Bohlman HH, Emery SE: The pathophysiology of cervical spondylosis and myelopathy. Spine (Phila Pa 1976). 1988, 13: 843-846. 10.1097/00007632-198807000-00025.
Article
Google Scholar
Fehlings MG, Skaf G: A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976). 1998, 23: 2730-2737. 10.1097/00007632-199812150-00012.
Article
Google Scholar
Kameyama T, Hashizume Y, Ando T, Takahashi A, Yanagi T, Mizuno J: Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament. Brain. 1995, 118: 263-278. 10.1093/brain/118.1.263.
Article
PubMed
Google Scholar
Mizuno J, Nakagawa H, Chang HS, Hashizume Y: Postmortem study of the spinal cord showing snake-eyes appearance due to damage by ossification of the posterior longitudinal ligament and kyphotic deformity. Spinal Cord. 2005, 43: 503-507. 10.1038/sj.sc.3101727.
Article
PubMed
Google Scholar
Baba H, Imura S, Kawahara N, Nagata S, Tomita K: Osteoplastic laminoplasty for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop. 1995, 19: 40-45.
PubMed
Google Scholar
Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H: Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 1: clinical results and limitations of laminoplasty. Spine (Phila Pa 1976). 2007, 32: 647-653. 10.1097/01.brs.0000257560.91147.86.
Article
Google Scholar
Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S: Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet. 1998, 19: 271-273. 10.1038/956.
Article
PubMed
Google Scholar
Uchida K, Baba H, Maezawa Y, Kubota C: Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976). 2002, 27: 480-486. 10.1097/00007632-200203010-00008.
Article
Google Scholar
Yamaura I, Yone K, Nakahara S, Nagamine T, Baba H, Uchida K, Komiya S: Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression. Spine (Phila Pa 1976). 2002, 27: 21-26. 10.1097/00007632-200201010-00008.
Article
Google Scholar
Takano M, Komaki Y, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Okano H, Nakamura M: In vivo tracing of neural tracts in tiptoe walking Yoshimura mice by diffusion tensor tractography. Spine (Phila Pa 1976). 2013, 38: E66-E72. 10.1097/BRS.0b013e31827aacc2.
Article
Google Scholar
Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG: Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis. 2009, 33: 149-163. 10.1016/j.nbd.2008.09.024.
Article
PubMed
Google Scholar
Yato Y, Fujimura Y, Nakamura M, Watanabe M, Yabe Y: Decreased choline acetyltransferase activity in the murine spinal cord motoneurons under chronic mechanical compression. Spinal Cord. 1997, 35: 729-734. 10.1038/sj.sc.3100529.
Article
PubMed
Google Scholar
Yu WR, Liu T, Kiehl TR, Fehlings MG: Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011, 134: 1277-1292. 10.1093/brain/awr054.
Article
PubMed
Google Scholar
Uchida K, Baba H, Maezawa Y, Furukawa S, Furusawa N, Imura S: Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotropic factors. J Neurol. 1998, 245: 781-793. 10.1007/s004150050287.
Article
PubMed
Google Scholar
Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M: Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed. 2009, 22: 834-842. 10.1002/nbm.1396.
Article
PubMed
Google Scholar
Bosshard SC, Baltes C, Wyss MT, Mueggler T, Weber B, Rudin M: Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI. Pain. 2010, 151: 655-663. 10.1016/j.pain.2010.08.025.
Article
PubMed
Google Scholar
Baba H, Furusawa N, Fukuda M, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K: Potential role of streptozotocin in enhancing ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur J Histochem. 1997, 41: 191-202.
PubMed
Google Scholar
Takano M, Hikishima K, Fujiyoshi K, Shibata S, Yasuda A, Konomi T, Hayashi A, Baba H, Honke K, Toyama Y, Okano H, Nakamura M: MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One. 2012, 7: e52904-10.1371/journal.pone.0052904.
Article
PubMed Central
PubMed
Google Scholar
Ogura H, Matsumoto M, Mikoshiba K: Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav Brain Res. 2001, 122: 215-219. 10.1016/S0166-4328(01)00187-5.
Article
PubMed
Google Scholar
Mistry DS, Chen Y, Sen GL: Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell. 2012, 11: 127-135. 10.1016/j.stem.2012.04.022.
Article
PubMed Central
PubMed
Google Scholar
Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG: Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007, 102: 37-50. 10.1111/j.1471-4159.2007.04524.x.
Article
PubMed
Google Scholar
Long HQ, Li GS, Hu Y, Wen CY, Xie WH: HIF-1alpha/VEGF signaling pathway may play a dual role in secondary pathogenesis of cervical myelopathy. Med Hypotheses. 2012, 79: 82-84. 10.1016/j.mehy.2012.04.006.
