Perkins ND: Integrating cell-signalling pathways with NF-κB and IKK function.
Nat Rev Mol Cell Biol 2007, 8:49–62.
Article
CAS
PubMed
Google Scholar
Bonini SA, Ferrari-Toninelli G, Uberti D, Montinaro M, Buizza L, Lanni C, Grilli M, Memo M: Nuclear factor κB-dependent neurite remodeling is mediated by Notch pathway.
J Neurosci 2011, 31:11697–11705.
Article
CAS
PubMed
Google Scholar
Kaltschmidt B, Kaltschmidt C: NF-κB in the nervous system.
Cold Spring Harb Perspect Biol 2009, 1:a001271.
Article
PubMed
PubMed Central
Google Scholar
Mattson MP, Camandola S: NF-κB in neuronal plasticity and neurodegenerative disorders.
J Clin Invest 2001, 107:247–254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K: Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease.
Proc Natl Acad Sci USA 2007, 104:18754–18759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration.
Cell 2010, 140:918–934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunot S, Hirsch EC: Neuroinflammatory processes in Parkinson’s disease.
Ann Neurol 2003,53(Suppl 3):S49-S60.
Article
CAS
PubMed
Google Scholar
Liang CL, Wang TT, Luby-Phelps K, German DC: Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson’s disease.
Exp Neurol 2007, 203:370–380.
Article
CAS
PubMed
Google Scholar
Tran T, McCoy M, Sporn M, Tansey M: The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection.
J Neuroinflammation 2008, 5:14.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J: Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease.
FASEB J 2005, 19:533–542.
Article
CAS
PubMed
Google Scholar
Perry V: Contribution of systemic inflammation to chronic neurodegeneration.
Acta Neuropathol 2010, 120:277–286.
Article
CAS
PubMed
Google Scholar
Sun SC: Deubiquitylation and regulation of the immune response.
Nat Rev Immunol 2008, 8:501–511.
Article
CAS
PubMed
Google Scholar
Harhaj EW, Dixit VM: Deubiquitinases in the regulation of NF-κB signaling.
Cell Res 2011, 21:22–39.
Article
CAS
PubMed
Google Scholar
Jacque E, Ley SC: RNF11, a new piece in the A20 puzzle.
EMBO J 2009, 28:455–456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C, Ma A: The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses.
Nat Immunol 2004, 5:1052–1060.
Article
CAS
PubMed
Google Scholar
Parvatiyar K, Harhaj EW: Regulation of inflammatory and antiviral signaling by A20.
Microbes Infect 2011, 13:209–215.
Article
CAS
PubMed
Google Scholar
Shembade N, Harhaj E: A20 inhibition of NFκB and inflammation: targeting E2:E3 ubiquitin enzyme complexes.
Cell Cycle 2010, 9:2481–2482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shembade N, Ma A, Harhaj EW: Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes.
Science 2010, 327:1135–1139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW: The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling.
EMBO J 2009, 28:513–522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson LR, Betarbet R, Gearing M, Gulcher J, Hicks AA, Stefansson K, Lah JJ, Levey AI: PARK10 candidate RNF11 is expressed by vulnerable neurons and localizes to Lewy bodies in Parkinson disease brain.
J Neuropathol Exp Neurol 2007, 66:955–964.
Article
CAS
PubMed
Google Scholar
Kitching R, Wong MJ, Koehler D, Burger AM, Landberg G, Gish G, Seth A: The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases.
Biochim Biophys Acta 2003, 1639:104–112.
Article
CAS
PubMed
Google Scholar
Seki N, Hattori A, Hayashi A, Kozuma S, Sasaki M, Suzuki Y, Sugano S, Muramatsu M, Saito T: Cloning and expression profile of mouse and human genes, Rnf11/RNF11, encoding a novel RING-H2 finger protein.
Biochim Biophys Acta 1999, 1489:421–427.
Article
CAS
PubMed
Google Scholar
Subramaniam V, Li H, Wong M, Kitching R, Attisano L, Wrana J, Zubovits J, Burger AM, Seth A: The RING-H2 protein RNF11 is overexpressed in breast cancer and is a target of Smurf2 E3 ligase.
