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Abstract 

Background:  Parkinson’s disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to 
impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating 
neurons are surrounded by activated microglia with increased secretion of interleukin-1β (IL-1β), driven largely by the 
NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopa‑
minergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar 
α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same 
holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP 
model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in 
other in vivo parkinsonism models.

Methods:  Biochemical techniques including quantification of IL-1β secretion and confocal microscopy were 
employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism 
in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were 
applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors 
through which these catecholamines were predicted to act were assessed with agonists in both species.

Results:  We show in primary human microglia that dopamine, l-DOPA, and high extracellular K+, but not norepi‑
nephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1β 
secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we 
provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) 
signaling. We also show that aged mice transgenic for human C-terminally truncated (1–120) α-syn (SYN120 tg mice) 
display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism.

Conclusions:  Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflamma‑
some in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous 
repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic 
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Background
Parkinson’s disease (PD) pathology manifests with sev-
eral characteristic features. These include progressive 
neuronal degeneration that is prominent in the nigros-
triatal dopaminergic system and results in the loss of 
basal ganglia dopamine (DA) inputs to elicit the onset 
of motor symptoms [1–4]. A second identifying aspect 
of PD pathology is the presence of intraneuronal and 
intraneuritic protein deposits known as Lewy bodies 
and Lewy neurites, respectively. These structures are 
enriched in α-synuclein (α-syn) fibrils [5–8]. Another 
characteristic contributor to PD pathology is neuroin-
flammation mediated by pro-inflammatory cytokines 
such as interleukin-1β (IL-1β) that are secreted mainly by 
activated microglia [9, 10]. Activation and proliferation of 
microglia in the SN, where the ratio of microglia to neu-
rons is high even under basal conditions, is an important 
factor in the pathogenesis of PD as well as in vivo models 
thereof [11]. One pathological mechanism with estab-
lished links to all of these fundamental facets of PD is the 
NLRP3 inflammasome [12].

The NLRP3 inflammasome is a key player in innate 
immunity and is the main driver of IL-1β secretion from 
microglia [13, 14]. It is a multimolecular scaffold whose 
main function is to sense, amplify, and broadcast proin-
flammatory signals from one cell to another by actuating 
cytokine secretion. The three traditionally accepted com-
ponent proteins of the canonical NLRP3 inflammasome 
are: (1) the intracellular pattern recognition receptor 
NACHT domain-, leucine-rich repeat (LRR)-, and pyrin 
domain-containing protein 3 (NLRP3), which oligomer-
izes upon efflux of potassium (K+) from the cell to recruit 
(2) the small adaptor molecule known as apoptosis-asso-
ciated speck-like protein containing a caspase activation 
and recruitment domain (CARD), or ASC, which further 
oligomerizes to recruit (3) the cysteine–aspartate pro-
tease-1 (caspase-1) [9, 14–17] Caspase-1’s recruitment 
to the inflammasome scaffold results in an increase of 
its local concentration, leading to its proximity-induced 
auto-activation, and caspase-1 in its active p33/p10 form 
then cleaves IL-1β for secretion [15, 18]. Since IL-1β is 
a potent pro-inflammatory cytokine, its production is 
regulated on multiple levels [19]. One means of regulat-
ing canonical NLRP3 inflammasome activation is the 
requirement for two separate signals to induce scaffold 
assembly and subsequent IL-1β processing by caspase-1 

[20]; another is the intrinsic ability of caspase-1 to limit 
the extent of inflammasome activation through self-
cleavage [15].

In contrast to canonical NLRP3 inflammasome acti-
vation, an alternative mode of inflammasome activation 
depending on caspases other than caspase-1 has been 
observed in human monocytes, non-human primate 
microglia, and mouse macrophages. Known as “non-
canonical” inflammasome activation, it is induced by a 
single stimulus such as long-term (at least 16  h) treat-
ment with LPS and involve caspases-4/-5 in humans and 
non-human primates, and in mice, the murine homo-
logue caspase-11 [18, 21–26]. In non-canonical inflam-
masome activation, LPS serves as both priming and 
activation signal by binding initially to the TLR4 recep-
tor at the cell surface and then, in the course of time, 
its uptake into the cell, where it activates the cytosolic 
caspases either directly or with the help of guanylate 
binding proteins. While LPS is a known activator of the 
non-canonical inflammasome, other activators such 
as oxidized lipids and NLRP1 have been proposed, and 
the still-unclear mechanisms regulating non-canonical 
inflammasome activation and resulting caspase-4 and -5 
activity are a subject of ongoing study [18].

Mounting evidence suggests the involvement of the 
NLRP3 inflammasome mechanism in various aspects 
of PD pathology. NLRP3 and ASC protein levels are 
increased in the nigral microglia of PD patients in com-
parison to control patients and in the striatal microglia 
of mouse models of parkinsonism in comparison to WT 
mice [12]. α-Syn aggregates have been found to activate 
the NLRP3 inflammasome in mouse models to lead to 
IL-1β production in a delayed, caspase-1-dependent 
fashion [12, 27]. Activated caspase-1 has been shown to 
cleave α-syn at Asp121 to generate a C-terminal trun-
cated form of the protein that is more prone to aggre-
gation than full-length α-syn and serves as a further 
activation stimulus to the inflammasome [28]. We dem-
onstrated previously the ability of α-synuclein to activate 
the NLRP3 inflammasome in primary human micro-
glia leading to IL-1β processing in a manner that was 
dependent on NLRP3 oligomerization but unaffected by 
caspase-1 inhibition, suggesting the potential for non-
canonical inflammasome activation involvement in this 
process in human microglia as opposed to mouse models 
[29].

neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to 
disease pathology.
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Further evidence for a critical role for the NLRP3 
inflammasome mechanism in PD is that pharmacological 
inhibition of its activation or knockdown of either NLRP3 
or caspase-1 gene expression protected mice in various 
in vivo parkinsonism models against both dopaminergic 
neurodegeneration and the spreading of α-syn pathology 
[12, 30–32]. While this is a very important connection, 
the specific mechanistic influence of inflammasome acti-
vation on these pathological processes remains unknown.

