis, and inflammasome activa-
tion, as shown by significantly reduced NLRP3, ASC,
caspase-1, and GSDMD levels in MCAO mice; these ef-
fects can reduce infarct volumes, brain water content
and neural function defects in MCAQO mice and protect
against brain injury induced by cerebral ischemia [186].
Moreover, edaravone reduces NLRP3 expression in
microglia. Additionally, edaravone has neuroprotective
effects similar to those of MCC950 and reduces the gen-
eration of IL-1p, caspase-1, and NF-«kB at the protein or
gene level, significantly alleviating cerebral edema and
improving neurological deficits in rats after cerebral
hemorrhage [189]. Another molecule, the ketone metab-
olite p-hydroxybutyrate (BHB), exerts an anti-
inflammatory effect by inhibiting K™ outflow from mac-
rophages and reducing ASC oligomerization and speck
formation, thereby inhibiting the generation of IL-1p
and IL-18 in human mononuclear cells induced by
NLRP3-induced ASC oligomers [191].

Treatments targeting gene expression processes and
products

miR-223 inhibits activation of the NLRP3 inflammasome
and generation of IL-1p by binding to three conserved
sites in the untranslated region (UTR), thereby inhibiting
protein expression [205-207], and downregulation of
caspase-1 and IL-1p expression reduces brain edema
and improves nerve function [208]. miR-155-5p targets
DUSP14 to promote cerebral IRI by regulating the NF-
kB and MAPK signaling pathways, and inhibition of
miR-155-5p is significantly effective in treating injured
brain tissue. Therefore, research suggests that miR-155-
5p may be a new target for ischemic stroke therapy
[209]. Overexpression of miR-216a inhibits Janus tyro-
sine kinase 2 (JAK2) protein levels in OGD/reoxygena-
tion (OGD/R)-subjected neurons and ischemic areas in
MCAO models, negatively regulates JAK and JAK2/
STAT3 pathways, reduces ischemic infarction incidence,
and alleviates neurofunctional impairment [210]. miR-
19a-3p promotes I/R-induced inflammation and
apoptosis by targeting insulin-like growth factor binding
protein 3 (IGFBP3), as demonstrated by the finding that
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miR-19a-3p inhibitors exert protective effects against
cerebral IRI by inhibiting apoptosis and reducing inflam-
mation, ultimately reducing infarct volume and improv-
ing nerve function and activity [211]. Knockdown of
miR-155 expression reduces the severity of IRI by inhi-
biting the inflammatory response and improving neuro-
logical function, and miR-155 downregulation reduces
OGD-induced injury by increasing proliferation, inhibit-
ing apoptosis, and inhibiting inflammatory factor (TNF-
a, IL-1B, IL-6, iNOS, and COX-2) expression [212, 213].
miR-874-3p negatively regulates BCL-2-modifying factor
(BMF) and BCL-2 family proteins to reduce the severity
of ischemic injury [214]. Other miRNAs, including
miRNA-133a-1 and miRNA-377, are also involved in
NLRP3 inflammasome activation [215, 216]. In sum-
mary, different miRNAs have different effects on NLRP3
inflammasome activation and stroke outcome. Reducing
miR-155-5p, miR-19a-3p, miR-155, miRNA-133a-1 and
miRNA-377 levels may be of great value in treating in-
flammation associated with ischemic stroke. In contrast
to these miRNAs, miR-223, miR-216a, and miR-874-3p
suppress NLRP3 inflammasome activation and have
beneficial effects. Procyanidins significantly inhibit
in vivo and in vitro activation of MCAO/reperfusion
(MCAO/R)- and OGD/R-mediated TLR4-NF-kB-NLRP3
signaling pathways; inhibit IL-1f production; signifi-
cantly improve neurological deficits; and reduce cerebral
edema, cerebral infarct size, and apoptosis [195]. In
addition to miRNAs, a few compounds can also act on
both gene expression processes and gene expression
products related to NLRP3 inflammasome activation to
influence ischemic brain injury. For example, astragalo-
side IV reduces the expression of TLR4 and its
downstream adaptor proteins, including MyD88, Toll/
IL-1p receptor domain-containing adaptor-inducing
interferon-p (TRIF), and tumor necrosis factor receptor-
associated factor 6 (TRAF6), thereby inhibiting NF-«xB
phosphorylation, reducing ROS production and in turn
inhibiting NLRP3 activation [196]. Resveratrol downre-
gulates TXNIP expression; reduces poly-ADP-ribose
polymerase (PARP) activity; decreases autophagic activ-
ity; and inhibits NLRP3 activation, caspase-1 activation,
and IL-1p release to significantly reduce cerebral infarct
volume [84, 197]. Moreover, sulforaphane inhibits
NLRP3 inflammasome activation and downregulates
caspase-1, IL-18, and IL-1p expression, which improves
prognosis after focal cerebral ischemia and consequently
alleviates brain injury [198].