Br J Cancer 2003, 89:1538–1544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM: RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination.
Proc Natl Acad Sci USA 1999, 96:11364–11369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azmi P, Seth A: RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.
Eur J Cancer 2005, 41:2549–2560.
Article
CAS
PubMed
Google Scholar
Colland F, Daviet L: Integrating a functional proteomic approach into the target discovery process.
Biochimie 2004, 86:625–632.
Article
CAS
PubMed
Google Scholar
Li H, Seth A: An RNF11: Smurf2 complex mediates ubiquitination of the AMSH protein.
Oncogene 2004, 23:1801–1808.
Article
CAS
PubMed
Google Scholar
Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI: Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo.
J Neurosci 2010, 30:4190–4196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gwag BJ, Koh JY, DeMaro JA, Ying HS, Jacquin M, Choi DW: Slowly triggered excitotoxicity occurs by necrosis in cortical cultures.
Neuroscience 1997, 77:393–401.
Article
CAS
PubMed
Google Scholar
Rüegg UT, Hefti F: Growth of dissociated neurons in culture dishes coated with synthetic polymeric amines.
Neurosci Lett 1984, 49:319–324.
Article
PubMed
Google Scholar
Zhang C, An J, Haile WB, Echeverry R, Strickland DK, Yepes M: Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain.
J Cereb Blood Flow Metab 2009, 29:1946–1954.
Article
CAS
PubMed
Google Scholar
Yepes M, Moore E, Brown SA, Hanscom HN, Smith EP, Lawrence DA, Winkles JA: Progressive ankylosis (Ank) protein is expressed by neurons and Ank immunohistochemical reactivity is increased by limbic seizures.
Lab Invest 2003, 83:1025–1032.
Article
CAS
PubMed
Google Scholar
Volpicelli LA, Lah JJ, Levey AI: Rab5-dependent trafficking of the m4 muscarinic acetylcholine receptor to the plasma membrane, early endosomes, and multivesicular bodies.
J Biol Chem 2001, 276:47590–47598.
Article
CAS
PubMed
Google Scholar
Herskowitz JH, Seyfried NT, Gearing M, Kahn RA, Peng J, Levey AI, Lah JJ: Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-β production.
J Biol Chem 2011, 286:6117–6127.
Article
CAS
PubMed
Google Scholar
Cheshire JL, Baldwin AS: Synergistic activation of NF-κB by tumor necrosis factor α and γ interferon via enhanced IκBα degradation and de novo IκBβ degradation.
Mol Cell Biol 1997, 17:6746–6754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinouchi K, Brown G, Pasternak G, Donner DB: Identification and characterization of receptors for tumor necrosis factor-α in the brain.
Biochem Biophys Res Commun 1991, 181:1532–1538.
Article
CAS
PubMed
Google Scholar
Liu S, Chen ZJ: Expanding role of ubiquitination in NF-κB signaling.
Cell Res 2011, 21:6–21.
Article
PubMed
Google Scholar
Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW: The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20.
Nat Immunol 2008, 9:254–262.
Article
CAS
PubMed
Google Scholar
Santonico E, Belleudi F, Panni S, Torrisi MR, Cesareni G, Castagnoli L: Multiple modification and protein interaction signals drive the Ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment.
Oncogene 2010, 29:5604–5618.
Article
CAS
PubMed
Google Scholar
Joazeiro CAP, Weissman AM: RING finger proteins: mediators of ubiquitin ligase activity.
Cell 2000, 102:549–552.
Article
CAS
PubMed
Google Scholar
Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, Fukuda M, Ohta T, Klevit R: Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex.
Proc Natl Acad Sci USA 2003, 100:5646–5651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shakhov AN, Kuprash DV, Azizov MM, Jongeneel CV, Nedospasov SA: Structural analysis of the rabbit TNF locus, containing the genes encoding TNF-β (lymphotoxin) and TNF-α (tumor necrosis factor).
Gene 1990, 95:215–221.