Taken together, these observations implicate the 
NLRP3 inflammasome mechanism as a common link 
between each of the major characteristics of PD pathol-
ogy: neuroinflammation, α-syn pathology, and dopa-
minergic neurodegeneration, warranting further 
investigation of the function of the inflammasome system 
in PD and its potential modulation. In this context, and 
given the concrete clinical significance of DA deficit in 
the manifestation of PD symptoms [33] and the success-
ful application of the amino acid DA precursor levodopa 
(l-DOPA) to increase striatal DA levels as a gold stand-
ard therapeutic intervention to alleviate motor symp-
toms in PD patients [34, 35], it is salient that DA has been 
shown on a mechanistic level to inhibit various modes of 
NLRP3 inflammasome activation. This has been demon-
strated in vitro in mouse macrophages and microglia as 
well as in vivo in the MPTP mouse model of parkinson-
ism, where DA exerts its inhibitory effect by regulating 
NLRP3 protein levels through DA receptor signaling [32].

It has been established that primary adult human 
microglia in culture express DA receptors DRD1, DRD2, 
DRD3, and DRD4, but not DRD5, and are highly chemo-
tactically responsive to DA treatment [36]. However, the 
modulatory effects of DA have not yet been explored for 
the mechanisms of inflammasome activation in human 
microglia, nor for α-syn-mediated inflammasome acti-
vation in microglia of any species. To this end, we pro-
vide evidence from primary human and mouse microglia 
exposed to canonical and non-canonical stimuli and/or 
α-syn fibrils as well as from aged human C-terminally 
truncated (1–120) α-syn transgenic (SYN120 tg) mice, 
which exhibit α-syn aggregation and DA deficiency [37, 
38], to suggest that DA receptor binding can indeed block 
PD-relevant NLRP3 inflammasome activation.

In the present study, the capacity of DA and its pre-
cursor l-DOPA to block canonical, non-canonical, and 
α-syn-mediated modes of NLRP3 inflammasome acti-
vation in primary human microglia was examined and 
characterized, as this inhibition could have implications 
for the etiology of PD. Downstream metabolites of DA 
were tested as well, specifically the neurotransmitter 
and paracrine hormone norepinephrine and its deriva-
tive epinephrine, given that norepinephrine in particular 
has a neuroprotective effect via β-adrenoceptor signaling 

[39, 40]. We identified receptors involved in DA-medi-
ated inhibition using agonists for DRD1 and DRD2: 
SKF 82958, SKF 38393, and LY 171555 (also known as 
quinpirole).

Elevated extracellular K+ is a well-known inhibitor of 
canonical NLRP3 inflammasome activation in mouse 
macrophages and human monocytes, as charge and 
concentration gradient-regulated K+ efflux from the 
cell is usually, but not always, a signal converging from 
structurally diverse stimuli to trigger NLRP3 oligomeri-
zation leading to inflammasome scaffold assembly and 
IL-1β processing [16, 41–46]. Voltage-gated Kv1 potas-
sium channels have been shown to be responsible for 
DA release in the brain in vivo [47], tying K+ flux to DA 
release, so the ability of elevated extracellular K+ to block 
different modes of NLRP3 inflammasome activation in 
human microglia was considered relevant to PD and was, 
therefore, also explored.

Methods
Isolation and culture of primary microglia from human 
brain tissue
Adult primary human microglia were isolated from post-
mortem brain specimens by density gradient centrifuga-
tion essentially as previously described by [48]. Corpus 
callosum or subventricular cortical white matter tissue 
specimens were acquired from rapid autopsy accord-
ing to the standard protocols of the Netherlands Brain 
Bank [49], with informed donor consent having been 
obtained from either patients or next of kin during life. 
Permission for the use of human brain tissue for in vitro 
research in compliance with the Declaration of Helsinki 
and approval was granted by the Medical Ethics Com-
mittee at VUmc. All tissue was collected in Dulbecco’s 
modified Eagle medium (DMEM, Gibco) supplemented 
with 0.1% gentamycin (Gibco). The isolated microglia 
were cultured in medium comprising 1:1 DMEM and 
Ham F10 (Gibco) supplemented with 10% v/v heat inac-
tivated fetal bovine serum (Hyclone, Thermo Fisher Sci-
entific), a mixture of 100 IU/mL penicillin and 50 µg/mL 
streptomycin (Gibco), and 0.5% l-glutamine (Gibco). For 
experimentation, microglia were seeded in 24- or 48-well 
uncoated culture plates (Corning Costar) and incubated 
at 37° with 5% CO2. 24  h after isolation, the microglia 
were treated with 25  ng/mL granulocyte macrophage 
colony stimulating factor (recombinant human GM-CSF, 
Immunotools) to allow for better adherence and prolif-
eration, after which the medium was replaced with fresh 
culture medium approximately every 72  h. Microglia 
were utilized in experiments between days 6 and 10 post-
isolation, and the results of each experiment as indicated 
in figures represent an individual microglial culture from 
an individual patient.
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Cell culture and reagents
The human monocyte-like leukemia cell line THP-1 was 
obtained from ATCC (Rockville, MD, CLS Cat# 300356/
p804_THP-1, RRID:CVCL_0006). The cells were cul-
tured in Roswell Park Memorial Institute (RPMI) 1640 
medium with GlutaMAX (Gibco) supplemented with 
10% heat inactivated FBS (Hyclone, Thermo Fisher Sci-
entific, Breda, the Netherlands) and a mixture of 100 IU/
mL penicillin and 50  µg/mL streptomycin (Gibco). The 
THP-1 cells were differentiated by the addition to cul-
ture medium upon seeding in 24- or 48-well uncoated 
culture plates (Corning Costar, Amsterdam, the Neth-
erlands) of 100  ng/mL phorbol 12-myristate 13-acetate 
(PMA, Sigma-Aldrich, cat.# P-8139, Mechelen, Belgium) 
for 72  h prior to exposure. Lipopolysaccharide (LPS) 
from E. coli O55:B5 was from Sigma-Aldrich (catalog no. 
L-2880). Nigericin was from Adipogen (cat.# AG-CN2-
0020-M005). Recombinant human α-syn was overex-
pressed and purified in monomeric form from E. coli and 
then aggregated into fibrils (250  mM nominal concen-
tration of monomers to form 3615 µg/mL aqueous fibril 
stock solution) as previously reported [50]. No endotoxin 
contamination was detectable in the α-Syn monomer and 
fibril preparations, as determined with a limulus amoe-
bocyte lysate (LAL) assay. Fibrils were not sonicated 
prior to application in culture. Note: nominal concentra-
tions of α-syn fibrils as reported refer to the concentra-
tions of the monomer solutions from which they were 
fibrillized. l-DOPA (cat.# 3788) and SKF82958 hydrobro-
mide (cat.# 5719) were from Tocris Biosciences. Dopa-
mine (cat.# H8502-5G), l-norepinephrine hydrochloride 
(cat.# 74480), (-)-epinephrine (cat.# E4250), isoprenaline 
hydrochloride (cat.# I5627), and (-)-quinpirole hydro-
chloride (LY171555, cat.#Q102) were all from Sigma 
Aldrich. KCl salt (for analysis, Emsure, cat.# 104936) was 
from Merck Millipore.

