Ahmad N, Zacharek MA. Allergic rhinitis and rhinosinusitis. Otolaryngol Clin North Am. 2008;41(267–281):v.
Google Scholar
Peters AT, Spector S, Hsu J, Hamilos DL, Baroody FM, Chandra RK, Grammer LC, Kennedy DW, Cohen NA, Kaliner MA, et al. Diagnosis and management of rhinosinusitis: a practice parameter update. Ann Allergy Asthma Immunol. 2014;113:347–85.
Article
Google Scholar
Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, Brook I, Kumar KA, Kramper M, Orlandi RR, Palmer JN, Patel ZM, Peters A, et al. Clinical practice guideline (update): adult sinusitis executive summary. Otolaryngol Head Neck Surg. 2015;152:598–609.
Article
Google Scholar
Benninger MS, Sedory Holzer SE, Lau J. Diagnosis and treatment of uncomplicated acute bacterial rhinosinusitis: summary of the Agency for Health Care Policy and Research evidence-based report. Otolaryngol Head Neck Surg. 2000;122:1–7.
Article
CAS
Google Scholar
Shi JB, Fu QL, Zhang H, Cheng L, Wang YJ, Zhu DD, Lv W, Liu SX, Li PZ, Ou CQ, Xu G. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy. 2015;70:533–9.
Article
CAS
Google Scholar
Ahn JC, Kim JW, Lee CH, Rhee CS. Prevalence and risk factors of chronic rhinosinusitus, allergic rhinitis, and nasal septal deviation: results of the Korean National Health and Nutrition Survey 2008–2012. JAMA Otolaryngol Head Neck Surg. 2016;142:162–7.
Article
Google Scholar
Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, Bousquet PJ, Brozek G, Bruno A, Dahlén SE, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA2LEN study. Allergy. 2011;66:1216–23.
Article
CAS
Google Scholar
Hamilos DL. Chronic rhinosinusitis: epidemiology and medical management. J Allergy Clin Immunol. 2011;128:693–707.
Article
Google Scholar
Hirsch AG, Stewart WF, Sundaresan AS, Young AJ, Kennedy TL, Scott Greene J, Feng W, Tan BK, Schleimer RP, Kern RC, et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy. 2017;72:274–81.
Article
CAS
Google Scholar
Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, Bachert C, Baraniuk J, Baroody FM, Benninger MS, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg. 2004;131:S1-62.
Article
Google Scholar
Raviv JR, Kern RC. Chronic sinusitis and olfactory dysfunction. Otolaryngol Clin North Am. 2004;37(1143–1157):v–vi.
Google Scholar
Carr TF. Complications of sinusitis. Am J Rhinol Allergy. 2016;30:241–5.
Article
Google Scholar
Corps KN, Islam Z, Pestka JJ, Harkema JR. Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury. Toxicol Pathol. 2010;38:429–51.
Article
CAS
Google Scholar
Epstein VA, Bryce PJ, Conley DB, Kern RC, Robinson AM. Intranasal Aspergillus fumigatus exposure induces eosinophilic inflammation and olfactory sensory neuron cell death in mice. Otolaryngol Head Neck Surg. 2008;138:334–9.
Article
Google Scholar
Islam Z, Harkema JR, Pestka JJ. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect. 2006;114:1099–107.
Article
CAS
Google Scholar
Islam Z, Amuzie CJ, Harkema JR, Pestka JJ. Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin A: kinetics and potentiation by bacterial lipopolysaccharide coexposure. Toxicol Sci. 2007;98:526–41.
Article
CAS
Google Scholar
Carey SA, Plopper CG, Hyde DM, Islam Z, Pestka JJ, Harkema JR. Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys. Toxicol Pathol. 2012;40:887–98.
Article
Google Scholar
Lindsay R, Slaughter T, Britton-Webb J, Mog SR, Conran R, Tadros M, Earl N, Fox D, Roberts J, Bolger WE. Development of a murine model of chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2006;134:724–30.
Article
Google Scholar
Thomas R, Davies C, Nunez A, Hibbs S, Eastaugh L, Harding S, Jordan J, Barnes K, Oyston P, Eley S. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis. Front Cell Infect Micro. 2012; 2.
Kanaya K, Kondo K, Suzukawa K, Sakamoto T, Kikuta S, Okada K, Yamasoba T. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of Poly(I:C). Cell Tissue Res. 2014;357:279–99.
Article
CAS
Google Scholar
Hasegawa-Ishii S, Shimada A, Imamura F. Lipopolysaccharide-initiated persistent rhinitis causes gliosis and synaptic loss in the olfactory bulb. Sci Rep. 2017;7:11605.
