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T lymphocyte senescence is attenuated 
in Parkinson’s disease
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Abstract 

Background:  Immune involvement is well-described in Parkinson’s disease (PD), including an adaptive T lympho‑
cyte response. Given the increasing prevalence of Parkinson’s disease in older age, age-related dysregulation of T 
lymphocytes may be relevant in this disorder, and we have previously observed changes in age-associated CD8+ T 
cell subsets in mid-stage PD. This study aimed to further characterise T cell immunosenescence in newly diagnosed 
PD patients, including shifts in CD4+ and CD8+ subpopulations, and changes in markers of cellular ageing in CD8+ T 
lymphocytes.

Methods:  Peripheral blood mononuclear cells were extracted from the blood of 61 newly diagnosed PD patients 
and 63 age- and sex-matched controls. Flow cytometric analysis was used for immunophenotyping of CD8+ and 
CD4+ lymphocyte subsets, and analysis of recent thymic emigrant cells. Telomere length within CD8+ T lymphocytes 
was assessed, as well as the expression of the telomerase reverse transcriptase enzyme (hTERT), and the cell-ageing 
markers p16INK4a and p21CIP1/Waf1.

Results:  The number of CD8+ TEMRA T cells was found to be significantly reduced in PD patients compared to 
controls. The expression of p16INK4a in CD8+ lymphocytes was also lower in patients versus controls. Chronic latent 
CMV infection was associated with increased senescent CD8+ lymphocytes in healthy controls, but this shift was less 
apparent in PD patients.

Conclusions:  Taken together, our data demonstrate a reduction in CD8+ T cell replicative senescence which is pre‑
sent at the earliest stages of Parkinson’s disease.
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Introduction
It is well-recognised that numerous innate and adaptive 
immune changes occur both in the brain and the periph-
ery in Parkinson’s disease (PD) patients [1], though the 
precise mechanisms and their role in disease progression 
are still poorly understood. A better understanding of the 

immune pathways involved in PD pathogenesis is needed, 
both to identify predictive biomarkers and to identify 
rational therapeutic targets for disease-modification.

Age-related immune changes (immunosenescence) 
may be particularly relevant to diseases like PD for which 
ageing is a major risk factor. Immunosenescence leads 
to increased infection susceptibility and reduced effec-
tiveness of vaccines [2]. This is mediated primarily by 
changes in CD8+ T lymphocytes. A critical phenotypic 
change in these cells is the loss of surface expression of 
CD28 and upregulation of CD57 [3–5]. Functionally, 
“senescent” CD28loCD57hi lymphocytes have limited pro-
liferative potential, decreased cytolytic function, and are 
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clonally restricted. Immunosenescence is also character-
ised by a decrease in naïve cells coupled with expansion 
of late-differentiated antigen-exposed cells [6]. Termi-
nally differentiated effector memory cells re-expressing 
CD45RA (TEMRA)—replicative senescent cells with 
diminished proliferative ability—are a marker of age-
associated immune dysregulation [7]. CD8+ T cell senes-
cence is strongly associated with exposure to common 
latent viral infections, such as cytomegalovirus (CMV) 
and Epstein–Barr virus (EBV), with increases in both 
antigen-specific CD8+ CD28loCD57hi and CD8+ TEMRA 
populations reported in seropositive populations [2, 8, 9]. 
Similar age-related changes may also occur in the CD4+ 
T cell compartment [10].

Atrophy of the thymus gland, a key source of clon-
ally diverse naïve T lymphocytes, is another key feature 
of immunosenescence. Thymic decline with age limits 
the naïve T cell repertoire, with consequent impaired 
recognition of novel antigens [11, 12]. Thymic function 
can be quantified non-invasively by the measurement of 
recent thymic emigrants (RTEs) in the peripheral blood 
[13]. CD103+ and PTK7+ naïve cells within the CD8+ 
and CD4+ pool, respectively, have been identified as 
key markers of RTEs [14, 15]. Telomeres, the protective 
nucleoprotein structures located at the ends of chro-
mosomes, shorten with age, and have been proposed 
as a biomarker of cell ageing [16]. Telomere shortening 
and reduction of telomerase activity (a critical coun-
ter to telomere attrition) occur in senescent T cells [17]. 
Expression of hTERT, a rate-limiting catalytic subunit of 
telomerase, also progressively declines during T cell dif-
ferentiation [18]. Cellular senescence is also associated 
with an increase in the cyclin-dependent kinase inhibi-
tors p16INK4a and p21CIP1/Waf1, and their gene expression 
levels within lymphocytes have been explored as bio-
markers in age-related cardiac and lung diseases [19, 20].