Treatments involving stem cells and biological products

After cerebral ischemia occurs, immune system activa-
tion, gene expression profile alteration, BBB destruction,
immune cell infiltration, and cytokine production also
occur. These events indicate that immune cells and even
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stem cells are important in ischemic stroke. Application
of stem cells to control the immune-inflammatory re-
sponse is a new treatment approach for ischemic stroke.
Human cord blood-derived multipotent stem cells
(HCB-SCs) cocultured with lymphocytes promote regu-
latory T cell (Treg) differentiation. Cocultured cell trans-
plantation reduces the expression of NLRP3 and related
factors, blocks activation of the NLRP3 inflammasome
in neurons, suppresses the activity of NF-kB and extra-
cellular signal-regulated kinase (ERK) in ischemic brain
tissues, significantly improves nerve function defects,
and reduces ischemic brain damage, indicating that this
approach may be a promising treatment strategy for is-
chemic stroke [217]. Moreover, mesenchymal stem cell
(MSC) therapy significantly reduces JNK phosphoryl-
ation induced by ischemia, showing that this treatment
has antiapoptotic and anti-inflammatory effects [218]. In
addition, experiments have shown that Tregs may have a
neuroprotective role in ischemic stroke by inhibiting in-
flammation and effector T cell activation [219]. IL-33
can activate Tregs, which produces a neuroprotective ef-
fect related to reductions in apoptosis-related protein
expression as well as generation and activation of St2-
dependent Tregs and Treg-related cytokines [220]. Re-
search has shown that autologous bone marrow MSCs
have lower immunogenicity and produce weaker im-
mune responses than allogeneic bone marrow MSCs and
can better promote recovery and reduce infarct volume
in MCAQO rats [221]. Nonhematopoietic umbilical blood
stem cells (nh-UCBSCs) have also been demonstrated to
protect ischemic brain tissues by inhibiting immune cells
from undergoing peripheral migration into the brain or
by downregulating abnormal activation of immune re-
sponses [222]. nh-UCBSCs have shown enormous po-
tential in stroke treatment and exhibit an enhanced
therapeutic window; these cells also have no known side
effects and can be stored, and their production can be
scaled for extensive use in stroke treatment [223].

Other treatments

In one study, MTS510 (an anti-TLR4 antibody) was ad-
ministered through different routes in vivo to study
MCAQO in adult male wild-type mice (tMCAO range: 45
minutes to 2 days); the results showed that intravascular
administration of MTS510 to mice subjected to 45 mi-
nutes of MCAO increased neurological function, de-
creased infarct volume, and reduced brain swelling,
suggesting that blocking TLR4 by using specific mono-
clonal antibodies is a promising stroke treatment strat-
egy [224]. In MCAO mouse models, activation of
GPR120 protects against focal ischemic brain injury by
preventing inflammation and apoptosis [225]. In vivo re-
sults have shown that notoginseng leaf triterpene
(PNGL) pretreatment significantly reduces infarct size,
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decreases brain water content, and improves nerve func-
tion in MCAO/R model rats. In addition, PNGL pre-
treatment significantly reduces BBB damage; inhibits
neuronal apoptosis and neuronal loss caused by cerebral
IRI; and significantly reduces the serum concentrations
of IL-6, TNF-qa, IL-1f, and HMGBI1 in a dose-dependent
manner. These findings suggest that inhibition of inflam-
mation, which may be associated with MAPK inhibition
and NF-kB activation, may be involved in the neuropro-
tective effect of PNGL [226]. In a rat model of MCAO,
hispidulin has been found to improve neurological
symptoms after cerebral IRI, thereby reducing the infarct
area and cerebral edema. Hispidulin plays a neuropro-
tective role by modulating AMPK/glycogen synthase
kinase (GSK) 3 signaling to inhibit NLRP3-mediated
pyroptosis in vitro and in vivo [227].