Article
CAS
PubMed
Google Scholar
Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel CV: κB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophages.
J Exp Med 1990, 171:35–47.
Article
CAS
PubMed
Google Scholar
Collart MA, Baeuerle P, Vassalli P: Regulation of tumor necrosis factor α transcription in macrophages: involvement of four κB-like motifs and of constitutive and inducible forms of NF-κB.
Mol Cell Biol 1990, 10:1498–1506.
Article
CAS
PubMed
Google Scholar
Krikos A, Laherty CD, Dixit VM: Transcriptional activation of the tumor necrosis factor α-inducible zinc finger protein, A20, is mediated by κB elements.
J Biol Chem 1992, 267:17971–17976.
CAS
PubMed
Google Scholar
Feuerstein GZ, Liu T, Barone FC: Cytokines, inflammation, and brain injury: role of tumor necrosis factor-α.
Cerebrovasc Brain Metab Rev 1994, 6:341–360.
CAS
PubMed
Google Scholar
Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ: Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies.
J Biol Chem 2010, 285:9262–9272.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCoy MK, Tansey MG: TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease.
J Neuroinflammation 2008, 5:45.
Article
PubMed
PubMed Central
Google Scholar
Thompson WL, Van Eldik LJ: Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFκB and MAPK dependent pathways in rat astrocytes.
Brain Res 2009, 1287:47–57. A published erratum appears in Brain Res 2009, 1295:230
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NEJ, Vogel SN: Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells.
J Cereb Blood Flow Metab 2003, 23:748–755.
Article
PubMed
Google Scholar
Fuentes M, Durham S, Swerdel M, Lewin A, Barton D, Megill J, Bravo R, Lira S: Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1.
J Immunol 1995, 155:5769–5776.
CAS
PubMed
Google Scholar
Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T: NF-κB and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene.
J Immunol 1994, 153:2052–2063.
CAS
PubMed
Google Scholar
Ueda A, Ishigatsubo Y, Okubo T, Yoshimura T: Transcriptional regulation of the human monocyte chemoattractant protein-1 gene: cooperation of two NF-κB sites and NF-κB/Rel subunit specificity.
J Biol Chem 1997, 272:31092–31099.
Article
CAS
PubMed
Google Scholar
Li Q, Verma IM: NF-κB regulation in the immune system.
Nat Rev Immunol 2002, 2:725–734.
Article
CAS
PubMed
Google Scholar
Karin M, Greten FR: NF-κB: linking inflammation and immunity to cancer development and progression.
Nat Rev Immunol 2005, 5:749–759.
Article
CAS
PubMed
Google Scholar
Cao S, Theodore S, Standaert D: Fcγ receptors are required for NF-κB signaling, microglial activation and dopaminergic neurodegeneration in an AAV-synuclein mouse model of Parkinson’s disease.
Mol Neurodegener 2010, 5:42.
Article
PubMed
PubMed Central
Google Scholar
van der Kooij MA, Nijboer CH, Ohl F, Groenendaal F, Heijnen CJ, van Bel F, Kavelaars A: NF-κB inhibition after neonatal cerebral hypoxia-ischemia improves long-term motor and cognitive outcome in rats.
Neurobiol Dis 2010, 38:266–272.
Article
CAS
PubMed
Google Scholar
Pahl HL: Activators and target genes of Rel/NF-κB transcription factors.
Oncogene 1999, 18:6853–6866.
Article
CAS
PubMed
Google Scholar
Brasier A: The NF-κB regulatory network.
Cardiovasc Toxicol 2006, 6:111–130.
Article
CAS
PubMed
Google Scholar
Gewurz BE, Towfic F, Mar JC, Shinners NP, Takasaki K, Zhao B, Cahir-McFarland ED, Quackenbush J, Xavier RJ, Kieff E: Genome-wide siRNA screen for mediators of NF-κB activation.
Proc Natl Acad Sci USA 2012, 109:2467–2472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Zhou Z, Liu R, Li Y, Azmi PB, Seth AK: The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11.
Oncogene 2008, 27:6845–6855.