Investigation of immunosenescence markers in PD 
has been limited to date. Our previous study is the only 
one to our knowledge which has specifically investigated 
senescent T cell subsets in PD patients. Using flow cyto-
metric analysis of peripheral blood mononuclear cells 
(PBMCs), we observed a more activated and less senes-
cent CD8+ T cell profile in PD cases (n = 41) compared 
to age and sex-matched controls (n = 41), with a reduced 
percentage of CD28loCD57hi cells and TEMRA cells 
[21]. Our findings support the proposed role of immune 
hyperactivity and inflammation in PD initiation and 
progression [22, 23]. Interestingly, CMV positivity was 
associated with CD8 senescence (as expected), in con-
trols, but not in PD patients, raising the possibility that 
PD might be associated with intrinsic differences in the 
CD8+ response to viral infection. We found no signifi-
cant changes in markers of CD4+ replicative senescence 

in PD versus controls, but this warrants replication given 
the evidence for altered CD4+ T cell subsets in PD [21, 
24–26]. Thymic output in PD has not previously been 
explored.

Prior studies exploring telomere length in PD are 
equivocal: a recent meta-analysis of eight studies showed 
no difference between 956 PD patients and 1284 controls 
when pooling across different tissue types [27]. However, 
longer telomere length in peripheral blood mononuclear 
cells of PD patients versus controls has been observed. 
[28]. In addition, longer leukocyte telomeres have been 
identified as a risk factor for developing dementia within 
3  years of PD diagnosis [29], although our own prior 
study had opposing findings, with shorter telomeres in 
incident PD cases who went on to develop a dementia 
within 3 years [30]. We also found that leukocyte expres-
sion levels of the cellular senescence marker p21 were 
lower in PD versus controls, whilst lower p16 expression 
at baseline was associated with faster motor and cogni-
tive progression over 36  months; thus, supporting the 
hypothesis that immunosenescence is reduced in PD.

On the basis of our previous findings, we hypothesise 
that attenuated T cell senescence is relevant in PD and 
warrants further investigation as a potential biomarker 
of the disease. This current study aimed to validate our 
previous findings with respect to alterations in CD8+ 
senescent cells in PD, as well as to comprehensively char-
acterise T cell immunosenescence, evidence of prior 
CMV and EBV infection, thymic emigrants, telomere 
length, and expression of telomerase (hTERT), p16 and 
p21. We examined a newly diagnosed PD cohort to deter-
mine whether T cell senescence markers are altered in 
the earliest stages of the disease and evaluated relation-
ships with clinical disease characteristics and predicted 
clinical outcomes.

Materials and methods
Participants
Recently diagnosed PD patients (≤ 2 years from diagno-
sis, Hoehn & Yahr ≤ 2) fulfilling UK PD Brain Bank Crite-
ria were recruited from the Parkinson’s Disease Research 
Clinic at the John Van Geest Centre for Brain Repair in 
Cambridge. Controls were recruited from the NIHR 
Cambridge Bioresource (cambridgebioresource.org.
uk) or from the Parkinson’s Disease Research Clinic and 
were age-, and sex-matched to patients. Exclusion cri-
teria for both patient and control groups were the pres-
ence of chronic inflammatory or autoimmune disorders, 
current or latent infection, vaccinations in the preceding 
month and use of anti-inflammatory/immune-modu-
lating medications. Additional exclusion criteria for PD 
patients were diagnosis of dementia according to MDS 
PD-dementia criteria and the presence of significant 
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psychiatric disturbances. Controls had no history of 
neurological disease or depression and no self-reported 
memory problems.

All participants were clinically assessed for comorbid 
conditions, and medication history. PD cases underwent 
standardised assessments of motor and cognitive dys-
function and mood, including the MDS-Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS, completed in 
the ‘on’ medication state), and Addenbrooke’s cognitive 
examination (ACE-III). Levodopa equivalent daily doses 
were calculated (adapted from [31]. Predicted outcome 
at 5 years (development of postural instability, dementia, 
death) was calculated based on baseline clinical variables 
(age, UPDRS axial score and semantic fluency) using a 
validated prognostic model [32]. Ethical approval was 
obtained from the East of England—Essex Research Eth-
ics Committee (16/EE/0445) and the East of England—
Cambridge Central Research Ethics Committee (03/303).

Sample collection and PBMC extraction
In total, 50  ml of venous blood were collected using 
S-Monovette® tubes (Sarstedt): lithium heparin for 
peripheral blood mononuclear cell (PBMC) isolation, 
ethylenediaminetetraacetic acid (EDTA) for full blood 
count, and clot activator tubes for separation of serum. 
Full blood count analysis was done in the pathology labo-
ratories at Addenbrooke’s hospital, Cambridge. Samples 
for serum extraction were left for 15 min to clot prior to 
centrifugation at 2000  rpm for 15 min. Serum was ana-
lysed in the pathology laboratories at Addenbrooke’s 
hospital, Cambridge for C-reactive protein (CRP), cyto-
megalovirus (CMV) IgG and Epstein–Barr virus (EBV) 
IgG.

