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The semantics of microglia activation: 
neuroinflammation, homeostasis, and stress
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Abstract 

Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. 
Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunologi-
cal concepts from these studies have been applied to describe neuro-immune interactions in the absence of dis-
ease, injury, or infection. Indeed, terms such as ‘microglia activation’ or ‘neuroinflammation’ are used ubiquitously to 
describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms 
prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunol-
ogy and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the 
role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and 
define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in 
pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 
phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in dif-
ferent contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurologi-
cal disease.
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Background
In the early 1900s, Pío del Río-Hortega described a new 
type of phagocytic brain cell, of mesodermal origin, that 
he termed “microglia” [1–3]. Decades later, microglia 
were recognized as macrophages, evidenced by morpho-
logical similarities to peripheral macrophages and their 
recognition by antisera against common monocyte mark-
ers [4–7]. Still, microglia are unique among macrophages. 
Unlike their fetal liver or bone marrow-derived relatives, 
microglia arise from embryonic yolk sack progenitors 
and maintain transcriptional and functional identities 
distinguishing them from other macrophages which may 
infiltrate the brain under pathological conditions [8–
15]. As such, microglia are considered brain-resident 

macrophages and are uniquely suited to regulate neural 
homeostasis and behavior. In particular, recent studies 
indicate that microglia can modulate neuronal activity, 
facilitate learning, and shape social behavior [16–24].

The underappreciated role of microglia in physiological 
conditions contrasts earlier work, which mainly focused 
on microglial function in pathological contexts such as 
injury and disease, where neuronal death or degeneration 
is observed [25, 26]. These initial studies characterized 
neuro-immune responses in such contexts and clearly 
defined the term “neuroinflammation,” which was guided 
by four primary features of peripheral inflammation: 
macrophage (microglial) activation, increased cytokines 
and chemokines, recruitment of peripheral immune cells, 
and local tissue damage [25, 27]. These studies also dem-
onstrated that microglia and peripheral immune cells 
have dual roles: driving neuroinflammation and subse-
quent pathology, as well as resolving neuroinflammation 
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and repairing the nervous system [28, 29]. Adding to the 
complexity of neuro-immune systems, these roles do not 
likely represent discrete functional states in vivo. Indeed, 
there is ample evidence that inflammation simultaneously 
drives tissue damage and repair [25, 30–33]. Nonethe-
less, these functions collectively represent various facets 
of microglia activation, which is classically identified by 
substantial increases in cytokine production, the adop-
tion of an amoeboid morphology, and changes in relevant 
protein markers (Fig. 1.) [34–37]. It should be noted that 
there is ongoing refinement of approaches to character-
ize macrophage/microglia activation [for a comprehen-
sive overview, see: [25, 30, 32, 33]. There are limitations 
to these definitions because biological systems do not fit 
cleanly into well-defined categories. As a result, terms 
such as “microglia activation” and “neuroinflammation” 
have broadened over the years to include most immune-
related processes in the nervous system. While this has 
occurred in multiple areas of study, this review will focus 
on the functional states of microglia and their contribu-
tions to the neurobiology of stress.

Accumulating evidence indicates that microglia play 
a role in the synaptic and behavioral changes associated 
with chronic stress [38, 39]. However, there remain fun-
damental issues in the conceptual framework used to 

integrate immunological concepts with stress research. 
Indeed, the language used to study peripheral mac-
rophages in the context of infection is not adequate to 
describe microglial function in chronic stress; especially 
considering the vast biological differences between these 
two contexts. Despite this, researchers often use the 
term “neuroinflammation” to describe immune-related 
changes caused by chronic stress, which prompts com-
parisons to tissue injury or disease states and ultimately 
hinders our understanding of stress effects on microglia. 
This is significant because preclinical stress models are 
often used to gain insight into the neurobiology of psy-
chiatric disorders. Thus, simplifying the role of micro-
glia and neuro-immune systems in these models may 
lead to spurious therapeutic targets that ultimately hin-
der further clinical research. As advanced approaches 
(e.g., single cell RNA-Seq) improve our understanding of 
microglial phenotypes and functions, it is important to 
define specific features of microglia across model systems 
and disease states. This will increase the likelihood that 
congruent molecular and cellular pathways will be identi-
fied, which may facilitate the development of therapeu-
tic approaches targeting microglia. In this review, we will 
discuss microglial functions in pathological and homeo-
static conditions; as well as highlight the need to refine 

Fig. 1  Phenotypic distinctions between homeostatic and “activated” microglia. Under typical conditions (A), microglia display a ramified 
morphology and a unique pattern of gene expression, making them identifiable through a number of different techniques. However, a variety of 
immunogenic stimuli can elicit dramatic morphological and functional changes in microglia. Immunologically activated microglia (B) possess an 
amoeboid morphology; marked by increased soma size and less ramified processes. Markers for microglia activation vary widely depending on 
the type and severity of insult, but surface proteins associated with classical immune functions (e.g., antigen presentation, phagocytosis) tend to 
be increased, while those associated with homeostasis may be reduced. Functions of activated microglia are also highly variable, with the same 
cells potentially driving tissue damage and repair processes simultaneously. Morphological features may not correspond to assumed functional 
roles. Nonetheless, classical immune functions of activated microglia include phagocytosing cellular debris, large increases in cytokine signaling, 
recruitment of peripheral immune cells to the parenchyma, and destroying infected or dying cells
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terms used to describe microglia in different contexts. 
Moreover, we propose an alternative framework in which 
neuron–microglia interactions coordinate neurobiologi-
cal adaptations to stress, congruent with an immune state 
called ‘parainflammation’ (not neuroinflammation).