Expectations

The brain is a complex organ with various components
that engage in crosstalk to form a network that affects
the brain itself. The NLRP3 inflammasome is responsible
for exerting adverse effects on neurons after ischemic
stroke. In addition to inflammasomes, ERS, autophagy,
ferroptosis, oxidative stress, and other excessive physio-
logical and pathological processes that are closely related
to the NLRP3 inflammasome cause neuronal death. The
ER is an organelle that regulates protein folding homeo-
stasis by folding and modifying secretory and membrane
proteins [228]. Exposure of cells to various stress signals
disrupts ER homeostasis and causes dysfunction. Upon
reception of stress signals, the ER triggers a protective or
adaptive response known as the unfolded-protein re-
sponse (UPR) in order to recover ER stability. However,
severe ERS induces mitochondrial Ca®* overload, ROS
accumulation, and ATP depletion, thereby activating
mitochondrial-dependent apoptosis [229, 230]. In
addition, misfolded/abnormal proteins in cells trigger
the UPR pathway, which may result in severe loss of
neuronal function and viability [231]. ERS and oxidative
stress jointly lead to activation of the NLRP3 inflamma-
some in neurons, causing inflammatory responses [232].
Inhibiting NLRP3 activation induced by ERS can protect
neurons from ischemic injury and thus exert a neuro-
protective effect after stroke [233, 234]. However,
NLRP3 is involved in ERS-induced mitochondrial dam-
age; thus, the NLRP3 inflammasome can also induce
ERS, forming a feedback loop that further promotes in-
flammation [235, 236].

Autophagy is a physiological destruction process that
differs from necrosis and apoptosis. The main character-
istic of autophagy is the formation of autophagosomes.
Upon encountering a series of stress conditions, cells at-
tempt to maintain a stable intracellular environment and
normal cell function by degrading cytoplasmic
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components [237, 238]. Stroke results in the produc-
tion and activation of many stress factors, including
ROS, as well as misfolding and abnormal accumula-
tion of proteins. These factors induce autophagy [239,
240]. In addition, ERS can directly activate autophagy.
Through autophagy, abnormal proteins are destroyed
in lysosomal-dependent pathways to restore homeo-
stasis [241]. Activated autophagy negatively regulates
activation of the NLRP3 inflammasome. Conversely,
autophagy dysfunction can lead to activation of the
NLRP3 inflammasome, and inhibiting GSK-33 to en-
hance autophagy can inhibit NLRP3 inflammasome
activation and reduce IRI [242, 243]. Autophagy func-
tion is impaired after ischemic brain injury, but pro-
gesterone and geniposide can inhibit the activation
and expression of the NLRP3 inflammasome and
increase autophagic activity [173, 243]. These results
indicate that autophagy can negatively regulate the
activation of the NLRP3 inflammasome. However,
autophagy is a double-edged sword; it can not only
play a neuroprotective role but also induce the
NLRP3 inflammasome cascade through its overactiva-
tion resulting from excessive ER initiation, excessive
ROS production and subsequent NLRP3 inflamma-
some activation [244]. Inhibition of autophagy or
knockout of autophagy genes, such as LC3, results in
inactivation of the NLRP3 inflammasome [245]. Au-
tophagy regulates the activation of the NLRP3 inflam-
masome, and vice versa [246, 247]. For example, on
the one hand, the occurrence of autophagy is
dependent on the NLRP3 inflammasome sensor, so
the NLRP3 inflammasome can activate autophagy
[248]. On the other hand, the NLRP3 inflammasome
commonly inhibits activation and diminishes the neu-
roprotective effect of autophagy through mature
caspase-1-mediated cleavage of TRIF, a vital molecule
in the TLR4-TRIF signaling pathway, which mediates
autophagy activation [247, 249, 250].

Ferroptosis is a newly discovered form of Fe*'-
dependent cell death that can lead to programmed
neuronal death. Ferroptosis is induced by cellular redox
imbalance, inhibition of glutathione peroxidase 4 (GPX
4) activity, and ultimate accumulation of lipid peroxides,
which induces damage to cell structure and function and
leads to cell death [251-253].