All blood samples were processed immediately after 
collection. PBMCs were isolated from whole blood via 
standard density gradient using Ficoll (GE Healthcare). 
After extraction, the PBMCs were counted on a haemo-
cytometer and divided for immunophenotyping assays 
and for isolation of CD8+ T cells to carry out telomere 
length measurement and gene expression analysis.

Flow cytometry immunophenotyping
PBMCs were plated in a clear 96-well plate at 1 × 106 
cells/well. After blocking for 30  min at 4  °C in FACS 
buffer (0.1% BSA and 0.01% sodium azide in PBS) con-
taining 2% mouse serum, the samples were incubated 
with the appropriate antibodies. The T cell senescence 
panel included the following: CD3 (APC; BD Bio-
sciences), CD4 (BV510; BD Biosciences), CD8 (APC H7; 
BD Biosciences), CCR7 (FITC; BD Biosciences), CD45RA 
(PE; Biolegend), CD28 (PE Cy7; BD Biosciences), and 
CD57 (PerCP Cy5.5; Biolegend). Recent thymic emigrant 
(RTE) phenotyping was done in a subset of PD patients 

and controls. The RTE panel included the following: CD3 
(APC; BD Biosciences), CD4 (BUV395; Biolegend), CD8 
(APC H7; Biolegend), CD45RA (PerCP Cy5.5; BD Bio-
sciences), CD103 (FITC; BD Biosciences), and PTK7 (PE; 
BD Biosciences). After antibody incubation, the samples 
were washed twice with FACS buffer and fixed with 2% 
paraformaldehyde. Post-fixation, the cells were washed 
twice and were transferred to FACS tubes.

Flow cytometry was run within 24 h of PBMC extrac-
tion. Data were acquired on a BD LSR Fortessa™ flow 
cytometer using the BD FACS Diva software at the NIHR 
Cambridge BRC Cell Phenotyping Hub. Single-stained 
samples were used for each experiment and compen-
sation was applied to correct for fluorescence spectral 
overlap. Isotype controls were used where appropriate to 
determine non-specific antibody binding. Fluorescence 
minus-one controls were used to check the gating strat-
egy for cell populations of interest.

Data analysis
Flow cytometry data analysis was done using FlowJo v10 
software (BD Life Sciences). Lymphocytes were gated 
using forward and side scatter area and the single cells 
were selected on a forward scatter area versus height plot. 
CD4 and CD8 T lymphocytes were gated as CD3+CD4+ 
and CD3+CD8+ cells, respectively. Quadrant gating of 
CCR7 versus CD45RA plots was used to gate naïve, cen-
tral memory, effector memory and T effector memory 
cells that re-expresses CD45RA (TEMRA) within both 
CD4+ and CD8+ populations. Within the CD8+ T cell 
population, senescent “late differentiated” cells were also 
defined as CD28 low and CD57 high (CD28loCD57hi), in 
addition to the TEMRA subset. Data are presented both 
as % of total lymphocytes and as absolute counts (calcu-
lated based on the full blood counts). One PD sample has 
been removed from the flow cytometry dataset prior to 
statistical comparison of groups due to a technical issue 
during the cytometry experiment. In the recent thymic 
emigrant panel, CD4+ RTEs were defined as CD45RA+ 
PTK7+ cells, and CD8+ RTEs were defined as CD45RA+ 
CD103+ cells.

CD8 T cell separation
CD8+ T cell subsets were separated by magnetic cell sort-
ing using MACS® CD8 magnetic beads (Miltenyi Biotec), 
as per the manufacturer’s instructions. Briefly, freshly 
extracted PBMCs were resuspended in MACS buffer 
(5 mg/ml BSA and 2 mM EDTA in PBS), then incubated 
with CD8 magnetic bead suspension for 15 min at 4 °C. 
After washing and resuspending in MACS buffer, the 
cell suspension was added to pre-rinsed LS separation 
columns placed in a MidiMACSTM magnet separator 
(Miltenyi Biotec). After the negative fraction had run 
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through, the column was rinsed 3 times with MACS 
buffer. Finally, the column was removed from the magnet 
and CD8+ cells were eluted with 5 ml MACS buffer. The 
separated cells were stored at −80 °C until analysis.