Microglia in inflammatory contexts
Inflammation is triggered by immunogenic stimuli (i.e., 
pathogens or tissue injury), resulting in various biochem-
ical cascades aimed at resolving these threats to homeo-
stasis. Consequently, tissue damage and repair processes 
are enhanced during inflammation, often in tandem, until 
it resolves through complex regulatory mechanisms. In 
the brain, neuroinflammation manifests as elevated levels 
of pro-inflammatory cytokines, macrophage (microglia) 
activation, peripheral leukocyte infiltration, and damage 
to nervous tissue [25]. Although it is becoming increas-
ingly clear that neuro-immune interactions play a role in 
most facets of brain function, it is typically under circum-
stances of disease, injury, and infection that all four of 
these hallmarks are present [27, 40]. In high enough con-
centrations (i.e., during neuroinflammation), immuno-
genic molecules can “activate” microglia, causing them to 
adopt an amoeboid morphology, and drastically increase 
their production of cytokines and reactive oxygen spe-
cies (ROS). However these functional changes vary based 
on the type of stimuli and severity of insult [41]. Thus, in 
order to understand microglial function in a disease con-
text, it is important to appreciate the intricacies of neuro-
inflammation. To this end, we will discuss a few examples 
of microglial function in neuroinflammatory contexts.

Multiple sclerosis and experimental autoimmune 
encephalomyelitis
Microglia activation is observed in various central 
nervous system (CNS) diseases and is important for 
coordinating the immune system’s resources during dis-
ease-associated neuroinflammation. For example, acti-
vated microglia are the main phagocytes observed in 
early stage multiple sclerosis (MS) lesions. This changes 
over time, with recruited bone marrow-derived mac-
rophages taking over as the lesion advances [42, 43]. Fur-
ther insights come from mouse hepatitis virus (MHV) 
infection, which causes demyelinating disease in models 
of experimental autoimmune encephalomyelitis (EAE). 
Early after MHV infection, microglia increase expression 
of cytokines which suppress viral infection and signal to 
adaptive immune cells [44, 45]. Ultimately, this contrib-
utes to T-cell and peripheral macrophage infiltration, 
increased brain cytokine levels, and tissue damage; here 
in the form of plaques or lesions where activated mac-
rophages are believed to contribute to demyelination [45, 
46]. Recent studies demonstrate that the initial microglial 

response is a critical determinant of EAE severity. 
Depleting microglia with the colony stimulating fac-
tor 1 receptor (CSF1R) antagonist PLX5622 prior to 
MHV infection delayed virus clearance and was linked 
to reduced infiltration and activation of CD4+ T cells, as 
well as decreased production of interferon gamma (IFN-
γ); a critical suppressor of viral replication [44, 47–49]. 
This dampened immune response was associated with an 
80% increase in mortality [44, 47]. This is consistent with 
other studies reporting greater demyelination at peak dis-
ease and less remyelination during recovery in mice lack-
ing microglia [47, 49, 50]. Thus, while microglia appear to 
play a role in cytokine production and demyelination in 
this model, it is evident that they also promote adaptive 
immune responses and aid in processes to repair tissue in 
EAE [45]. It remains to be seen whether microglial func-
tions characterized in EAE precisely correspond to those 
occurring in patients with MS [43]. Nonetheless, this 
work highlights the complexities of neuroinflammation 
and microglial phenotypes in disease.

Ischemic stroke
Microglia are often first responders to brain or nerve 
injury. In fact, studies show that just minutes after 
ischemic stroke, microglia adopt an amoeboid morphol-
ogy, display enhanced isolectin B4 binding, and have 
increased levels of compliment receptor 3 (CR3, a.k.a. 
CD11b) as well as major histocompatibility complex 
(MHC) I and II [51]. These activated microglia produce 
high levels of TNFα, leading to endothelial necroptosis 
and BBB destruction [52]. This secondary tissue dam-
age may also contribute to the infiltration of periph-
eral monocytes in the brain parenchyma, where they 
proliferate and gradually take over as the predominant 
phagocytes at the site of injury [53]. Both microglia and 
peripheral monocytes are involved with clearing debris 
after stroke, which attenuates inflammation; however 
they may also phagocytose injured yet viable neurons, 
leading to greater tissue damage [54–56]. While these 
findings indicate that microglia drive pathology in stroke, 
there is evidence to suggest microglia also play a neuro-
protective role. Mice lacking TREM2, a receptor highly 
expressed by microglia and believed to play a role in 
phagocytosis, show exacerbated ischemic damage after 
stroke [57]. Moreover, injured cells release high quanti-
ties of purines (ATP/ADP), which microglia detect and 
extend their processes toward via the purinergic recep-
tor P2Y12 [58, 59]. Recent work showed that after stroke, 
neurons in the ischemic penumbra recruit microglial 
processes through a P2Y12 dependent mechanism, 
leading to the formation of an immunological synapse 
between the two cells [17]. Notably, this was attenuated 
in P2Y12 knockout mice and coincided with increased 
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neuronal calcium load, disrupted cortical network func-
tion, and greater area of ischemia-induced disconnection 
[17]. Altogether these findings show that microglia have 
dual roles in driving the pathological hallmarks of neuro-
inflammation and preserving and repairing damaged tis-
sue in stroke [60].