Exposure conditions
PMA-differentiated (and thus primed) THP-1 cells in 
24- (450,000 cells/well) culture plates were washed once 
with PBS to remove serum proteins left over from cul-
ture medium. Cells were exposed to LPS (50 ng/mL) as 
a time-matched, non-canonical NLRP3 inflammasome 
activation control stimulus or to various concentrations 
of α-syn fibrils at 5 µM (nominal concentration) in 250 µL 
serum-free exposure medium for 18–24  h. For canoni-
cal activation, PMA-differentiated THP-1 cells were 
exposed to 10 µM nigericin in 250 µL serum-free expo-
sure medium for 30  min (additional LPS priming was 
not required for this cell type). GM-CSF-treated primary 
human microglia in 24- or 48-well plates after 6–10 days 
in culture were also washed once with PBS and were 
exposed to 20 ng/mL LPS or 5 µM α-syn fibrils in 250 µL 

serum-free exposure medium for 18–24  h. For canoni-
cal activation, primary human microglia were exposed 
to 20  ng/mL LPS for 3.5  h in 250  µL serum-free expo-
sure medium followed by the addition of 5 µL nigericin 
solution to a final concentration of 10 µM for 30 min. In 
inhibition experiments, 125–1 mM DA, 1 mM l-DOPA, 
10–50 µM isoprenaline, norepinephrine, or epinephrine, 
or 100 µM SKF82958 or quinpirole were administered at 
the time of addition of the initial stimulus (i.e., for canon-
ical activation experiments, upon LPS priming) and left 
in the system for the duration of the exposure. Both 
DA and l-DOPA were prepared, stored, and handled as 
much in the dark as possible to avoid light-induced oxi-
dation. After cell exposure, supernatants were collected 
immediately and centrifuged at 0.8×g for 5 min at room 
temperature to remove any cell debris. Cell lysates were 
collected by scraping with a pipet tip in lysis buffer [0.5% 
NP-40 in PBS with protease inhibitor cocktail (cOmplete 
mini, EDTA-free, Roche, Woerden, the Netherlands)] 
on ice, and cell debris was removed via centrifugation at 
21,000×g for 10  min at 4  °C. Cleared supernatants and 
cell lysates were stored at − 20 °C until testing.

ELISA analysis
The concentration of IL-1β in culture supernatants was 
determined with a sandwich enzyme-linked immuno-
sorbent assay (ELISA) specific for the detection of human 
IL-1β (PeliKine compact kit, Sanquin, Amsterdam, the 
Netherlands).

Viability assays
The lactate dehydrogenase leakage assay (LDH, Pierce, 
Breda, the Netherlands), to assess membrane integrity, 
and the methyl tetrazolium assay (MTT, Sigma M-2128, 
Mechelen, Belgium), to assess mitochondrial function, 
were performed according to manufacturer’s protocols. 
For the MTT assay, the supernatants were first removed 
from the cell culture and 0.25 mg/mL MTT in complete 
cell culture medium was added. After 2  h at 37  °C, the 
MTT solution was removed and 100  µL DMSO was 
added to each well. The plate was shaken for 1 min and 
absorbance was measured at a wavelength of 540 nm.

Animals
C57BL/6J wt mice (C57BL/6J) (Charles River, Wilming-
ton, MA), and SYN120 tg male mice that express C-ter-
minally truncated form of α-syn of 120  aa (SYN120) 
under the control of rat tyrosine hydroxylase promoter 
on a mouse C57BL/6JOlaHsd α-syn null background 
[37] were used in this study at 12  months of age. Con-
cerning the pharmacological treatments, the DRD1 ago-
nist SKF38393 (Sigma, St Louis, MO, USA) was diluted 
in a sterile solution of NaCl (0.9  mg/mL) and injected 
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intraperitoneally (i.p.) in 11-month-old SYN120 tg mice 
at a dose of 10 mg/kg every day for 1 month [51]. Mice 
treated with vehicle were injected with NaCl (0.9  mg/
mL). Animals were maintained under a 12  h light–
dark cycle at a room temperature (rt) of 22  °C and had 
ad  libitum food and water. All experiments were made 
in accordance to Directive 2010/63/EU of the European 
Parliament and of the Council of 22 September 2010 on 
the protection of animals used. All experimental proce-
dures conformed to the National Research Guide for the 
Care and Use of Laboratory Animals and were approved 
by the Animal Research Committees of the University 
of Brescia (Protocol Permit 04/10 and 719/2015-PR). All 
efforts were made to minimize animal suffering and to 
reduce the number of animals used.