Telomere length analysis
Telomere length was measured using a previously pub-
lished quantitative PCR (qPCR) method with modifi-
cations [33]. All samples were assessed in triplicate and 
all PCRs were carried out on a QuantStudio™ 7 Flex 
Real-Time PCR System with 384-well plate capacity 
(Applied Biosystems). Telomere length measurements 
are expressed as a ratio of telomere base pairs/single copy 
gene base pairs (T/S ratio). Three internal control DNA 
samples of known telomere length (10.4  kb, 3.9  kb, and 
2 kb) were run within each plate to correct for plate-to-
plate variation. As a further authentication of our tel-
omere length measurements, we performed a revaluation 
of those samples that were in either the top or bottom 
5% of the telomere length distribution as well as those 
samples that gave no valid data on the first run. The 
intra-assay coefficient of variation was 4.04% while the 
inter-assay coefficient of variation was 1.27%.

Gene expression of hTERT, p16 and p21
The quantification of expression levels of hTERT, p16 and 
p21 was performed by RT-qPCR analysis on a QuantStu-
dio™ 7 Flex Real-Time PCR System with 384-well plate 
capacity (Applied Biosystems), using PGK1 as refer-
ence gene and an internal RNA control sample. Briefly, 
500  ng of RNA was converted into cDNA by means of 
qScript cDNA synthesis kit (Quanta Biosciences, Bever-
ley, MA, USA) on a 20 μl reaction that included 1 μl of 
qScript reverse transcriptase. The reaction comprised 
5 min at 22 °C, 30 min at 42 °C and 5 min at 85 °C. This 
was followed by a 15  μl pre-amplification reaction by 
means of PrimePCRTMPreAmp primers for hTERT, p16, 
p21, and PGK1 (BioRad, Watford, UK) with SsoAd-
vanced Preamp Supermix (BioRad, Watford, UK) under 
the following conditions: 3  min at 95  °C; 12 cycles of 
15 s at 95 °C plus 4 min at 58 °C; and 5 min at 12ºC. The 
resulting pre-amplified samples where then diluted 1:5 
and applied onto a 10  μl qPCR reaction. The following 
PrimePCR™ SYBR® primer sets (BioRad, Watford, UK) 
were used: qHsaCED0056722 (p16); qHsaCID0014498 
(p21); qHsaCID0009247 (hTERT) and qHsaCED0042912 
(PGK1); the reactions included 1.5  μl of pre-amplified 
cDNA and 5  μl of Applied Biosystems Power SYBR™ 
Green PCR Master Mix (ThermoFisher Scientific, 
Waltham, MA, USA). All four qPCR reactions (hTERT, 
p16, p21, and PGK1) were performed in duplicate, with 
all samples run on the same plate. The thermo-cycling 
programme included 2 min at 50 ºC; 10 min at 95 °C and 

40 cycles of 15 s at 95  °C and 30 s at 60  °C as well as a 
melting curve analysis. Values of expression levels for 
hTERT, p16 and p21 were calculated by ΔCΤ based on 
the differences on threshold cycle for hTERT, p16 and 
p21 against PGK1 and relative gene expression was cal-
culated by the formula 2–ΔΔCT based on ΔCΤ values for 
the samples against those obtained for the internal con-
trol. Additional information on the primers used is pro-
vided in Additional file 1: Table S1.

Statistical analysis
Comparisons between PD and controls were per-
formed with two-tailed unpaired t-tests, and compari-
sons between multiple groups were done using two-way 
ANOVA with Sidak’s post hoc test correcting for multi-
ple comparisons. Categorical variables were compared 
using Fisher’s exact test. Pearson product–moment cor-
relation was used to assess correlations between cell 
markers and clinical variables. The data are presented as 
the mean (SD). A p-value < 0.05 was defined as statisti-
cally significant. SPSS (IBM SPSS Statistics for Windows, 
Version 22.0) and GraphPad Prism (GraphPad Software, 
Version 6.04 for Windows) were used for statistical analy-
ses. Graphs were generated using R.

Results
Demographics
61 PD patients and 63 controls were recruited. Their 
demographics are summarised in Table  1. The two 
groups were well-matched for age (p = 0.957) and sex 
(p = 0.105), as well as CMV and EBV seropositivity 
(p = 0.719 and p = 0.267, respectively). All patients had 
early-stage PD (0.97 ± 0.54  years disease duration). PD 
patients had lower cognitive scores compared to the 

Table 1  PD patient and control demographics

CMV, Cytomegalovirus; EBV, Epstein–Barr virus; ACE-III, Addenbrooke’s cognitive 
examination III; MDS-UPDRS, Movement Disorder Society—Unified Parkinson’s 
Disease Rating Scale (measured on medication). ACE-III was done in all PD 
patients and a subset of 41 controls. The values represent the mean (SD); 
*p < 0.05