Alzheimer’s disease
Numerous studies demonstrate that microglia and neu-
roinflammation play a role in the pathogenesis of Alz-
heimer’s disease (AD). Genome-wide association studies 
have suggested that individuals with variants of immune 
genes such as CD33 and TREM2 are at greater risk of 
developing AD, and single-cell RNA sequencing stud-
ies suggest that immunologically activated microglia are 
present in both animal models of AD and tissue from 
AD patients [61–65]. Additionally, studies in human tis-
sue found increased trafficking of peripheral leukocytes 
in brain tissue from AD patients, suggesting blood–brain 
barrier (BBB) decline and immune-driven pathology 
in AD [66–68]. In line with this, 5 × and 3 × FAD mice, 
which overexpress human mutations associated with 
familial AD, show increased neutrophil extravasation into 
the parenchyma at sites of amyloid beta (Aβ) plaques, 
where they release extracellular traps and IL-17. Impor-
tantly, depleting neutrophils reduced Aβ42 levels and 
was associated with better cognitive outcomes, suggest-
ing that neutrophils play a role in AD pathogenesis [66]. 
Collectively, these studies point to neuroinflammation 
as a contributing factor in AD, however the precise role 
of microglia in AD is more complicated [69]. As men-
tioned above, mutations affecting TREM2 function are 
risk factors for AD, and importantly, TREM2 is involved 
in Aβ clearance by microglia [70, 71]. Further, stimulat-
ing microglia proliferation via TREM2 agonism  in mice 
engineered to express one of these human polymor-
phisms, led to decreased plaque load and neuronal dys-
trophy, suggesting that stimulating immune function 
from microglia may be beneficial in AD [72]. This is in 
line with recent work which identified a subtype of dis-
ease-associated microglia (DAM), which are  associated 
with Aβ plaques and promote their clearance  through 
a mechanism involving TREM2 [73]. Thus, rather than 
suppressing immune function altogether, it may be useful 
to promote selective microglia responses to help restore 
homeostasis [74]. In contrast, other work suggests that 
microglia release Aβ and tau “seeds”, which exacerbate 
AD progression [75, 76]. Given these complexities, addi-
tional research will be required to fully appreciate the 
role of microglia in AD.

Meningitis
In cases of CNS infection, neuroinflammation caused by 
microglia activation is critical for detecting and eliminat-
ing pathogens, but is not without consequence [77]. For 
instance, bacterial infection of the subarachnoid space 
causes astrocytes, endothelia, and microglia to secrete 
large amounts of pro-inflammatory cytokines, including 
tumor necrosis factor alpha (TNF-α), interleukin 1 beta 
(IL-1β), and interleukin 6 (IL-6), which drive inflamma-
tion in the meninges [78]. These cytokines also activate 
endothelial integrins and stimulate chemokine secre-
tion, promoting peripheral leukocyte recruitment [79, 
80]. Further, Streptococcal pneumonia, the microorgan-
ism most commonly associated with bacterial menin-
gitis, can penetrate the blood–brain barrier (BBB), and 
microglia react directly to the bacterium’s cell wall in 
the parenchyma [79, 81]. In  vitro models and rodent 
studies show that components of the pneumococcal cell 
wall cause microglia to produce nitric oxide, as well as a 
variety of different cytokines and chemokines, increas-
ing leukocyte extravasation to the parenchyma [79, 82]. 
This leads to a predicament where on one hand, invading 
pathogens will trigger apoptosis via bacterial exotoxins, 
ultimately resulting in death [83, 84]. On the other hand, 
neuroinflammation caused by cytokines and ROS from 
the immune system can stop infection, but at the cost of 
associated tissue damage [78].

Peripheral infection
Exposure to pathogens in peripheral tissue elicits neuro-
immune signaling and microglia responses that are 
drastically different from CNS infection. In preclini-
cal models, viral (i.e., poly-IC) or bacterial components 
(i.e., lipopolysaccharide; LPS) are used to mimic periph-
eral infection and study associated neuro-immune 
interactions. This work shows that immune cells (often 
tissue-resident macrophages) in peripheral tissues initi-
ate pro-inflammatory signaling cascades that affect other 
immune mediators. In particular, circulating cytokines 
promote IL-1β secretion from macrophages in circum-
ventricular organs, as well as perivascular macrophages 
and endothelia of the neurovasculature. These pro-
inflammatory signals are transmitted to and propagated 
by microglia in the parenchyma. [85–87]. These micro-
glia responses mediate important physiological (e.g., 
fever) and behavioral (e.g., lethargy) components of sick-
ness that promote survival [88]. This form of microglial 
activation is transient and occurs without causing overt 
neuropathology [41, 88–92]. Recent reports indicate 
that peripheral administration of LPS can cause tran-
sient BBB disruption and microbleeds in the brain [90, 
92]. These neuro-immune interactions may contribute 
to the observed changes in inflammatory mediators in 
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the brain, but further studies are needed to define these 
mechanisms. It is important to emphasize that periph-
eral infection alters microglia function indirectly, as viral 
(i.e., poly-IC) or bacterial components (i.e., lipopolysac-
charide; LPS) do not typically reach the brain paren-
chyma, and that effects of LPS will vary depending on 
the route of administration, dose, and duration of expo-
sure [93]. Thus, studies using immune challenges, such 
as LPS, need to consider how neuro-immune pathways 
(e.g., vagus nerve; endothelial cells) transmit immune sig-
nals to microglia and the brain, and whether peripheral 
inflammation in these models truly drives neuroinflam-
mation as well.