Double immunofluorescence staining
Twelve-month-old C57BL/6J and Tg120 mice were anes-
thetized with chloral hydrate 400  mg/kg i.p. (Sigma-
Aldrich, St. Louis, MO, USA) and transcardially perfused 
with ice-cold Immunofix (4% PFA, Bio-optica, Milan). 
Brains were post-fixed for 4  h in Immunofix and con-
served in 18% sucrose (Sigma-Aldrich, St. Louis, MO, 
USA) in PBS 0.1 M. The brains were then cut into 25 μm 
coronal sections with a cryostat and conserved in 60% 
glycerol. After permeabilization in PBS 0.1  M supple-
mented with 20% methanol and 0.3% Triton X-100, 
free floating striatum slices were incubated for 1 h at rt 
in blocking solution (3% Normal Goat Serum (NGS, 
Thermo Fisher, Waltham, MA, USA), 2% Bovine Serum 
Albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA), 
0.3% Triton-X100 in PBS 0.1  M) and then with the pri-
mary antibody (NLRP3 1:200, Adipogen, San Diego, CA, 
USA) in blocking solution overnight at 4 °C. The follow-
ing day, slices were washed with 0.3% Triton-X100 PBS 
0.1 M and incubated with the biotin-conjugated second-
ary antibody (VectorLabs, Burlingame, CA, USA) in 0.3% 
Triton-X100 PBS 0.1 M plus 1 mg/mL BSA for 1 h at rt 
and then with AlexaFluor594™-conjugated streptavidin 
(Thermo Fisher, Waltham, MA, USA) in water for 1 h at 
rt. After three washes in 0.3% Triton X-100 PBS, slices 
were incubated for 2  h at rt with the second primary 
antibody (ASC 1:500 Adipogen, San Diego, CA, USA or 
Ionized calcium binding adaptor molecule 1 (Iba1) 1:500, 
Wako, Osaka, Japan) prepared in blocking solution, fol-
lowed by incubation for 1 h at rt with the optimal fluo-
rochrome-conjugated secondary antibody (VectorLabs, 
Burlingame, CA, USA). Finally, cell nuclei were coun-
terstained with Hoechst (Sigma-Aldrich, St. Louis, MO, 
USA), and the slices were first incubated with TrueBlack 
(VectorLabs, Burlingame, CA, USA) to minimize auto-
fluorescence and mounted onto Superfrost slides using 

Vectashield mounting medium for fluorescence (Vector-
Labs, Burlingame, CA, USA).

Confocal microscopy
Slides were observed by a LSM 880 Zeiss confocal laser 
microscope (Carl Zeiss S.p.A., Milan, Italy) with the fol-
lowing laser sets: λ = 405–488–543. The height of sec-
tions scanning was 1  μm. Eight images per striatum 
(512 × 512 pixels) were then reconstructed using ZEISS 
ZEN Imaging Software (Carl Zeiss S.p.A., Milan, Italy) 
and analyzed with ImageJ (NIH, Bethesda, MA, USA).

Statistical analysis
Two-way ANOVA with Bonferroni’s multiple testing 
correction or nonlinear regression was used to ana-
lyze ELISA data from THP-1 and human and mouse 
microglia experiments. One-way ANOVA with Bonfer-
roni’s multiple testing correction was used to analyze 
immunofluorescence quantification differences between 
SKF38393-treated SYN120 tg, vehicle treated SYN120 
tg, SYN120 tg and WT mice. All statistical analyses were 
performed using GraphPad Prism v.7 or 8 (GraphPad 
Software, San Diego, CA, USA).

Results
Dopamine inhibits canonical, non‑canonical, 
and α‑syn‑mediated NLRP3 inflammasome activation 
in primary human microglia
We have shown previously that primary human microglia 
are competent for short-term, canonical NLRP3 inflam-
masome activation by the established positive control 
stimuli LPS and nigericin [29]. To determine whether or 
not canonical inflammasome activation in human cells 
could be blocked by DA, both primary human microglia 
and the macrophage-like PMA-differentiated THP-1 cell 
model were activated with positive control stimuli in the 
presence of a DA gradient (Fig.  1). For THP-1 experi-
ments, no separate LPS priming step was required, so DA 
was administered at the time of application of nigericin 
(30  min, Fig.  1a). For experiments with primary human 
microglia, DA was administered concomitantly with LPS 
(3.5 h) and these were left in the system upon the addi-
tion of nigericin (30 min, Fig. 1b). In both cell types and 
with both exposure times, DA exhibited a strong ability 
to inhibit canonical NLRP3 inflammasome activation as 
evidenced by progressive attenuation of IL-1β output. 
The only cytokine we examined, based on limited sam-
ple quantities, was IL-1β; thus, NF-κB-dependent mecha-
nisms remain to be ruled out by assessing IL-6 or TNF-α 
secretion.

In primary human microglia, the apparent IC50 for DA-
mediated inhibition of IL-1β secretion was calculated 
to be 57.25 ± 17.21 µM (Fig. 1b). We wanted to select a 



Page 6 of 16Pike et al. Journal of Neuroinflammation           (2022) 19:50 

higher concentration than this for subsequent experi-
ments to have an effect significantly higher than the 
intrinsic variability level due to the limited availability of 
the human samples. In the THP-1 experiments, the con-
centration of 1  mM DA, while significantly higher than 
physiological DA concentrations, was able to suppress 
IL-1β secretion from activated cells to a level not signifi-
cantly different from baseline noise (Fig. 1a), so we chose 
to proceed with this concentration. No cytotoxicity was 
evident at this concentration of DA, even after overnight 
exposure (Fig. 1c, d).

We next investigated whether or not DA also affects 
non-canonical inflammasome activation and observed 
that similar inhibition of IL-1β secretion in the presence 
of DA was evident for longer term NLRP3 inflammas-
ome activation induced by overnight treatment with LPS 
(Fig. 1e). Particularly relevant to PD, DA was also able to 
inhibit α-syn-mediated NLRP3 inflammasome activation 
(Fig. 1f ).