ERS and autophagy, through NLRP3 inflammation,
influence the death of neurons after stroke and to-
gether act on cells to produce comprehensive and
complex effects. Whether ferroptosis causes neuronal
death through the NLRP3 inflammasome is unclear.
Autophagy can induce ferroptosis by interfering with
cellular iron homeostasis and by enhancing lipid per-
oxide and ROS generation, and autophagy simultan-
eously activates the NLRP3 inflammasome. Does

Page 15 of 23

ferroptosis induce NLRP3 inflammasome activation,
or do these processes interact? Ferroptosis is a kind
of iron accumulation- and ROS-dependent cell death,
and ROS production is a nonnegligible mechanism of
NLRP3 inflammasome activation. NLRP3 inflamma-
some activation is accompanied by ferroptosis [254],
and antioxidants or inhibitors of ferroptosis can in-
hibit the NLRP3 inflammasome [255]. It has also
been documented that myrrh exerts a neuroprotective
effect by regulating the TXNIP/NLRP3 axis in ische-
mic stroke to reduce ROS-mediated ferroptosis [256].
Therefore, we hypothesize that activation of the
NLRP3 inflammasome may be related to ferroptosis
and that these processes may engage in crosstalk.
However, more research is needed to test this hypoth-
esis. We propose that various effects in the body
interact with each other to form a lethal network of
neurons after stroke (LNAS) (Fig. 4). It is possible
that no drugs with satisfactory clinical effects have
been found so far because the existing drugs act only
on a single site, neglecting the complexity of the
physiological regulatory network and the neuronal
death network after stroke. This possibility empha-
sizes that each organism should be considered as a
whole, that various factors should be comprehensively
assessed, and that more attention should be paid to
the relationships among different aspects in future
research.

Conclusion

Recent studies have identified NLRP3 inflammasome-
mediated ischemic stroke as a new mechanism that leads
to neuron and glial cell death after brain injury. This in-
flammatory mechanism, which involves the innate im-
mune system, not only causes brain tissue damage but
also plays a beneficial role in brain tissue recovery. After
cerebral vascular obstruction or thromboembolism, cere-
bral tissue is damaged due to ischemia and hypoxia, and
cell stress reactions, including intracellular K™ efflux,
mitochondrial injury, high ROS production, lysosomal
rupture, and increases in intracellular Ca** levels, occur.
Through various channel components (such as P2X7R
and TXNIP) and signaling pathways (the NF-xB and
MAPK pathways), these changes activate NLRP3, leading
to NLRP3-mediated cleavage and production of caspase-
1 from pro-caspase-1, which is followed by processing of
pro-IL-1f and pro-IL-18 into mature inflammatory cyto-
kines. Various components are involved in stress re-
sponses and the inflammatory process, and many drugs
and molecules that inhibit the NLRP3 inflammasome
and reduce the inflammatory response in the context of
ischemic brain injury have been identified. The effective-
ness of these agents has been demonstrated in several
experiments, as described above. The brain is a complex
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Fig. 4 Crosstalk among several physiological and pathological processes leads to neuronal death after stroke. Misfolded proteins and paraproteins
trigger ER stress and the UPR to activate the NLRP3 inflammasome and aggravate inflammatory responses; the NLRP3 inflammasome can also
promote the UPR and ER stress. ROS accumulation, Ca”* dyshomeostasis, and ER stress excessively activate autophagy. Autophagy normally
inhibits the NLRP3 inflammasome but can induce NLRP3 inflammasome activation when it is excessive. The NLRP3 inflammasome can also act on
autophagy. Lipid peroxide accumulation results in ferroptosis, and there is probably crosstalk between ferroptosis and NLRP3 inflammasome
activation. ER stress, excessive autophagy, ferroptosis, and the NLRP3 inflammasome together form an LNAS

organ, and its homeostasis is maintained by a compli-
cated network of multifarious physiological and patho-
logical mechanisms. Understanding the crosstalk of the
NLRP3 inflammasome with other entities or mecha-
nisms may be beneficial for the development of effective
therapeutic strategies for ischemic stroke.
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