Microglia in non‑inflammatory contexts
Foundational to the idea of discrete macrophage acti-
vation states is the notion that these cells show limited 
activity or exist in a “resting” state prior to activation. 
Keeping with this, many studies note morphological 
shifts between the complex ramifications protruding 
from “resting” microglia in homeostasis and that of reac-
tive or “amoeboid” microglia seen in diseased tissue [34, 
35]. However, by focusing on microglia in the context of 
disease, these studies overlooked the dynamic nature of 
microglia in homeostasis. Seminal work utilized in  vivo 
two-photon imaging in transgenic mice expressing EGFP 
driven by the Cx3cr1 promoter to investigate micro-
glial function under baseline conditions [94, 95]. These 
studies demonstrated that microglia display nearly con-
stant movement, with their processes undergoing cycles 
of  extension and  retraction as they survey the extracel-
lular space [94]. Further, the authors noted that neuronal 
activity appeared to influence process motility, and that 
many microglial processes contained pieces of phagocyt-
ized material which were gradually transported to the cell 
body. Thus, instead of quiescent cells in a “resting” state, 
this work demonstrated that microglia are constantly 
surveilling and utilize processes associated with immune 
activation (i.e., phagocytosis) in physiological conditions.

Further studies elaborated on this work and demon-
strated that microglia are actively involved in neurode-
velopment. In early development, neurons establish 
many more synaptic contacts than persist in a mature 
brain. As these young neurons send and receive signals 
to each other, synapses lacking sufficient input are gradu-
ally pruned while more active synapses are maintained 
[96, 97]. Interestingly, work by Stevens et al. showed that 
inactive projections from retinal ganglion cells (RGC) in 
the dorsal lateral geniculate nucleus (dLGN) were pruned 
in a complement-dependent manner [98]. In the periph-
ery, the complement system comprised freely circulating 
proteins that, when bound to pathogens, trigger a signal-
ing cascade which enhances the ability of macrophages to 

detect and phagocytose those pathogens [99–102]. Later 
work by Schafer et al. demonstrated that microglia medi-
ate engulfment of inactive RGC projections within the 
developing LGN in a complement- and activity-depend-
ent manner, which allowed for typical circuit develop-
ment [103].

A number of mechanisms have been shown to guide 
microglia-mediated synaptic pruning, with inhibition of 
these pathways linked to atypical behavioral phenotypes 
[22, 104–106]. For example, mice lacking either TREM2 
or CX3CR1, both receptors highly expressed by micro-
glia, show impaired synaptic pruning during develop-
ment [107]. Consequently, mice lacking either of these 
receptors exhibit altered brain connectivity and deficits 
in social behavior in adulthood. Additional studies even 
show compromised LTP alongside deficits in contex-
tual fear conditioning and spatial learning memory in 
CX3CR1-deficient mice. [24, 108, 109]. Expanding on 
these developmental studies, recent work suggests that 
the complement system regulates microglial phagocy-
tosis of synapses in the adult hippocampus and contrib-
utes to forgetting [110]. Meanwhile other experiments 
indicate that microglial phagocytosis of the extracellular 
matrix around hippocampal neurons promotes memory 
consolidation via a mechanism dependent on neuron-
derived IL-33. Collectively these findings indicate that 
microglial phagocytosis is not only triggered by patho-
gens or injury, but it is critical for proper neurodevelop-
ment and neuroplasticity as well.

A similar theme emerges in work examining purine 
(e.g., ATP/ADP)-mediated chemotaxis by microglia. 
Accumulating evidence indicates that this process, tra-
ditionally associated with tissue damage (see previous 
section), guides homeostatic neuron-microglia interac-
tions [111]. Different labs have consistently shown that 
stimulation of NMDA receptors on highly active neu-
rons causes them to release ATP/ADP into the extra-
cellular space, which is detected by microglial P2Y12 
receptors [19, 105, 112–114]. Upon binding extracellular 
purines, Gi coupled P2Y12 receptors promote extension 
of microglial processes toward activated neurons [17, 18, 
115, 116]. Studies examining neuron-microglia interac-
tions in the visual cortex showed that visual experience 
caused microglia to interact with dendritic spines of V1 
neurons, and that depriving animals of light during visual 
critical periods increased their phagocytosis of neuronal 
material [117]. This was driven in part by P2Y12 signal-
ing, as disrupting P2Y12 during monocular deprivation 
limited microglial remodeling of V1 synapses, which in 
turn abrogated typical ocular dominance [105]. Interest-
ingly, recent studies show that this process is opposed 
by noradrenergic signaling, as β2-adrenergic receptors 
on microglia were shown to limit experience-dependent 
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plasticity in awake mice by inhibiting microglial surveil-
lance [118].

Beyond guiding neuroplasticity, convergence of micro-
glia processes toward active neurons is implicated in 
regulating neuronal activity through physical contact. 
For example, microglia have been shown to rescue the 
somatic potential of hyperactive neurons by physically 
contacting their axons, while pharmacologically inhib-
iting microglial detection of neuronal activity (and thus 
limiting their contacts with neurons) is associated with 
increased neuronal death [18]. Similarly, neuronal hyper-
excitability induced by kainic acid provokes more severe 
and more frequently lethal seizures in mice lacking 
P2Y12 [19], further implicating microglia in regulating 
neuronal excitability. Perhaps the most direct evidence 
of this however comes from a recent study showing that 
upon detection, microglia catabolize extracellular ATP 
into adenosine, which in turn suppresses hyperactive 
neurons by binding to the adenosine receptor A1R [119]. 
This inhibitory mechanism was crucial for attenuat-
ing seizure severity in mice treated with pro-convulsive 
doses of a D1 agonist, demonstrating a protective role 
for microglia. Taken together these studies suggest ATP-
mediated chemotaxis by microglia is not only important 
for responding to injury, but also for maintaining brain 
homeostasis by limiting pathological neural activity.