Dopamine‑mediated inhibition of canonical NLRP3 
inflammasome activation is not attributable to dopamine 
metabolites
DA, generated in the brain from tyrosine-derived or 
clinically administered l-DOPA, has a short extracel-
lular half-life and is quickly metabolized further to nor-
epinephrine and epinephrine (Fig. 2a). Norepinephrine in 
particular shows a similar distribution pattern in human 
brain to DA (Fig. 2b). To ascertain whether the inhibitory 
effect of DA on IL-1β secretion observed in Fig. 1 could 
be ascribed to norepinephrine or epinephrine rather than 
to DA itself, canonical NLRP3 inflammasome activa-
tion was performed on THP-1 cells and primary human 
microglia in the presence of DA, norepinephrine, epi-
nephrine, or the β-adrenoceptor agonist isoprenaline 
(Fig.  2c–e). Neither the catecholamine byproducts nor 
the agonist showed any inhibitory effect on IL-1β secre-
tion triggered by canonical NLRP3 inflammasome activa-
tion at any of the concentrations tested. While it cannot 
be completely ruled out that this was because the experi-
mental concentrations of the three β-adrenoceptor bind-
ing compounds were limited relative to that of DA due 
to solubility issues, these observations suggest that the 
protective effect exhibited by DA is not the result of a 

downstream metabolite acting on β-adrenoceptors, but 
rather to the action of DA itself.

l‑DOPA inhibits canonical, non‑canonical, 
and α‑syn‑induced NLRP3 inflammasome activation 
in primary microglia upon conversion to dopamine
If DA is responsible for inflammasome inhibition, then its 
immediate upstream metabolic precursor, l-DOPA, also 
would be expected to show an inhibitory effect on IL-1β 
production. Indeed, l-DOPA demonstrated an ability 
similar to that of DA to block canonical NLRP3 inflam-
masome activation and IL-1β output in primary human 
microglia (Fig.  3a). l-DOPA was also able to inhibit 
non-canonical, LPS-mediated inflammasome activa-
tion (Fig.  3b) and α-syn-induced inflammasome activa-
tion (Fig. 3c) in primary human microglia. To determine 
whether this inhibition was due to the l-DOPA itself act-
ing on the microglia or rather to l-DOPA-derived DA, 
the amino acid decarboxylase (AADC) inhibitor car-
bidopa was employed to block the decarboxylation of 
l-DOPA to DA. Upon inflammasome activation in the 
presence of both l-DOPA and carbidopa (in a 4:1 ratio), 
the protective effect of l-DOPA was reversed, indicat-
ing that downstream DA is responsible for preventing 
inflammasome activation (Fig. 3d).

Dopamine binding to dopamine receptors signals 
for the inhibition of the NLRP3 inflammasome activation 
in primary human microglia
To rule out the possibility that the observed inhibitory 
effect of DA on inflammasome-mediated IL-1β output 
was due to binding or solvating of the activating stimuli 
by DA or l-DOPA rather than to DA signaling, and to 
resolve more clearly the mechanism by which DA acts on 
primary human microglia to block IL-1β production, the 
DA receptor agonists SKF82958, SKF38393, and quin-
pirole were utilized. For canonical activation, SKF82958 
distinctly mirrored the IL-1β blocking effects of DA and 
l-DOPA. SKF38393 had a similar, although less signifi-
cant, effect, whereas quinpirole had no effect (Fig.  3e). 
This pattern suggests that DRD1, and not DRD2, is the 
receptor through which DA acts to inhibit short-term, 
canonical NLRP3 inflammasome activation. However, for 
longer term, α-syn-mediated inflammasome activation, 

Fig. 1  Dopamine inhibits IL-1β production by THP-1 cells and primary human microglia. a IL-1β output by PMA-differentiated THP-1 cells upon 
canonical inflammasome activation with nigericin (10 µM) in the presence or absence of a DA gradient (125 µM–1 mM; 3 experiments, n = 4). b 
Dose-inhibition curve indicating effect of DA on IL-1β output by primary human microglia upon canonical activation with LPS (20 ng/mL, 3.5 h) 
followed by nigericin (10 µM, 30 min.) in the presence or absence of a DA gradient (250 µM–2 mM, representative experiment). c The plasma 
membrane integrity of human microglia is not perturbed by DA at 1 mM overnight. Representative experiment. d Primary human microglia 
metabolic function is not affected by 1 mM DA overnight. Representative experiment. e DA inhibits non-canonical, LPS-mediated IL-1β production 
in primary human microglia (2 experiments, n = 3). f DA inhibits α-syn-mediated IL-1β production by primary human microglia (3 experiments, 
n = 3). ***p < 0.001, ns = not significant by two-way ANOVA with Bonferroni multiple testing correction. Shapes represent individual experiments

(See figure on next page.)
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coincubation with either SKF82958 or quinpirole 
resulted in a partial inhibitory effect on IL-1β produc-
tion (Fig. 3f ), which supports a shared role for DRD1 and 

DRD2 signaling in the DA-mediated inhibition of α-syn-
induced NLRP3 inflammasome activation in primary 
human microglia.

Fig. 1  (See legend on previous page.)
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High extracellular K+ blocks canonical, non‑canonical, 
and α‑syn‑mediated NLRP3 inflammasome activation 
in primary human microglia
An extracellular K+ concentration of 130 mM, approx-
imating intracellular levels, worked well to block IL-1β 
production in canonical inflammasome activation 
experiments with an exposure time of only 4 h in total 
in THP-1 cells (Fig. 4a) and primary human microglia 
(Fig.  4b). Unlike DA, however, these higher K+ con-
centrations resulted in some cytotoxicity for the non-
canonical LPS and α-syn activation experiments with 
THP-1 cells upon longer term (overnight) exposures 
(Fig.  4c–e). A maximum K+ concentration of 65  mM 

was determined to be non-toxic, so 60  mM was used 
for the longer term experiments with LPS and α-syn. 
In primary human microglia and THP-1 cells, 60 mM 
KCl added to the culture medium was largely able to 
block non-canonical and α-syn-mediated inflamma-
some activation (Fig. 4f, g).

α‑Syn‑mediated NLRP3 inflammasome activation 
is also blocked by both DA and elevated extracellular K+ 
in primary mouse microglia
While it has been demonstrated previously that canoni-
cal NLRP3 inflammasome activation can be blocked 
in mouse microglia by DA [32] and in macrophages by 

Fig. 2  Lack of effect of catecholamine β-adrenoceptor ligands on inflammasome-induced IL-1β secretion from THP-1 cells and primary human 
microglia. a l-DOPA is catabolized sequentially to DA, norepinephrine, and epinephrine. Image “Biosynthesis of catecholamines” is licensed under CC 
BY 2.0. b Distribution patterns of DA, norepinephrine, and epinephrine in human brain. Image created in BioRender. c–e Canonical IL-1β production 
by THP-1 cells is inhibited with 1 mM DA but not by isoprenaline, epinephrine, or norepinephrine at 10 µM (c), 25 µM (d), or 50 µM (e). f Canonical 
IL-1β production by primary human microglia is also inhibited with 1 mM DA but not by isoprenaline, epinephrine, or norepinephrine at 10 µM. 
Representative experiments

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/


Page 9 of 16Pike et al. Journal of Neuroinflammation           (2022) 19:50 	

elevated extracellular K+ [44], the effects of these inhibi-
tors have been reported for neither primary human 
microglia nor non-canonical inflammasome activation, 
including that mediated by α-syn, in any species to our 
knowledge. As expected, both 60  mM KCl and 1  mM 
DA were able to prevent IL-1β production from pri-
mary mouse microglia (Fig. 4h), consistent with primary 
human microglia.