Control PD p

Sample size 63 61 –

Sex (% male) 51% 66% 0.105

Age at visit 67.5 (7.2) 67.4 (7.1) 0.957

CMV (% positive) 44% 48% 0.719

EBV (% positive) 92% 85% 0.267

ACE-III 94.1 (7.4) 93.0 (4.5) 0.011*

Disease duration (years) – 0.97 (0.54) –

MDS-UPDRS-III (motor score) – 27.8 (10.3) –

MDS-UPDRS total – 47.4 (15.1) –

Levodopa equivalent daily-dose (LEDD) – 290 (163.5) –
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controls as measured by ACE-III (p = 0.011). C-reactive 
protein (CRP) was within the normal range (< 4 mg/L) in 
all participants, thus excluding concurrent infections at 
the time of blood sampling.

Reduction in total lymphocytes, cytotoxic CD8+ T cells 
and CD8+ TEMRA cells in PD patients compared to controls
Full blood count analysis revealed a significant reduc-
tion in the total number of lymphocytes in PD patients 
compared to healthy controls (p = 0.043), as has been 
previously reported [34]. The absolute count of cytotoxic 
CD8+ T lymphocytes was also reduced in patients versus 
controls (p = 0.018) (Table 2).

Flow cytometry was used to measure the proportions 
of relevant T cell subsets within the lymphocyte popula-
tion. Based on these percentages and the total lympho-
cyte counts for each sample, the absolute number of cell 
subsets was calculated (Table  3, Fig.  1). All subsequent 
results refer to absolute counts only. There was a signifi-
cant reduction in the absolute number of CD8+ TEMRA 
cells in patients compared to controls (p = 0.019). A 
similar trend was observed in the number of senescent 
CD8+ CD28loCD57hi cells, though this did not reach sig-
nificance (p = 0.087) (Fig. 1B). CD8+ TEMRA and CD8+ 

CD28lo57hi cell counts were closely correlated in PD 
patients (Pearson r = 0.766, p < 0.001) as well as in con-
trols (Pearson r = 0.769, p < 0.001). There were no differ-
ences in CD4+ subsets between PD patients and controls.

Amongst the PD cases, there were no significant cor-
relations between the CD8+ TEMRA or CD28loCD57hi 
senescent T cell counts and clinical variables, includ-
ing age, sex, measures of motor and cognitive function, 
5-year prognostic score or LEDD.

The association between prior CMV infection and CD8+ T cell 
senescence is attenuated in PD
There was no significant difference in either CMV or 
EBV seropositivity between PD patients and controls 
(p = 0.719 and p = 0.267, respectively) (Table  1). Com-
parison of CD8+ CD28loCD57hi T lymphocytes revealed 
a significant increase in their absolute number (p = 0.026) 
in CMV-positive versus CMV-negative controls (Fig. 2A). 
In contrast, in the patient group, the CD28loCD57hi T 
cell count did not differ between CMV-positive versus 
CMV-negative cases (p = 0.260). CD8+ TEMRA cells 
were significantly higher in CMV-positive versus CMV-
negative cases in both the control and PD group, but 
the effect was more significant in the controls (p < 0.001) 

Table 2  Total lymphocytes and main T cell subsets

Comparisons were done using two-tailed unpaired t-tests. The values represent the mean (SD); *p < 0.05. Significant values are in italics

% of total lymphocytes Absolute cell count (cells × 109/L)

Control PD p Control PD p

Total – – – 1.553 (0.47) 1.397 (0.37) 0.043*

CD4+ 47.41 (12.02) 50.88 (11.95) 0.113 0.736 (0.31) 0.696 (0.22) 0.410

CD8+ 23.72 (11.48) 20.88 (8.86) 0.126 0.380 (0.26) 0.292 (0.14) 0.018*

Table 3  CD4+ and CD8+ T lymphocyte subsets

TEMRA, terminally differentiated effector memory cells re-expressing CD45RA. Comparisons were done using two-tailed unpaired t-tests. The values represent the 
mean (SD); *p < 0.05. Significant values are in italics