Another function of activated macrophages is secre-
tion of growth factors and cytokines. This too has been 
observed in microglia absent neuroinflammation. For 
example, Parkhurst et  al. showed that microglial brain-
derived neurotrophic factor (BDNF) secretion was 
important for synaptic integrity. In these studies, micro-
glia-specific depletion of BDNF reduced cortical expres-
sion of certain glutamate receptors, which subsequently 
altered NMDA and AMPA mEPSCs [20]. These deficits 
in synaptic function ultimately translated to reduced 
learning-associated spine growth and subsequent behav-
ioral impairments in rotarod training, indicating that 
trophic support from microglia is an important neuro-
biological component of learning. Cytokines are also 
known to modulate synaptic plasticity under physiologi-
cal conditions. Initial studies performed both in vivo and 
in acute hippocampal slices showed that Il1β transcript 
was increased after LTP induction, and that application 
of IL-1 receptor antagonist (IL-1ra) interfered with LTP 
maintenance [120]. Similarly, mice engineered to overex-
press IL-1ra in the brain show learning deficits, reduced 
GluA1/2 expression, and impaired BDNF signaling 
[121]. It should be noted that cytokine signaling is com-
plex, and the same molecule might have entirely differ-
ent effects depending on concentration, or the presence 
of other cytokines [122]. Consistent with this, IL-1β has 
a concentration-dependent relationship with LTP. Under 

physiological conditions, IL-1β concentrations are rela-
tively low and can enhance LTP and improve recall of a 
conditioned stimulus. In contrast, when IL-1β concentra-
tions are high (i.e., inflammation or aging), IL-1β impairs 
LTP by acting at the synapse [123–125]. Other immune 
factors such as TNFα, IL-10, CXCL16, and CX3CL1 have 
also been implicated in LTP, with microglia acting either 
as potential sources of, or the cells affected by these mol-
ecules [126–131]. While much work is needed to fully 
appreciate microglial contributions to synaptic plastic-
ity, these studies demonstrate the importance of neuro-
immune interactions in homeostatic brain function.

Microglia in psychological stress: debating 
neuroinflammation
Clinical and preclinical studies conducted over the past 
two decades demonstrate that psychological stress influ-
ences various neuro-immune pathways [38, 132]. Early 
work revealed that both acute and chronic stressors 
increase levels of certain pro-inflammatory cytokines 
such as IL-1β in the brain [133, 134]. Further studies spe-
cifically implicated microglia as the primary source of 
these cytokines, and showed that chronic stress altered 
microglial morphology [133, 135–138]. Collectively 
these changes were considered evidence of microglia 
activation, and therefore neuroinflammation, caused by 
psychological stress. However, as outlined above, neuro-
inflammation is characterized by macrophage activation, 
pro-inflammatory cytokine secretion, leukocyte recruit-
ment, and tissue damage [25]. While there is good evi-
dence that all four of these are present in conditions like 
MS, AD, stroke, and bacterial meningitis, it is not clear if 
the term neuroinflammation applies to stress-associated 
neuro-immune functions.

Recall that the effects of pro-inflammatory cytokines 
depend on other factors such as concentration [122]. 
During neuroinflammation, IL-1β and TNFα concen-
trations can reach hundreds or even thousands of times 
higher than baseline levels, and promote cell death either 
by directly triggering apoptotic pathways in target cells, 
or by enhancing other neuroinflammatory processes 
associated with cellular damage [139–144]. While there 
is evidence that stress exposure influences IL-1β and 
TNFα levels, the magnitude of this effect is considerably 
lower by comparison (< 10 times baseline) and occurs in 
the absence of overt tissue pathology [41, 133, 135, 145, 
146]. It should also be noted that outside the contexts of 
injury and disease IL-1β and TNFα secretion in the brain 
facilitates synaptic plasticity, which is critical in main-
taining homeostasis [124, 131, 147, 148]. As such, modest 
changes in pro-inflammatory cytokine expression may 
not indicate neuroinflammation and could represent an 
altogether different biological process.
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A common finding reported in stress literature is the 
presence of “activated” microglia. As mentioned in the 
beginning of this review, the precise definition of mac-
rophage activation is an area of ongoing debate and it is 
not clear what precisely constitutes an “activated”, “rest-
ing”, or “alternatively activated” macrophage or micro-
glia [25, 30, 32, 33]. In Fig. 1, we provide some common 
features of microglia across immunogenic contexts, yet 
even these come with a multitude of caveats, as features 
of “activated” microglia in one context may not appear in 
another [34, 35, 37]. Further, as mentioned in the previ-
ous section, the idea of “activated” microglia presumes 
they are quiescent under typical conditions, which is not 
supported by recent data [149].

One of the common metrics to assess microglia acti-
vation are broad morphological shifts from small soma 
with ramified processes in homeostasis, to amoeboid 
with thicker and less complicated processes during neu-
roinflammation [36, 37]. Indeed initial reports indicated 
that stress caused microglia activation largely based on 
changes in morphological features [136]. However, evi-
dence suggests that morphological changes in microglia 
do not define their functional state. Indeed microglia dis-
play dynamic and varied morphologies driven by local 
cues and these features may not overlap with assumed 
functions. For example, microglia in the developing sub-
ventricular zone and cortex display amoeboid morphol-
ogy, yet the cytokines and growth factors they produce 
are essential for neuronal growth and differentiation 
[150, 151]. Even within the context of chronic stress, 
changes in microglial morphology vary between brain 
region, sex, species, stress paradigm, and stress duration, 
without specific biological or behavioral implications 
[136, 152–156]. In this context, it is not accurate to sug-
gest that morphological changes in microglia alone can 
provide insight into their functional state. Moreover, it 
should be noted that these morphological analyses have 
been primarily reported in tissue immunolabeled with 
IBA-1, which does not fully reproduce microglial com-
plexity. Indeed, studies using mice with a microglia-spe-
cific GFP reporter failed to observe such morphological 
changes after chronic social defeat stress, despite having 
more statistical power than previous reports [157]. These 
findings suggest that chronic stress exposure does not 
cause microglia activation in a way that resembles the 
immunological origins of the term [32, 33, 158].