SYN120 tg mice show increased microglial NLRP3 
inflammasome component protein immunopositivity 
that is inhibited by DRD1 agonism
At 12  months of age, SYN120 tg mice display marked 
accumulation of insoluble α-syn aggregates in the nigros-
triatal system and significant failure of basal and depolar-
ization-dependent putaminal dopamine release as well 
as microglia activation [37, 38]. Given the relationship 
between α-syn, NLRP3 inflammasome activation, and 
DA-mediated inhibition that we observed in primary 
human microglia, we assessed whether the SYN120 tg 
mice, which were previously described to exhibit micro-
glial activation in the substantia nigra at 12  months of 
age [37], could show signs of increased inflammasome 
activation in this time frame in comparison to wild-type 
(WT) mice.

To this purpose, double immunohistochemistry 
experiments were performed to label NLRP3 in cells 

positive for the microglia/macrophage marker Iba-1 
and to estimate ASC/NLRP3 co-localization in striatal 
slices from 12-month-old WT and Tg120 mice. In addi-
tion, 11-month-old SYN120 tg mice were treated with 
the blood–brain barrier-permeable DRD1 partial agonist 
SKF38393 to evaluate in vivo the DA-dependent modu-
lation of inflammasome activation. The choice to use 
SKF38393 rather than SKF82958 for in  vivo treatments 
was governed by evidence showing that this latter also 
showed D2 agonist activity when administered in rats 
[52]. We found that SYN120 tg mice exhibited activated 
microglia which presented with NLRP3 immunoreactiv-
ity (Fig.  5a) as confirmed by the orthogonal projection 
of the z-stack acquisition (Fig.  5b). Moreover, we found 
that NLRP3-positive signal observed in SYN120 tg mice 
co-localized with ASC immunoreactivity, as seen in the 
orthogonal projections in Fig.  5d. Taken together, this 
evidence is indicative of inflammasome activation within 
microglial cells in the brains of SYN120 tg mice, but not 
WT mice, at 12  months of age. Consistently, from the 
quantitative analysis of Iba-1 (Fig.  5e), NLRP3 (Fig.  5f ), 
and ASC immunopositivity (Fig. 5g), we found that these 
proteins were significantly increased in the striatum of 
SYN120 tg mice when compared to WT littermates. 
Interestingly, 1 month of treatment with the DRD1 ago-
nist SKF38393 was able to hamper the activation of the 
microglia in SYN120 tg mice, as shown in Fig. 5a–d. The 

Fig. 3  Co-administered l-DOPA is able to block IL-1β production by primary human microglia in response to canonical (a), non-canonical (b), and 
α-syn-mediated (c) NLRP3 inflammasome activation. 2 experiments, n = 3. d The protective effect of l-DOPA is reversed by the AADC inhibitor 
carbidopa, indicating that l-DOPA-mediated inhibition of IL-1β production is a result of the conversion of l-DOPA to DA. e DRD1 agonism with 
SKF82958 completely blocks IL-1β production by canonical NLRP3 inflammasome activation, similar to DA and l-DOPA, while DRD2 agonism with 
quinpirole has no effect. 2 experiments, n = 3. f DRD1 and DRD2 agonism both partially block IL-1β production induced by α-syn, suggesting a 
shared role for these receptors in α-syn-mediated NLRP3 inflammasome activation. Representative experiment. ****p < 0.0001 by two-way ANOVA 
with Bonferroni multiple testing correction. Shapes represent individual experiments
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stimulation of DRD1 induced a significant decrease of 
NLRP3, ASC, and Iba-1 immunopositive signal (Fig. 5e–
g). However, whether IL-1β levels are also increased in 
SYN120 tg mice remains to be explored.

Discussion
The findings of this study provide evidence for the 
modulatory function of DA on NLRP3 inflammasome 
activation, which is known to link major aspects of 
PD pathology (neuroinflammation involving activated 

Fig. 4  Elevated extracellular K+ inhibits NLRP3 inflammasome activation in THP-1 cells and primary human and mouse microglia. a Canonical 
inflammasome activation is blocked in THP-1 cells with a range of extracellular K+ concentrations (130–50 mM). Representative experiment. b 
130 mM extracellular K+ blocks canonical inflammasome activation in primary human microglia. Representative experiment. c 130 mM extracellular 
K+ is non-toxic to THP-1 cells upon short-term (4 h) exposure. Representative experiment. d, e Overnight exposure of THP-1 cells to 130 mM 
extracellular K+ does not affect plasma membrane integrity (d) but does affect metabolic function (e), suggesting cytotoxicity at this timepoint, 
whereas 65 mM K+ has little effect by either measure. Representative experiments. f Both LPS- and α-syn-mediated IL-1β production by THP-1 cells 
are inhibited by 30 or 60 mM extracellular K+. 2 experiments, n = 3. g Both LPS-and α-syn-mediated IL-1β production by primary human microglia 
are also blocked by 60 mM extracellular K+. 2 experiments, n = 3. h Both 1 mM DA and 60 mM extracellular K+ inhibited IL-1β production induced 
by overnight treatment of primary mouse microglia with 10 µM α-syn. ***p < 0.001 by two-way ANOVA with Bonferroni multiple testing correction



Page 11 of 16Pike et al. Journal of Neuroinflammation           (2022) 19:50 	

microglia, α-syn pathology, and dopaminergic neurode-
generation), in primary human microglia as well as the 
THP-1 model. Moreover, we show that in the SYN120 
tg mouse model of PD at a pathological stage exhibit-
ing striatal dopaminergic failure, the re-establishment 
of D1 receptor activation through 1-month i.p. daily 
treatment with SKF38393 is able to reduce NLRP3 
inflammasome activation. The data suggest (i) that DA 
blocks canonical, non-canonical, and α-syn-induced 
microglial NLRP3 inflammasome activation in primary 
human microglia; (ii) that through its decarboxylation 
to DA, l-DOPA is able to recapitulate this inhibition, 
whereas norepinephrine and epinephrine downstream 
of DA are not; (iii) that DA exerts its inhibitory effect 
through DRD1 signaling for canonical inflammasome 
activation and a mixture of DRD1 and DRD2 signaling 
for non-canonical and α-syn-mediated activation; and 
(iv) that elevated extracellular K+ is also able to block 
all three modes of inflammasome activation.