% of total lymphocytes Absolute cell count—cells × 109/L

Control PD p Control PD p

CD4+

 Naïve 24.9 (14.4) 28.2 (14.6) 0.210 0.388 (0.282) 0.374 (0.183) 0.761

 Central memory 14.4 (7.3) 15.1 (7.5) 0.624 0.217 (0.115) 0.214 (0.125) 0.899

 Effector memory 6.0 (4.0) 5.7 (3.7) 0.656 0.095 (0.069) 0.082 (0.069) 0.332

 TEMRA 2.1 (3.5) 1.9 (2.4) 0.734 0.037 (0.072) 0.025 (0.032) 0.246

CD8+

 Naïve 5.3 (2.7) 5.9 (3.2) 0.313 0.080 (0.040) 0.081 (0.050) 0.967

 Central memory 2.2 (2.1) 1.9 (1.3) 0.277 0.033 (0.033) 0.027 (0.021) 0.205

 Effector memory 3.6 (3.7) 2.9 (3.6) 0.223 0.058 (0.068) 0.043 (0.041) 0.131

 TEMRA 12.6 (9.7) 10.2 (7.0) 0.121 0.213 (0.221) 0.140 (0.100) 0.019*

 CD28loCD57hi 5.9 (6.5) 4.9 (4.5) 0.327 0.100 (0.145) 0.066 (0.061) 0.087
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compared to the patients (p = 0.026) (Fig. 2B). There were 
no differences in the absolute counts of CD8+ TEMRA 
or CD28loCD57hi T cells in EBV-positive or EBV-negative 
patients and controls (data not shown).

No evidence of changes in thymic emigration of T cells 
in PD versus controls
Recent thymic emigrants (RTEs) were investigated in a 
subset of PD patients (n = 27) and controls (n = 34). The 
number of either CD8+ (CD45RA+CD103+) or CD4+ 

Fig. 1  T lymphocyte immunophenotyping in PD patients versus controls. A Following gating of the total lymphocyte and single cell populations, 
CD4+ and CD8+ T cells were identified as CD3+CD4+ and CD3+CD8+, respectively. CD4+ and CD8+ subsets were distiguished using a quadrant 
gate based on the expression of CCR7 and CD45RA. Additionally, senescent CD8+ subsets were identified based on their low expression of CD28 
and high expression of CD57. B Quantification of CD8+ T cell subets in PD patients and controls. There was a significant decrease in the absolute 
number of CD8+ TEMRA cells in patients versus controls (two-tailed unpaired Welch’s t-test, t(87.25) = 2.392, p = 0.019). All other CD8+ T cell subsets 
did not differ between the groups (two-tailed unpaired Welch’s t-test, p > 0.05). CM: Central memory, EM: effector memory, TEMRA: terminally 
differentiated effector memory cells re-expressing CD45RA. *p < 0.05
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(CD45RA+PTK7+) RTEs was not significantly differ-
ent in PD patients compared to controls (p = 0.512 and 
p = 0.111, respectively) (Fig.  3A, B). Amongst the PD 
cases, there were no significant correlations between 
the CD4+ or CD8+ RTEs counts and age or sex.

Expression of the cell aging marker p16 is reduced in PD 
compared to controls
Given that our data confirmed alterations in senes-
cent cell subtypes within the CD8+ population, CD8+ 
lymphocytes were isolated for further experiments to 
assess cell-ageing markers. Telomere length, as well as 
the expression of the telomerase reverse transcriptase 
enzyme (hTERT) in CD8+ T lymphocytes were similar in 
PD and control groups (p = 0.807 and p = 0.251, respec-
tively) (Fig. 4A, B). There was a significant decrease in the 
expression level of the cell-ageing marker p16 in CD8+ T 
cells of PD patients versus controls (p = 0.002) (Fig. 4C). 
No differences were observed in p21 gene expression 
between groups (p = 0.886) (Fig. 4D). Telomere length as 
well as hTERT, p16 and p21 expression did not correlate 
with clinical data including age, sex, disease duration, 
UPDRS-III, ACE-III and LEDD.

p16 expression appears to have a biphasic distribution 
in our dataset, with a larger proportion of controls in the 
‘high’ cluster (Fig. 4C). This group of controls did not dif-
fer significantly from the control population as a whole in 
terms of age or sex.

Discussion
This study has comprehensively investigated markers of T 
cell senescence in a newly diagnosed PD cohort and age-
matched controls, and provides evidence of a reduction 

Fig. 2  Senescent CD8+ lymphocytes in CMV-positive versus CMV-negative patients and controls. A Two-way ANOVA with Sidak’s multiple 
comparisons test showed a statistically significant main effect of CMV seropositivity, F(1,118) = 11.9, p < 0.001. Post hoc pairwise comparison 
revealed a significant increase in the absolute count of CD8+ CD28loCD57hi T lymphocytes in CMV-positive compared to CMV-negative controls 
(p = 0.026). There was no statistically significant difference between CMV-positive and CMV-negative PD patients (p = 0.260). B Two-way ANOVA 
with Sidak’s multiple comparisons test showed a statistically significant main effect of CMV seropositivity F(1,118) = 26.16, p < 0.0001 and main 
effect of group F(1,118) = 7.382, p = 0.008. Post hoc pairwise comparison revealed a significant increase in the absolute count of CD8+ TEMRA 
cells in CMV-positive compared to CMV-negative controls (p < 0.001) and in CMV-positive compared to CMV-negative PD patients (p = 0.026) CMV: 
Cytomegalovirus, TEMRA: terminally differentiated effector memory cells re-expressing CD45RA. ***p < 0.001,*p < 0.05