Article
CAS
PubMed
Google Scholar
Melino G, Gallagher E, Aqeilan RI, Knight R, Peschiaroli A, Rossi M, Scialpi F, Malatesta M, Zocchi L, Browne G, Ciechanover A, Bernassola F: Itch: a HECT-type E3 ligase regulating immunity, skin and cancer.
Cell Death Differ 2008, 15:1103–1112.
Article
CAS
PubMed
Google Scholar
Shembade N, Harhaj NS, Liebl DJ, Harhaj EW: Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling.
EMBO J 2007, 26:3910–3922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shembade N, Harhaj NS, Yamamoto M, Akira S, Harhaj EW: The human T-cell leukemia virus type 1 tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-κB activation.
J Virol 2007, 81:13735–13742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK: A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death.
Cell 2009, 137:47–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Austin SA, Floden AM, Murphy EJ, Combs CK: α-synuclein expression modulates microglial activation phenotype.
J Neurosci 2006, 26:10558–10563.
Article
CAS
PubMed
Google Scholar
White JA, Manelli AM, Holmberg KH, Van Eldik LJ, LaDu MJ: Differential effects of oligomeric and fibrillar amyloid-β1–42 on astrocyte-mediated inflammation.
Neurobiol Dis 2005, 18:459–465.
Article
CAS
PubMed
Google Scholar
Lotz M, Ebert S, Esselmann H, Iliev AI, Prinz M, Wiazewicz N, Wiltfang J, Gerber J, Nau R: Amyloid β peptide 1–40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures.
J Neurochem 2005, 94:289–298.
Article
CAS
PubMed
Google Scholar
Vallabhapurapu S, Karin M: Regulation and function of NF-κB transcription factors in the immune system.
Annu Rev Immunol 2009, 27:693–733.
Article
CAS
PubMed
Google Scholar
Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS: Role of nitric oxide in inflammation-mediated neurodegeneration.
Ann N Y Acad Sci 2002, 962:318–331.
Article
CAS
PubMed
Google Scholar
Sawada M, Imamura K, Nagatsu T: Role of cytokines in inflammatory process in Parkinson’s disease.
J Neural Transm Suppl 2006, 70:373–381.
Article
CAS
PubMed
Google Scholar
McGeer EG, Klegeris A, McGeer PL: Inflammation, the complement system and the diseases of aging.
Neurobiol Aging 2005,26(Suppl 1):94–97.
Article
PubMed
Google Scholar
Kreutzberg GW: Microglia: a sensor for pathological events in the CNS.
Trends Neurosci 1996, 19:312–318.
Article
CAS
PubMed
Google Scholar
Yamada T, McGeer PL, McGeer EG: Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins.
Acta Neuropathol 1992,84(1):100–104.
Article
CAS
PubMed
Google Scholar
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T: Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients.
Neurosci Lett 1994, 180:147–150.
Article
CAS
PubMed
Google Scholar
Liu B, Gao HM, Hong JS: Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation.
Environ Health Perspect 2003, 111:1065–1073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention.
Exp Neurol 2007, 208:1–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen MD, Julien JP, Rivest S: Innate immunity: the missing link in neuroprotection and neurodegeneration?
Nat Rev Neurosci 2002, 3:216–227.
Article
CAS
PubMed
Google Scholar
Wyss-Coray T, Mucke L: Inflammation in neurodegenerative disease: a double-edged sword.
Neuron 2002, 35:419–432.
Article
CAS
PubMed
Google Scholar
Hicks AA, Pétursson H, Jónsson T, Stefánsson H, Jóhannsdóttir HS, Sainz J, Frigge ML, Kong A, Gulcher JR, Stefánsson K, Sveinbjörnsdóttir S: A susceptibility gene for late-onset idiopathic Parkinson’s disease.
Ann Neurol 2002, 52:549–555.
Article
CAS
PubMed
Google Scholar
Frank-Cannon T, Alto L, McAlpine F, Tansey M: Does neuroinflammation fan the flame in neurodegenerative diseases?
Mol Neurodegener 2009, 4:47.
Article
PubMed
PubMed Central
Google Scholar