Other studies have also reported that chronic stress 
promotes peripheral leukocyte trafficking in the brain, 
but this appears to be dependent on experimental 
approaches and context. In particular, studies using GFP+ 
bone marrow (BM)-chimeric mice showed that repeated 
social defeat (RSD) promotes signaling from microglia 
and caused infiltration of peripheral monocytes into 

selective brain regions. These neuro-immune interac-
tions were associated with reduced exploratory behav-
ior in socially defeated mice [159–161]. However, 
further studies using LysM-GFP+, CCR2RFP, and UBCGFP 
reporter mice indicate that RSD promotes accumulation 
of peripheral myeloid cells (i.e., monocytes and granu-
locytes) in the perivascular space and choroid plexus; 
not in the brain parenchyma [157, 159, 162, 163]. These 
results suggest that development of the BM-chimera 
model enabled extravasation of myeloid cells into the 
brain following RSD [157, 159, 162–164]. Despite limited 
evidence for leukocyte trafficking in the brain, these stud-
ies did find that RSD caused a decline in BBB integrity 
[157, 165]. These stress-induced changes in the BBB were 
associated with vascular remodeling and the passage of 
signaling peptides, indicating that more subtle processes 
are involved during stress as compared to neuroinflam-
mation [163, 165]. It is important to point out that accu-
mulation of peripheral myeloid cells and loss of BBB 
integrity has been primarily observed in the RSD model. 
These findings are still significant, but it reinforces the 
fact that the context is critical; RSD is a unique paradigm 
as it involves aggressive encounters that can wound sub-
ordinate mice, potentially influencing their inflammatory 
profile [166–168]. Indeed, other stress models that use 
exposure to unstable or aversive environmental condi-
tions (and lack physical confrontations or wounding) do 
not cause significant accumulation of peripheral mac-
rophages in the brain [169].

In summary, while it is evident that stress engages 
neuro-immune pathways and alters microglia func-
tion, these effects are subtle and are not associated with 
immune-driven pathology. Despite these modest effects, 
neuro-immune interactions still play an important role 
in the behavioral and biological effects of chronic stress 
exposure. As such, a different framework is needed to 
accurately describe neuro-immune responses to stress.

Parainflammation: neuro‑immune adaptations 
to homeostatic threats
Historically, neuro-immune interactions have been 
framed around existing immunological concepts derived 
from models of pathological conditions in which all four 
hallmarks of inflammation are present. By contrast, the 
behavioral and biological sequelae of chronic stress are 
best described as a consequence of prolonged adapta-
tion to homeostatic threats, which, while associated with 
adverse effects, is not inherently pathological [170, 171]. 
For example, repeated stress exposure gradually attenu-
ates hypothalamo–pituitary–adrenocortical (HPA) axis 
activation in response to a familiar challenge, ultimately 
reducing the physiological burden of chronic glucocor-
ticoid secretion [170]. However, adaptation to chronic 
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stress also sensitizes HPA activation to new challenges, 
which, while appropriate in dangerous situations, can 
be disadvantageous in response to innocuous stimuli 
[170, 172]. Behavioral adaptations to chronic stress can 
be understood in a similar way. Recent work shows that 
social avoidance, the primary outcome of RSD in “suscep-
tible” mice, is a learned behavior that does not general-
ize outside the aggressor’s strain and can be extinguished 
with repeated exposure in a safe environment [173]. In 
other words, “susceptible” mice learn to avoid an aggres-
sor strain in a context that reliably predicts danger. Just 
as well, increased immobility in the forced swim test, a 
behavioral metric used in many other stress paradigms, 
might be an adaptive pro-survival behavior, as floating 
in an inescapable body of water conserves energy [174]. 
Nonetheless, these paradigms also alter behaviors such as 
sucrose preference, working memory, and effort-related 
choice [152, 175–179]. Thus, rather than overt patho-
physiology (i.e., relating to disease or injury), chronic 
stress effects on brain and behavior can be framed as 
adaptations to adverse conditions, which can compro-
mise typical function.

With this in mind, stress-induced functional changes 
in microglia resemble an intermediate tissue state termed 
parainflammation, in which stressed or malfunction-
ing cells engage tissue-resident macrophages to restore 
homeostasis [132, 180, 181]. In this conceptual frame-
work (Fig.  2.), chronic psychological stress disrupts 
homeostatic brain function, provoking changes in micro-
glia function. In coordination with other brain cells, 
microglia then facilitate neurobiological adaptations 
by initiating immune-related processes (i.e., cytokine 
release, phagocytosis). Of note, these microglia-mediated 
processes occur independent of other peripheral immune 
cells and at levels relative to physiological contexts. Ulti-
mately, this may restore brain homeostasis, but may 
cause important behavioral and biological consequences.