DA has been shown to block canonical NLRP3 
inflammasome activation and IL-1β secretion induced 
by various stimuli in mouse microglia and in the 
MPTP parkinsonism model in vivo [32], though α-syn-
mediated inflammasome activation was not tested. 
The present study illustrates the ability of DA to block 
not only canonical but also non-canonical and α-syn-
mediated NLRP3 inflammasome activation in primary 
human microglia, thus serving as an endogenous, 
PD-relevant regulator of microglial inflammasome 
activation. l-DOPA, upstream of DA in the catechola-
mine synthesis pathway, displayed a similar ability to 
inhibit IL-1β secretion from primary human micro-
glia that was reversible upon blocking the conversion 
of l-DOPA to DA. On the other hand, norepinephrine 
and epinephrine, downstream of DA, were unable to 
do so. The present study did not address other down-
stream metabolites of DA, such as 3,4-dihydroxyphe-
nylacetic acid (DOPAC) and homovanillic acid (HVA), 
so the effects of these cannot yet be ruled out. These 
observations suggest that DA itself is the modulator of 
NLRP3 inflammasome activation in these experiments 
rather than its downstream metabolites.

In these experiments, we utilized concentrations of 
dopamine which were higher than physiological levels. 
Our initial decision to proceed with the chosen dopa-
mine concentrations were based in part on the argument 
presented by [32], who also used higher-than-physiolog-
ical concentrations of dopamine in their inflammasome 
inhibition experiments. The authors justified this by per-
forming two different treatment protocols on primary 
mouse bone marrow-derived macrophages, both experi-
ments with the same total dopamine concentration: one 
with a single high dose of dopamine (45 µM or 90 µM) as 
compared to one with repeated low doses of dopamine 
(1.5 µM or 3 µM, 30 times over 5 min). The single high-
dose dopamine treatment could not inhibit canonical 
(nigericin-induced) NLRP3 inflammasome activation at 
45 µM or 90 µM dopamine, but higher concentrations of 
250 µM dopamine could and were thus utilized for their 
subsequent single-dose experiments. On the other hand, 
the repeated low-dose protocol successfully inhibited 
inflammasome activation, as did a single low-dose treat-
ment in the presence of monoamine oxidase (MAO) and 
catecholamine O-methyltransferase (COMT) inhibitors, 
and this led the authors to suggest that the dopamine 
was indeed inhibitory, and that the requirement for the 
high single dose was the result of the short lifetime of the 
dopamine leading to its rapid oxidation after its appli-
cation to the cells. Previous research [53] presented an 
in vitro analysis of the lifetime of dopamine and various 
oxidation products thereof. In a controlled environment, 
the time scale for dopamine oxidation was anywhere 
between 30 and 120 min, and we reason that in the pres-
ence of cells the reaction would be faster still.

Release of DA for diffusion-based volume transmission 
signaling from dopaminergic neurons in the midbrain 
occurs somatodendritically in the substantia nigra (SN) 
and the ventral tegmental area (VTA) as well as axonally 
in the striatum [54–62]. Somatodendritically, DA release 
takes place in a highly localized action potential- and K+ 
channel-dependent manner [58, 59]. DA acts on the DA 
receptors of surrounding cells to exert its effects, so the 
present study explored with the help of agonists the par-
ticipation of DA receptors in the NLRP3 inflammasome 

Fig. 5  Strong microglia activation and increased microglial inflammasome activation evident in SYN120 tg mice as compared to WT mice is 
counteracted by DRD1 agonism. a Representative confocal images showing Iba-1 (green) and NLRP3 (red) immunopositivity in striatum of 
12-month-old WT mice, SYN120 tg mice, SYN120 tg mice treated for 1 month with saline vehicle (SYN120 tg vehicle), and SYN120 tg mice treated 
for 1 month with 10 mg/kg/day SKF38393 (SYN120 tg SKF38393). Scale bar 50 µm. b Z-stack reconstruction of ~ 10 µm showing that NLRP3 signal is 
present in Iba-1-positive cells (colocalization in yellow). c Z-stack reconstruction of ~ 10 µm showing decreased NLRP3 signal in Iba-1-positive cells 
in striatum of 12-month-old SYN120 mice after 1 month of SKF38393 treatment. d Representative images showing NLRP3 (red) and ASC (green) 
immunopositivity in striatum of 12-month-old WT mice, SYN120 tg mice, SYN120 tg vehicle mice, and SYN120 tg SKF38393 mice. The overlap in 
NLRP3 and ASC immunopositivity (yellow) is suggestive of inflammasome activation. Scale bar 50 µm. e–g Graphs represent the quantification of 
the indicated protein [Iba-1 (e), NLRP3 (f), or ASC (g)] in striatum slices of 12-month-old WT, SYN120 tg, SYN120 tg vehicle, and SYN120 tg SKF38393 
mice based on immunopositive area in field to confirm observations from confocal images in a–d. *p < 0.05 by one-way ANOVA, n = 3 animals for 
each group