Article
Google Scholar
Herbert RP, Harris J, Chong KP, Chapman J, West AK, Chuah MI. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J Neuroinflammation. 2012;9:109.
Article
CAS
Google Scholar
Jacob A, Faddis BT, Chole RA. Chronic bacterial rhinosinusitis: description of a mouse model. Arch Otolaryngol Head Neck Surg. 2001;127:657–64.
Article
CAS
Google Scholar
Vincent AJ, Choi-Lundberg DL, Harris JA, West AK, Chuah MI. Bacteria and PAMPs activate nuclear factor kappaB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia. 2007;55:905–16.
Article
Google Scholar
Yagi S, Tsukatani T, Yata T, Tsukioka F, Miwa T, Furukawa M. Lipopolysaccharide-induced apoptosis of olfactory receptor neurons in rats. Acta Otolaryngol. 2007;127:748–53.
Article
CAS
Google Scholar
Sultan B, May LA, Lane AP. The role of TNF-a in inflammatory olfactory loss. Laryngoscope. 2011;121:2481–6.
Article
CAS
Google Scholar
Imamura F, Hasegawa-Ishii S. Environmental toxicants-induced immune responses in the olfactory mucosa. Front Immunol. 2016;7:475.
Article
Google Scholar
Smith TD, Bhatnagar KP. Anatomy of the olfactory system. Handb Clin Neurol. 2019;164:17–28.
Article
Google Scholar
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits. 2014;8:98.
Article
Google Scholar
Kavoi BM, Jameela H. Comparative morphometry of the olfactory bulb, tract, and stria in the human, dog, and goat. Int J Morphol. 2011;29:939–46.
Article
Google Scholar
Baron G, Frahm HD, Stephan H. Comparison of brain structure volumes in insectivora and primates. VIII. Vestibular complex. J Hirnforsch. 1988;29:509–23.
CAS
Google Scholar
Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits. 2010; 4.
Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, Sakano H, Chen WR, Mori K. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci. 2012;32:7970–85.
Article
CAS
Google Scholar
Orona E, Rainer EC, Scott JW. Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J Comp Neurol. 1984;226:346–56.
Article
CAS
Google Scholar
Mori K, Sakano H. How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci. 2011;34:467–99.
Article
CAS
Google Scholar
Chon U, LaFever BJ, Nguyen U, Kim Y, Imamura F. Topographically distinct projection patterns of early- and late-generated projection neurons in the mouse olfactory bulb. eneuro 2020:ENEURO.0369-0320.2020.
Nagayama S, Takahashi YK, Yoshihara Y, Mori K. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. J Neurophysiol. 2004;91:2532–40.
Article
Google Scholar
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron. 2022.
Burd GD. Morphological study of the effects of intranasal zinc sulfate irrigation on the mouse olfactory epithelium and olfactory bulb. Microsc Res Tech. 1993;24:195–213.
Article
CAS
Google Scholar
Hentig JT, Byrd-Jacobs CA. Exposure to zinc sulfate results in differential effects on olfactory sensory neuron subtypes in adult zebrafish. Int J Mol Sci. 2016; 17.
Cancalon P. Degeneration and regeneration of olfactory cells induced by ZnSO4 and other chemicals. Tissue Cell. 1982;14:717–33.
Article
CAS
Google Scholar
Slotnick BM, Gutman LA. Evaluation of intranasal zinc sulfate treatment on olfactory discrimination in rats. J Comp Physiol Psychol. 1977;91:942–50.
Article
CAS
Google Scholar
Stewart WB, Greer CA, Teicher MH. The effect of intranasal zinc sulfate treatment on odor-mediated behavior and on odor-induced metabolic activity in the olfactory bulbs of neonatal rats. Brain Res. 1983;284:247–59.
Article
CAS
Google Scholar
Kagoya R, Toma-Hirano M, Yamagishi J, Matsumoto N, Kondo K, Ito K. Immunological status of the olfactory bulb in a murine model of Toll-like receptor 3-mediated upper respiratory tract inflammation. J Neuroinflammation. 2022;19:13.
Article
CAS
Google Scholar
Hasegawa-Ishii S, Shimada A, Imamura F. Neuroplastic changes in the olfactory bulb associated with nasal inflammation in mice. J Allergy Clin Immunol. 2019;143:978-989.e973.
Article
Google Scholar
Hasegawa-Ishii S, Imamura F, Nagayama S, Murata M, Shimada A. Differential effects of nasal inflammation and odor deprivation on layer-specific degeneration of the mouse olfactory bulb. eNeuro. 2020; 7.