Fig. 3  CD8+ and CD4+ recent thymic emigrant (RTE) lympocytes 
in a subet of PD patients versus controls. A The absolute number 
of CD8+ RTEs did not differ between PD patients and controls 
(two-tailed unpaired Welch’s t-test, t(34.86) = 0.662, p = 0.512). B The 
absolute number of CD4+ RTEs did not differ between PD patients 
and controls (two-tailed unpaired Welch’s t-test, t(46.44) = 1.625, 
p = 0.111). Control n = 34, PD n = 27
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in CD8+ TEMRA cells, as well as lower expression of 
the cell-ageing marker p16 in CD8+ T lymphocytes in 
PD. This validates and extends our previous findings 
[21], demonstrating that reduced CD8+ cell senescence 
is a feature of early PD. The current cohort comprised 
patients with a mean disease duration of 0.97 (0.54) 
years in contrast to 4.3 (1.2) years in our previous study. 
Although we have demonstrated that changes in CD8+ 
cell senescence markers are present from early on in the 
disease course, our data do not support their use as diag-
nostic biomarkers, given the significant overlap between 
PD patients and controls. Nonetheless, our observations 
provide an insight into early T lymphocyte changes in 
PD, with important implications for better understanding 
of the immune basis of this condition.

With respect to changes in T cell subsets, our main 
finding was a reduction in CD8+ TEMRA cells. We 
observed similar findings in our previous study [21], 
as well as a reduction in CD8+ CD28loCD57hi lympho-
cytes. There was a trend towards reduction in CD8+ 
CD28loCD57hi cells in PD cases in this study which did 
not reach significance, but CD8+ TEMRA and CD8+ 
CD28loCD57hi cell counts were strongly correlated and 
are likely to represent overlapping populations [6]. The 
difference in CD8+ senescent subsets between groups 
was not driven by differences in age or prior infec-
tion with CMV or EBV. However, our data suggest a 
reduced impact of CMV seropositivity on CD8+ senes-
cence in patients versus controls. Prior CMV infec-
tion was associated with elevated CD8+ CD28loCD57hi 

cells in controls but not PD cases, which is in keep-
ing with our previous findings [21]. CMV seropositiv-
ity was also associated with increased CD8+ TEMRA 
cells in controls, and although a similar effect was seen 
in PD cases, this was less significant. CMV infection is 
thought to be a critical driver of CD57 expression in 
CD8+ T lymphocytes in older individuals [36, 37]. In 
two independent cohorts, we have observed that this 
relationship between prior CMV infection and CD8+ 
CD28loCD57hi cells is reduced in PD. This raises the 
intriguing possibility that some people who develop 
PD might have intrinsic differences in CD8+ immune 
function, with an attenuated accumulation of CD8+ 
CD28loCD57hi cells upon chronic exposure to viruses.

We also interrogated whether the reduction in T cell 
senescence in PD was associated with relative preser-
vation of thymic function, which would be expected to 
decline with age [11]. However, our findings show no 
differences in the number of RTEs between PD patients 
and controls, suggesting that thymic function does not 
contribute to alterations in the balance of naïve versus 
senescent cells in PD.

Replicative cell senescence has been associated with 
the gradual shortening of telomeres [38], and leukocyte 
telomere length has been implicated as biomarker in 
PD, although with inconsistent findings across studies 
[27–30]. We measured telomere length and expression 
of hTERT within the CD8+ lymphocyte population and 
did not observe any significant differences in the length 
of telomeres, nor in hTERT expression in PD versus 
controls.

Fig. 4  Telomere length and cell-ageing markers in CD8+ lymphocytes of PD patients compared to controls. A Telomere length is expressed as a 
ratio of telomere base pairs/single copy gene base pairs (T/S ratio), efficiency corrected [35]. Two-tailed unpaired Welch’s t-test, t(108.2) = 0.245, 
p = 0.807. B Relative mRNA expression levels of hTERT expressed as the log2-fold change (2−∆∆CT). Two-tailed unpaired Welch’s t-test, 
t(62.76) = 1.159, p = 0.251. C Relative mRNA expression levels of p16 expressed as the log2-fold change (2−∆∆CT). Two-tailed unpaired Welch’s t-test, 
t(62.74) = 3.274, p = 0.002. D Relative mRNA expression levels of p21 expressed as the log2-fold change (2−∆∆CT). Two-tailed unpaired Welch’s t-test, 
t(74.73) = 1.143, p = 0.886. hTERT: human telomerase enzyme reverse transcriptase. Control n = 59, PD n = 57. **p < 0.001