In support of this, there is growing evidence that 
stress-induced changes in microglial function reflect 
coordinated interactions between microglia and neurons 
(and other cells in the brain) rather than dysfunctional 
immune processes. For example, chronic unpredictable 
stress (CUS) and glucocorticoids promote CSF1 signaling 
in the PFC, which elicits microglial phagocytosis of neu-
ronal elements in the medial PFC [154, 169]. Ultimately, 

Fig. 2  Contrast between neuroinflammation and parainflammation. Neuroinflammation (left) describes immune-driven pathology which occurs in 
the course of disease, injury, or infection in the brain. This tissue state can be identified by four common molecular and cellular hallmarks illustrated 
on the left. These are: (1) high levels of pro-inflammatory cytokines, (2a) microglia and (2b) peripheral macrophage activation, (3) infiltration of 
peripheral leukocytes (e.g., bone-derived monocytes, T cells) to the parenchyma, and tissue damage such as (4a) BBB breakdown and (4b) neuron 
death. Neuro-immune systems can also be engaged by homeostatic challenges (i.e., psychological stress), leading to an intermediate tissue state 
termed parainflammation (right). While a formal definition of parainflammation is yet to be widely accepted in neuroscience, neuro-immune 
interactions previously reported in parainflammatory contexts are shown on the right. These include: (1) microglial recruitment of bone-derived 
monocytes to the perivascular space, (2) changes in cytokine signaling between neurons and microglia, (3) microglia-mediated neuronal 
remodeling, and (4) diffusion of small signaling peptides across the BBB
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this neuronal remodeling by microglia contributes to 
synapse loss in the medial PFC and associated stress-
induced behavioral changes [169, 182]. Interestingly, our 
recent work suggests that while synapse loss persists over 
the course of chronic stress, microglia-mediated neu-
ronal remodeling diminishes over time, indicating that 
this is a coordinated process and that spine loss is main-
tained by other mechanisms [152].

Further support for the concept of parainflammation 
in stress research comes from emerging evidence that 
stress-induced changes in microglia correspond to stress-
induced changes in neuronal activity. Previous work 
showed that repeated restraint stress increased micro-
glial proliferation in the hippocampus; however, this was 
blocked by treatment with the glucocorticoid receptor 
antagonist RU486 or the NMDA receptor antagonist 
MK801 prior to restraint [183]. Other studies demon-
strated that acute stress exposure increased c-Fos labe-
ling in neurons within the periaqueductal gray (PAG), 
and that microglia adjacent to c-Fos positive neurons 
displayed morphological changes [184]. Furthermore, 
this was distinct from morphological changes caused by 
LPS treatment, as LPS altered microglial morphology in 
the PAG regardless of c-Fos labeling on nearby neurons, 
indicating that microglia respond to different stimuli in 
these contexts. Experiments conducted in our own lab 
also hint that neuronal activity drives microglial function 
in stress. We found that treatment with diazepam limited 
FosB staining in the medial PFC, which corresponded to 
attenuated stress effects on microglia-mediated neuronal 
remodeling, dendritic spine density, CSF1 signaling, 
and behavior [155]. This is in line with research in other 
model systems suggesting that CSF1 is released by hyper-
excitable neurons, although this remains to be directly 
tested in the context of chronic stress [185, 186].

Because parainflammation is an adaptive process, it is 
important to consider these changes within the greater 
context of the stress model. Seminal work in stress neu-
robiology demonstrated that while acute stress drives 
glutamate signaling in the PFC and hippocampus of male 
animals, this reverses as stress exposure becomes chronic 
[179, 187–189]. It has previously been hypothesized that, 
while this change is not without consequences, it ulti-
mately reflects a metabolic shift to meet the homeostatic 
challenges of stress [170, 171, 190–194].

In essence, glucocorticoids released during initial stress 
exposure cause long-lasting potentiation of AMPA and 
NMDA receptor currents in pyramidal neurons, lead-
ing to increased surface expression of these receptors 
and improvements in working memory [187–189, 195]. 
However, excess or prolonged glucocorticoid and gluta-
mate stimulation can exacerbate excitotoxic insults by 
increasing intracellular Ca2+, and high glucocorticoid 

levels have profound effects on metabolism by deplet-
ing available energy and inhibiting cellular growth [170, 
192, 193]. Thus, over time it may become beneficial to 
limit the signals associated with acute stress in these 
regions. Keeping with this, chronic stress is associated 
with decreased AMPA and NMDA receptor expression, 
blunted EPSCs in excitatory pyramidal neurons, and 
impairments in working memory [179, 196]. Previous 
reports are also largely consistent in documenting mor-
phological changes such as dendritic retraction and loss 
of apical spines in pyramidal neurons after chronic stress 
exposure, which would make them less susceptible to the 
effects of excessive Ca2+ [197–201].

Given this context, the changes in microglial function 
arising from chronic stress are quintessentially parain-
flammatory processes. In this framework, acute stress 
exposure increases excitatory neurotransmission in a 
subset of brain regions [187, 188]. Microglia detect this 
shift in neuronal activity, and may modulate it through 
increased (but much lower than pathological levels) 
cytokine secretion [124, 135, 145, 202]. As stress expo-
sure continues, activity-dependent signals from neurons, 
such as CSF1, increase and direct neighboring microglia 
to modulate neuronal activity through structural remod-
eling of neurons or release of neuromodulators [169]. 
These parainflammatory mechanisms are also accompa-
nied by cell autonomous mechanisms in neurons, such as 
dendritic retraction and degradation of glutamate recep-
tors, which maintain this neuronal phenotype [179, 197, 
200, 203]. Collectively, these coordinated neuron–micro-
glia interactions mitigate the effects of uncontrolled glu-
tamate signaling and promote behavioral adaptations to 
adverse conditions. As an inadvertent result however, 
these changes may also promote longer-term behavioral 
and physiological consequences. Thus, while parainflam-
matory mechanisms are not associated with overt tissue 
pathology (as is the case in neuroinflammation), some 
aspects can be considered maladaptive.