LaFever BJ, Kawasawa YI, Ito A, Imamura F. Pathological consequences of chronic olfactory inflammation on neurite morphology of olfactory bulb projection neurons. Brain Behav Immun Health. 2022;21: 100451.
Article
CAS
Google Scholar
Asano H, Hasegawa-Ishii S, Arae K, Obara A, Laumet G, Dantzer R, Shimada A. Infiltration of peripheral immune cells into the olfactory bulb in a mouse model of acute nasal inflammation. J Neuroimmunol. 2022;368: 577897.
Article
CAS
Google Scholar
Rhinosinusitis: Synopsis. https://www.worldallergy.org/education-and-programs/education/allergic-disease-resource-center/professionals/rhinosinusitis-synopsis.
Van Crombruggen K, Zhang N, Gevaert P, Tomassen P, Bachert C. Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol. 2011;128:728–32.
Article
Google Scholar
Yoshihara Y, Kawasaki M, Tamada A, Fujita H, Hayashi H, Kagamiyama H, Mori K. OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci. 1997;17:5830–42.
Article
CAS
Google Scholar
Gussing F, Bohm S. NQO1 activity in the main and the accessory olfactory systems correlates with the zonal topography of projection maps. Eur J Neurosci. 2004;19:2511–8.
Article
Google Scholar
Oka Y, Kobayakawa K, Nishizumi H, Miyamichi K, Hirose S, Tsuboi A, Sakano H. O-MACS, a novel member of the medium-chain acyl-CoA synthetase family, specifically expressed in the olfactory epithelium in a zone-specific manner. Eur J Biochem. 2003;270:1995–2004.
Article
CAS
Google Scholar
Ross D, Siegel D. Functions of NQO1 in cellular protection and CoQ(10) metabolism and its potential role as a redox sensitive molecular switch. Front Physiol. 2017;8:595.
Article
Google Scholar
Lenz KM, Nelson LH. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front Immunol. 2018;9:698.
Article
Google Scholar
Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation. Trends Immunol. 2020;41:805–19.
Article
CAS
Google Scholar
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by peripheral glia: importance for nervous system functions and implications in injury and disease. Front Cell Dev Biol. 2021;9: 660259.
Article
Google Scholar
Doucette R. Glial influences on axonal growth in the primary olfactory system. Glia. 1990;3:433–49.
Article
CAS
Google Scholar
Hao DJ, Liu C, Zhang L, Chen B, Zhang Q, Zhang R, An J, Zhao J, Wu M, Wang Y, et al. Lipopolysaccharide and curcumin co-stimulation potentiates olfactory ensheathing cell phagocytosis via enhancing their activation. Neurotherapeutics. 2017;14:502–18.
Article
CAS
Google Scholar
Nazareth L, Shelper TB, Chacko A, Basu S, Delbaz A, Lee JYP, Chen M, St John JA, Ekberg JAK. Key differences between olfactory ensheathing cells and Schwann cells regarding phagocytosis of necrotic cells: implications for transplantation therapies. Sci Rep. 2020;10:18936.
Article
CAS
Google Scholar
Franssen EH, De Bree FM, Essing AH, Ramon-Cueto A, Verhaagen J. Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia. Glia. 2008;56:1285–98.
Article
Google Scholar
Harris JA, West AK, Chuah MI. Olfactory ensheathing cells: nitric oxide production and innate immunity. Glia. 2009;57:1848–57.
Article
Google Scholar
Chuah MI, Tennent R, Jacobs I. Response of olfactory Schwann cells to intranasal zinc sulfate irrigation. J Neurosci Res. 1995;42:470–8.
Article
CAS
Google Scholar
Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia. 2013;61:490–503.
Article
Google Scholar
Nazareth L, Lineburg KE, Chuah MI, Tello Velasquez J, Chehrehasa F, St John JA, Ekberg JA. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol. 2015;523:479–94.
Article
CAS
Google Scholar
O’Connor T, Borsig L, Heikenwalder M. CCL2-CCR2 signaling in disease pathogenesis. Endocr Metab Immune Disord Drug Targets. 2015;15:105–18.
Article
CAS
Google Scholar
Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503–8.
Article
CAS
Google Scholar
Venkatesha SH, Dudics S, Acharya B, Moudgil KD. Cytokine-modulating strategies and newer cytokine targets for arthritis therapy. Int J Mol Sci. 2014;16:887–906.
Article
Google Scholar
Zou YY, Yuan Y, Kan EM, Lu J, Ling EA. Combustion smoke-induced inflammation in the olfactory bulb of adult rats. J Neuroinflammation. 2014;11:176.