Page 9 of 11Kouli et al. J Neuroinflammation          (2021) 18:228 	

The cyclin-dependent kinase inhibitors p16INK4a and 
p21CIP1/Waf1 are both well-established biomarkers of cell 
senescence [39, 40]. Blood-based expression of these 
markers has not been well-studied in the context of neu-
rodegeneration, although p21 expression in monocytes 
has been reported to be lower in Alzheimer’s disease 
[41], and we have previously found evidence of reduced 
p21 expression in total leukocytes in early PD, as well as 
an association between lower leukocyte p16 expression 
and more rapid disease progression [30]. In the current 
study, where we focused our investigation on the CD8+ T 
cell subset, we found no difference in p21 expression, but 
reduced p16 expression in PD patients versus controls, 
providing further evidence of an attenuation of CD8+ T 
cell senescence in PD.

One interpretation of our findings is that the observed 
reduction in senescent CD8+ T lymphocytes reflects a 
pre-existing intrinsic difference in the adaptive immune 
system in individuals who develop PD, perhaps due to 
an altered response to earlier viral infections, or due to 
reduced survival of the CD8+ TEMRA population. The 
shift of CD8+ T cells towards a senescent phenotype in 
response to viral exposure during normal ageing may 
have a protective effect in terms of PD risk, through lim-
iting immune activation to novel or disease-associated 
antigens and consequently reducing neuroinflammation. 
This is in line with data showing that CMV infection is 
not associated with all-cause or cardiovascular mor-
tality in older adults [42]. In PD, a more active and less 
senescent T cell profile may be responsible for driving an 
exaggerated response to PD-associated antigens, such as 
α-synuclein. Indeed, recent evidence from human stud-
ies suggests that α-synuclein epitopes are recognised by 
autoreactive T lymphocytes in PD [43].

Alternatively, it is possible that the significance of 
CD8+ TEMRAs relates to their cytotoxic capacity. 
Although TEMRAs are late-differentiated lympho-
cytes with characteristics of replicative senescence, they 
remain highly cytotoxic on stimulation by their target 
antigen and may play a critical role in certain disease 
states, for example driving graft failure in renal transplant 
patients [44]. CD8+ TEMRAs with specificity for disease 
relevant antigens could be sequestered out of the blood 
and into the central nervous system (CNS) in PD, where 
they may drive a neurotoxic response. Post-mortem 
studies have shown increased infiltration of both CD4+ 
and CD8+ T lymphocytes into the PD brain [45–47]. It 
is therefore possible that the reduction of highly cyto-
toxic CD8+ TEMRA cells we observed in the PD blood 
might be due to their migration into the CNS and infil-
tration into the brain parenchyma. Immunophenotyping 

of T lymphocytes in the cerebrospinal fluid (CSF) in PD 
has been limited to date, and to our knowledge, nei-
ther CD8+ TEMRA cells nor CD8+ CD28loCD57hi cells 
have been studied. However, a recent study in Alzhei-
mer’s disease reported an increase in clonally expanded 
CD8+ TEMRAs in the CSF of patients versus controls. 
In contrast to our findings, they also reported increased 
CD8+ TEMRA cells (% of total PBMCs) in the blood 
[48]. However, the TEMRA population was defined 
differently (CD8+CD45RA+CD27−, as opposed to 
CD8+CD45RA+CCR7−); furthermore, T cell immunose-
nescence may play differing roles in Alzheimer’s and Par-
kinson’s diseases.

An important limitation of our study is that we did not 
perform functional characterisation of CD8+ T cell sub-
sets to demonstrate their proliferative versus senescent 
capacity. It would also be of interest to determine the 
clonal specificity of CD8+ senescent subtypes in PD.

Conclusion
In conclusion, our data show a reduction in CD8+ T 
lymphocyte senescence in newly diagnosed PD patients 
compared to age- and sex-matched controls. This is evi-
denced by a decrease in the CD8+ TEMRA subpopula-
tion and downregulation of the senescence biomarker 
p16. The reduction in senescent T cells was not related to 
a lower incidence of prior infection with viral pathogens 
such as CMV or EBV in PD cases, but rather our data 
indicate that the typical viral-induced senescent shift in 
the CD8+ population may be attenuated in PD. The alter-
ations in CD8+ lymphocytes were present in early disease 
and were not clearly associated with markers of disease 
severity, suggesting that they may have relevance to PD 
onset rather than progression. Further investigation of 
markers of T cell senescence in prodromal and longi-
tudinal PD cohorts is warranted, along with functional 
characterisation of these senescent cell subtypes and 
measurement of their infiltration into the CNS.
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