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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inhibition process in primary human microglia. The 
previously demonstrated ameliorative effect in mouse 
microglia of DA on canonical inflammasome activation 
was attributed to DA binding to DRD1 and signaling 
downstream for the ubiquitination of the NLRP3 pro-
tein via the E3 ligase MARCH7, leading to the degrada-
tion of NLRP3 by autophagy and thus control of NLRP3 
protein levels [32]. Our observations that DA can inhibit 
various modes of inflammasome activation including 
canonical, non-canonical, and α-syn-mediated, is con-
sistent with this, as NLRP3 is involved with all three 
modes of activation. DA is a potent chemotactic sig-
nal for activated primary adult human microglia, which 
have been shown to express DA receptors DRD1, DRD2, 
DRD3, and DRD4 with the relative gene expression lev-
els DRD2 > DRD4 > DRD1 ≈ DRD3 [36]. For these rea-
sons, DRD1 and DRD2 were considered the most likely 
candidates for agonist experiments, so we performed 
experiments with SKF 82958, a full DRD1 agonist [63], 
SKF38393, a partial DRD1 agonist [51, 52], and quin-
pirole, a selective DRD2 agonist [64]. Under canonical 
NLRP3 inflammasome activation conditions in primary 
human microglia, DRD1 appeared to be the sole target 
receptor for DA, whereas for α-syn-mediated activation, 
signaling via DRD1 and DRD2 both appeared to contrib-
ute to the inhibitory effect of DA. However, because we 
did not specifically characterize the gene expression of 
DA receptors on our microglia, it is possible that other 
DA receptors may be involved in this process. Indeed, 
human microglia are known to undergo expression 
profile changes post-isolation [65], rendering them an 
imperfect representation of in situ microglia.

Elevated extracellular K+ blocked canonical, non-
canonical, and α-syn-mediated NLRP3 inflammasome 
activation in the present study, presumably by disrupt-
ing the ion gradient that normally allows for K+ efflux 
from the cell in a similar manner to that described 
for mouse macrophages [44]. To our knowledge, this 
has not been shown previously for primary human or 
mouse microglia. K+ efflux upon microglial NLRP3 
inflammasome activation has been suggested to pro-
ceed via the voltage-gated K+ channel Kv1.3, as spe-
cifically blocking this channel prevented LPS-induced, 
inflammasome-mediated IL-1β secretion from primary 
rat microglia [66]. Whether K+ efflux from primary 
human microglia upon inflammasome activation also 
proceeds through Kv1.3 remains to be seen. DA release 
in striatal axon terminals has been shown to be con-
trolled by voltage-gated Kv1 channels including Kv1.3 
[47] and in the SN by other voltage-gated K+ channels 
[58], linking K+ flux to DA release, but any potential 
effect of microglial Kv1.3 on dopaminergic neuronal 
Kv1.3 function has not been explored. However, 

microglial Kv1.3 activity has been documented to have 
a more general effect on neurons in terms of toxicity, 
where LPS-activated microglia kill neurons through a 
reactive oxygen species-mediated mechanism that is 
inhibited by Kv1.3 channel blockers [67, 68]. Thus, K+ 
efflux from microglia undergoing NLRP3 inflamma-
some activation may contribute to the release of DA 
from neighboring neurons, possibly through the action 
of Kv1.3.

We suggest the following framework, illustrated sche-
matically in Fig. 6: upon escalating inflammasome acti-
vation with resultant IL-1β secretion by the microglia 
population in response to α-syn aggregates or other 
stimuli, K+ efflux from microglia in the immediate 
environment may locally affect DA release from adja-
cent dopaminergic neurons, possibly via voltage-gated 
Kv1.3 channels on both cell types. DA released soma-
todendritically from neurons in response to this trigger, 
or non-specifically as a result of microglia-mediated 
breakdown of the neurons, could then bind to micro-
glial DA receptors as a negative feedback signal for 
inflammasome activation, siphoning DA from finite 
neuronal stores. As long as sufficient DA is available, 
functional signaling by DA and its metabolites could 
be maintained in the midbrain, but as the neuronal 
DA supply is gradually exhausted by the microglia, this 
would be progressively impaired. At the same time, as 
DA availability diminishes, the inflammasome activa-
tion rate could surpass that of DA-mediated inhibi-
tion to enhance pathology, an imbalance that could be 

Fig. 6  Schematic diagram of dopamine as a countersignal to 
α-syn-mediated NLRP3 inflammasome activation in PD. Fibrillar 
α-syn is taken up by microglia, leading to K+ efflux-dependent 
activation of the NLRP3 inflammasome. The efflux of K+ could affect 
the Kv1.3-mediated or toxicity-induced release of DA from proximal 
dopaminergic neurons. DA can then bind to microglial DRDs to curb 
activation of the inflammasome. Sufficient DA in the system would 
keep this interaction under control, but if DA is depleted over time 
by the microglia, the imbalance could allow for the progression of 
neurotoxicity and inflammation
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further exacerbated by the potent chemotactic ability of 
extracellular DA to recruit additional activated micro-
glia as demonstrated by [36].

Conclusions
The results of the present study demonstrate the abil-
ity of DA, by signaling through its receptors, to inhibit 
K+ efflux-dependent, NLRP3 inflammasome-mediated 
IL-1β secretion induced by α-syn in primary human and 
mouse microglia. They also demonstrate that SYN120 
tg mice, which present with insoluble α-syn aggrega-
tion pathology, microglial activation, and failure of DA 
release, display evidence of increased microglial NLRP3 
inflammasome activation in comparison to WT counter-
parts, and that DRD1 signaling abates this inflammasome 
activation. Taken together, these results indicate that DA 
could serve as an endogenous inhibitor for the NLRP3 
inflammasome activation that is associated with multiple 
facets of PD, including α-syn pathology, neuroinflamma-
tion, and dopaminergic neurodegeneration.

Overall, the interactions proposed in the mechanistic 
hypothesis in Fig. 6 could explain the key role of micro-
glial NLRP3 inflammasome activation in PD-related 
α-syn pathology, neuroinflammation, and dopaminergic 
neurodegeneration described by others [12, 69], and offer 
a potential mechanistic basis for the particular vulner-
ability of SN dopaminergic neurons in PD. Moreover, the 
data presented in this study support the ongoing devel-
opment of NLRP3 inhibitors or other inflammasome 
inhibitors for clinical application to curtail or slow down 
progression of PD pathology. Such therapeutic measures 
in combination with the standard l-DOPA administra-
tion that increases the availability of DA in the SN and 
striatum may serve as a disease-modifying treatment 
strategy for PD.
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