Article
Google Scholar
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 2019;10:5816.
Article
CAS
Google Scholar
Pignatelli A, Kobayashi K, Okano H, Belluzzi O. Functional properties of dopaminergic neurones in the mouse olfactory bulb. J Physiol. 2005;564:501–14.
Article
CAS
Google Scholar
Mizuguchi R, Naritsuka H, Mori K, Mao CA, Klein WH, Yoshihara Y. Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb. J Neurosci. 2012;32:8831–44.
Article
CAS
Google Scholar
Imamura F, Ito A, LaFever BJ. Subpopulations of projection neurons in the olfactory bulb. Front Neural Circuits. 2020;14: 561822.
Article
Google Scholar
Imamura F, Nagao H, Naritsuka H, Murata Y, Taniguchi H, Mori K. A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. J Comp Neurol. 2006;495:754–68.
Article
CAS
Google Scholar
Tsuboi A. LRR-containing oncofetal trophoblast glycoprotein 5T4 shapes neural circuits in olfactory and visual systems. Front Mol Neurosci. 2020;13: 581018.
Article
CAS
Google Scholar
Ogawa Y, Rasband MN. The functional organization and assembly of the axon initial segment. Curr Opin Neurobiol. 2008;18:307–13.
Article
CAS
Google Scholar
Galliano E, Hahn C, Browne LP, Villamayor PR, Tufo C, Crespo A, Grubb MS. Brief sensory deprivation triggers cell type-specific structural and functional plasticity in olfactory bulb neurons. J Neurosci. 2021;41:2135–51.
Article
CAS
Google Scholar
Yamada R, Kuba H. Structural and functional plasticity at the axon initial segment. Front Cell Neurosci. 2016;10:250.
Article
Google Scholar
Zhang J, Feng Y, Liu W, He L, Qiao X. Effect of early olfactory training on olfactory recovery after nasal endoscopy in patients with chronic rhinosinusitis and olfactory impairment. Am J Transl Res. 2022;14:2600–8.
CAS
Google Scholar
Haxel BR. Recovery of olfaction after sinus surgery for chronic rhinosinusitis: a review. Laryngoscope. 2019;129:1053–9.
Article
Google Scholar
Alimohamadi Y, Sepandi M, Taghdir M, Hosamirudsari H. Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. J Prev Med Hyg. 2020;61:E304-e312.
Google Scholar
Ray PS. Anosmia, ageusia and COVID-19. J Assoc Physicians India. 2020;68:66–9.
Google Scholar
Najafloo R, Majidi J, Asghari A, Aleemardani M, Kamrava SK, Simorgh S, Seifalian A, Bagher Z, Seifalian AM. Mechanism of anosmia caused by symptoms of COVID-19 and emerging treatments. ACS Chem Neurosci. 2021;12:3795–805.
Article
CAS
Google Scholar
Las Casas Lima MH, Cavalcante ALB, Leão SC. Pathophysiological relationship between COVID-19 and olfactory dysfunction: a systematic review. Braz J Otorhinolaryngol. 2021.
Mahalaxmi I, Kaavya J, Mohana Devi S, Balachandar V. COVID-19 and olfactory dysfunction: a possible associative approach towards neurodegenerative diseases. J Cell Physiol. 2021;236:763–70.
Article
CAS
Google Scholar
de Melo GD, Lazarini F, Levallois S, Hautefort C, Michel V, Larrous F, Verillaud B, Aparicio C, Wagner S, Gheusi G, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021; 13.
Vargas-Gandica J, Winter D, Schnippe R, Rodriguez-Morales AG, Mondragon J, Escalera-Antezana JP, Trelles-Thorne MDP, Bonilla-Aldana DK, Rodriguez-Morales AJ, Paniz-Mondolfi A. Ageusia and anosmia, a common sign of COVID-19? A case series from four countries. J Neurovirol. 2020;26:785–9.
Article
CAS
Google Scholar
Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol. 2020;10:1103–4.
Article
Google Scholar
Printza A, Katotomichelakis M, Valsamidis K, Metallidis S, Panagopoulos P, Panopoulou M, Petrakis V, Constantinidis J. Smell and taste loss recovery time in COVID-19 patients and disease severity. J Clin Med. 2021; 10.
Khalifah W, Damanhouri B, Abushal B, Marglani O, Alharbi B, Almaghrabi M, Alosaimy R, Basahal AM. Persistent parosmia caused by COVID-19 infection: an emerging symptom. Cureus. 2021;13: e19921.