Article
PubMed
Google Scholar
Kele J, Simplicio N, Ferri AL, Mira H, Guillemot F, Arenas E, Ang SL: Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development. 2006, 133: 495-505. 10.1242/dev.02223.
Article
PubMed
Google Scholar
Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T: Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy. 2011, 7: 1462-1471. 10.4161/auto.7.12.17892.
Article
PubMed Central
PubMed
Google Scholar
Bai T, Chen CC, Lau LF: Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. 2010, 184: 3223-3232. 10.4049/jimmunol.0902792.
Article
PubMed Central
PubMed
Google Scholar
Chaqour B, Goppelt-Struebe M: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006, 273: 3639-3649.
Article
PubMed
Google Scholar
Kivela R, Kyrolainen H, Selanne H, Komi PV, Kainulainen H, Vihko V: A single bout of exercise with high mechanical loading induces the expression of Cyr61/CCN1 and CTGF/CCN2 in human skeletal muscle. J Appl Physiol. 2007, 103: 1395-1401. 10.1152/japplphysiol.00531.2007.
Article
PubMed
Google Scholar
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA: The classical complement cascade mediates CNS synapse elimination. Cell. 2007, 131: 1164-1178. 10.1016/j.cell.2007.10.036.
Article
PubMed
Google Scholar
Zhang Z, Pinto AM, Wan L, Wang W, Berg MG, Oliva I, Singh LN, Dengler C, Wei Z, Dreyfuss G: Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2013, 110: 19348-19353. 10.1073/pnas.1319280110.
Article
PubMed Central
PubMed
Google Scholar
Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, Kim L, Tsai HH, Huang EJ, Rowitch DH, Berns DS, Tenner AJ, Shamloo M, Barres BA: A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci. 2013, 33: 13460-13474. 10.1523/JNEUROSCI.1333-13.2013.
Article
PubMed Central
PubMed
Google Scholar
Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, Okada K, Sakai T, Hashimoto A, Hara Y, Shimizu I, Zhu W, Toko H, Katada A, Akazawa H, Oka T, Lee JK, Minamino T, Nagai T, Walsh K, Kikuchi A, Matsumoto M, Botto M, Shiojima I, Komuro I: Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell. 2012, 149: 1298-1313. 10.1016/j.cell.2012.03.047.
Article
PubMed Central
PubMed
Google Scholar
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 2003, 3: 23-35. 10.1038/nri978.
Article
PubMed
Google Scholar
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25: 677-686. 10.1016/j.it.2004.09.015.
Article
PubMed
Google Scholar
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009, 29: 13435-13444. 10.1523/JNEUROSCI.3257-09.2009.
Article
PubMed Central
PubMed
Google Scholar
Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H: Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation. 2012, 9: 40-10.1186/1742-2094-9-40.
Article
PubMed Central
PubMed
Google Scholar
Laskin DL: Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem Res Toxicol. 2009, 22: 1376-1385. 10.1021/tx900086v.
Article
PubMed Central
PubMed
Google Scholar
Aszodi A, Legate KR, Nakchbandi I, Fassler R: What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol. 2006, 22: 591-621. 10.1146/annurev.cellbio.22.010305.104258.
Article
PubMed
Google Scholar
Jun JI, Lau LF: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010, 12: 676-685. 10.1038/ncb2070.
Article
PubMed Central
PubMed
Google Scholar
Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z: Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol. 2012, 58: 511-522.
Article
PubMed
Google Scholar
Aguzzi A, Barres BA, Bennett ML: Microglia: scapegoat, saboteur, or something else?. Science. 2013, 339: 156-161. 10.1126/science.1227901.
Article
PubMed Central
PubMed
Google Scholar
Stephan AH, Barres BA, Stevens B: The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012, 35: 369-389. 10.1146/annurev-neuro-061010-113810.
Article
PubMed
Google Scholar
Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP, Anderson AJ: Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci. 2008, 28: 13876-13888. 10.1523/JNEUROSCI.2823-08.2008.
Article
PubMed Central
PubMed
Google Scholar
Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM: Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005, 102: 17734-17738. 10.1073/pnas.0508440102.
Article
PubMed Central
PubMed
Google Scholar
Amoh Y, Li L, Katsuoka K, Hoffman RM: Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle. 1865–1869, 2008: 7.
Google Scholar
Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM: Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005, 102: 5530-5534. 10.1073/pnas.0501263102.
Article
PubMed Central
PubMed
Google Scholar
Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM: Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003, 100: 9958-9961. 10.1073/pnas.1733025100.
Article
PubMed Central
PubMed
Google Scholar
Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L, Koenig K, Duong J, Aki R, Saito N, Mii S, Amoh Y, Katsuoka K, Hoffman RM: The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle. 2011, 10: 830-839. 10.4161/cc.10.5.14969.
Article
PubMed
Google Scholar