Clinical implications
This is a semantic argument, but it is significant, as stress 
models are often used to inform our understanding of 
psychiatric conditions such as major depressive disorder 
(MDD). Indeed, preclinical work attributing stress effects 
to neuroinflammation and microglia activation are fre-
quently cited by clinical studies claiming a similar etiol-
ogy for MDD. These clinical reports indicate that some 
individuals with MDD have higher blood cytokine levels 
than controls, while others  report increased PET detec-
tion of translocator protein (TSPO)  during depressive 
episodes, which is interpreted as an indication of micro-
glia activation and neuroinflammation [204, 205]. While 
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this work provides evidence of altered immune signaling 
in MDD, much like the basic research discussed in this 
review, these measures do not necessarily indicate that 
neuroinflammation or immune dysregulation underlies 
the etiology of MDD.

Indeed, mild infections or experimentally induced 
inflammation with LPS increase blood concentrations 
of inflammatory cytokines to much higher levels, sug-
gesting that peripheral immune signaling in MDD dif-
fers from that observed during inflammation [206–208]. 
Similarly, although TSPO has been used as a proxy for 
microglia activation, the functional consequences of 
increased TSPO are not entirely understood [209]. In 
fact, PET imaging studies conducted in patients with MS 
show no difference in TSPO expression between acti-
vated macrophages in white matter lesions and those in 
normal appearing white matter or in healthy controls 
[210]. Other studies have indicated additional confounds 
to consider in TSPO studies, namely that TSPO trac-
ers are bound by vascular endothelia and TSPO levels 
show maximal intensity after the resolution of inflamma-
tion  [211, 212]. Further, preclinical studies indicate that 
TSPO expression is also increased in neurons, not micro-
glia, after periods of heightened neurotransmission [213]. 
These findings suggest that the utility of TSPO in assess-
ing microglia activation is limited by its lack of cellular 
and temporal specificity. The role of neuroinflammation 
in MDD  was further challenged by recent clinical stud-
ies  that  showed microglia from individuals with MDD 
have increased expression of transcripts  and proteins 
associated with homeostatic functions, rather than mark-
ers of inflammation [214].

Our focus on this literature is not intended to dismiss 
a potential relationship between MDD and inflammation 
outright. There is  strong evidence to suggest that genu-
ine inflammatory responses can disrupt mood in patients 
with chronic illness or comorbid inflammatory diseases 
[215–217]. In addition, recent findings demonstrate 
that there are differences in circulating immune factors 
and cells in subsets of MDD patients [218]. Consider-
ing the evidence however, it seems unlikely that MDD 
or the psychological effects of stress can be considered 
truly neuroinflammatory conditions on their own. And 
although neuro-immune interactions have clearly been 
implicated in MDD, they appear to reflect an intermedi-
ate immune state rather than classic inflammation. Our 
understanding of immune function in MDD is still devel-
oping and further research is needed to fully appreciate 
its complexity. As such, hypotheses that reduce multidi-
mensional diagnoses like MDD to pathological immune 
function are not likely to advance treatments for patients. 
This necessitates the use of conceptual frameworks that 
integrate parainflammatory neuro-immune interactions 

within a larger biopsychosocial context, as has been done 
in other areas of neuroscience and psychiatry [219–221].

Conclusion
As research on the involvement of neuro-immune sys-
tems in chronic stress expands, it is imperative that our 
models and conceptual frameworks be adapted to rel-
evant data. Initial studies used existing disease-based 
terms to define stress-associated changes in microglial 
function. However, preclinical research demonstrates 
that neuro-immune responses to stress are distinct from 
CNS disease, injury, or infection and should not be char-
acterized as neuroinflammation [25, 41]. The neuro-
biological changes that occur with chronic stress reflect 
adaptations required to meet the homeostatic demands 
of an unstable environment. We suggest that, before 
concluding a given neuro-immune interaction is evi-
dence of neuroinflammation, investigators first consider 
whether the hallmarks of inflammation are also present. 
These include: substantially increased cytokine concen-
trations, macrophage activation, parenchymal infiltra-
tion of peripheral immune cells, and pathological tissue 
damage [25]. We also urge stress researchers to consider 
how observed neuro-immune changes compare to other 
model systems within and beyond that context. It is also 
worth considering if these changes are entirely detrimen-
tal, or if they might reflect an adaptive, or even beneficial 
(i.e., eustress) response to unstable conditions [222, 223].

Distinction between pathological (inflammation) and 
adaptive (parainflammation) functions of neuro-immune 
interactions are necessary if we hope to one day lever-
age them for therapeutic purposes. To this end, tech-
nologies such as single-cell RNA-Seq and time-of-flight 
mass cytometry can lend important insights, as these 
approaches enables researchers to understand the hetero-
geneity of cellular populations and can identify molecular 
patterns to distinguish various functional states [73, 224, 
225]. This is particularly relevant to tissue-resident mac-
rophages, such as microglia, as they display a remarkable 
degree of functional plasticity [31]. Given these technical 
advances and appreciation for the spectrum of microglia 
function, we propose that it is time to shift the concep-
tual framework used to describe neuro-immune function 
in non-disease contexts, such as stress. Indeed, there is 
substantial evidence that neuro-immune interactions in 
chronic stress resemble parainflammation; an intermedi-
ate immune state where immune responses are directed 
toward reestablishing homeostasis [181]. In the end, this 
framework will enable researchers to more accurately 
describe the functional role of microglia in various con-
texts; and we are hopeful this leads to new therapeutic 
strategies involving microglia.
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