Google Scholar
Lee SW, Kim SY, Moon SY, Yang JM, Ha EK, Jee HM, Shin JI, Cho SH, Yon DK, Suh DI. Estimating COVID-19 infection and severity risks in patients with chronic rhinosinusitis: a Korean nationwide cohort study. J Allergy Clin Immunol Pract. 2021;9:2262-2271.e2262.
Article
CAS
Google Scholar
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou HJ, Fletcher RB, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020; 6.
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brünink S, Greuel S, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24:168–75.
Article
CAS
Google Scholar
Pipolo C, Bottai D, Fuccillo E, Aronica E, Bruschi F, Bulfamante AM, Castellani L, Canevini MP, Chiumello D, Ferrari S, et al. Evidence of SARS-CoV-2 in nasal brushings and olfactory mucosa biopsies of COVID-19 patients. PLoS ONE. 2022;17: e0266740.
Article
CAS
Google Scholar
Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, Lietaer C, Choi S, Hether TD, Marcelis L, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184:5932-5949.e5915.
Article
CAS
Google Scholar
Kishimoto-Urata M, Urata S, Kagoya R, Imamura F, Nagayama S, Reyna RA, Maruyama J, Yamasoba T, Kondo K, Hasegawa-Ishii S, Paessler S. Prolonged and extended impacts of SARS-CoV-2 on the olfactory neurocircuit. Sci Rep. 2022;12:5728.
Article
CAS
Google Scholar
Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386.
Article
CAS
Google Scholar
Ueha R, Ito T, Furukawa R, Kitabatake M, Ouji-Sageshima N, Ueha S, Koyama M, Uranaka T, Kondo K, Yamasoba T. Oral SARS-CoV-2 inoculation causes nasal viral infection leading to olfactory bulb infection: an experimental study. Front Cell Infect Microbiol. 2022;12: 924725.
Article
CAS
Google Scholar
Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95:7–14.
Article
CAS
Google Scholar
Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, Ding K, Ma C, Li J, Zhao S, et al. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduct Target Ther. 2021;6:169.
Article
CAS
Google Scholar
Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021;184:1000-1016.e1027.
Article
CAS
Google Scholar
Käufer C, Schreiber CS, Hartke AS, Denden I, Stanelle-Bertram S, Beck S, Kouassi NM, Beythien G, Becker K, Schreiner T, et al. Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine. 2022;79: 103999.
Article
Google Scholar
Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008;63:7–15.
Article
Google Scholar
Prediger RD, Aguiar AS Jr, Matheus FC, Walz R, Antoury L, Raisman-Vozari R, Doty RL. Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson’s disease. Neurotox Res. 2012;21:90–116.
Article
CAS
Google Scholar
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.
Article
Google Scholar
Ferini-Strambi L, Salsone M. COVID-19 and neurological disorders: are neurodegenerative or neuroimmunological diseases more vulnerable? J Neurol. 2021;268:409–19.
Article
CAS
Google Scholar
Mori K, Nagao H, Yoshihara Y. The olfactory bulb: coding and processing of odor molecule information. Science. 1999;286:711–5.
Article
CAS
Google Scholar
Aguilar J, Humanes-Valera D, Alonso-Calviño E, Yague JG, Moxon KA, Oliviero A, Foffani G. Spinal cord injury immediately changes the state of the brain. J Neurosci. 2010;30:7528–37.
Article
CAS
Google Scholar
Curt A, Bruehlmeier M, Leenders KL, Roelcke U, Dietz V. Differential effect of spinal cord injury and functional impairment on human brain activation. J Neurotrauma. 2002;19:43–51.
Article
CAS
Google Scholar
Karunakaran KD, He J, Zhao J, Cui J-L, Zang Y-F, Zhang Z, Biswal BB. Differences in cortical gray matter atrophy of paraplegia and tetraplegia after complete spinal cord injury. J Neurotrauma. 2018;36:2045–51.
Article
Google Scholar
Ferreira FS, Pereira JMS, Reis A, Sanches M, Duarte JV, Gomes L, Moreno C, Castelo-Branco M. Early visual cortical structural changes in diabetic patients without diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255:2113–8.
Article
Google Scholar
Ferreira S, Pereira AC, Quendera B, Reis A, Silva ED, Castelo-Branco M. Primary visual cortical remapping in patients with inherited peripheral retinal degeneration. NeuroImage Clin. 2017;13:428–38.
Article
Google Scholar
Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim S-G, Wollstein G, Schuman JS, Chan KC. Retinal structures and visual cortex activity are impaired prior to clinical vision loss in glaucoma. Sci Rep. 2016;6:31464–31464.
Article
CAS
Google Scholar