Bolivar VJ, Walters SR, Phoenix JL: Assessing autism-like behavior in mice: variations in social interactions among inbred strains.
Behav Brain Res 2007, 176:21–26.
Article
PubMed
Google Scholar
Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, Barbaro JR, Wilson LM, Threadgill DW, Lauder JM, Magnuson TR, Crawley JN: Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains.
Behav Brain Res 2007, 176:4–20.
Article
PubMed
Google Scholar
McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN: Autism-like behavioral phenotypes in BTBR T+tf/J mice.
Genes Brain Behav 2008, 7:152–163.
Article
CAS
PubMed
Google Scholar
Silverman JL, Tolu SS, Barkan CL, Crawley JN: Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP.
Neuropsychopharmacology 2009, 35:976–989.
Article
PubMed
PubMed Central
Google Scholar
Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC: A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice.
Science 2007, 318:71–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kettenmann H, Verkhratsky A: Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain.
FortschrNeurolPsychiatr 2011, 79:588–597.
CAS
Google Scholar
Miller FD, Gauthier AS: Timing is everything: making neurons versus glia in the developing cortex.
Neuron 2007, 54:357–369.
Article
CAS
PubMed
Google Scholar
Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y: The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells.
Development 2004, 131:2791–2801.
Article
CAS
PubMed
Google Scholar
Israsena N, Hu M, Fu W, Kan L, Kessler JA: The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells.
DevBiol 2004, 268:220–231.
CAS
Google Scholar
Zhou CJ, Borello U, Rubenstein JL, Pleasure SJ: Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway.
Neuroscience 2006, 142:1119–1131.
Article
CAS
PubMed
Google Scholar
L’episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B: A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection.
MolNeurodegener 2011, 6:49.
Google Scholar
White BD, Nathe RJ, Maris DO, Nguyen NK, Goodson JM, Moon RT: Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain.
Stem Cells 2010, 28:297–307.
CAS
PubMed
PubMed Central
Google Scholar
Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects.
Cerebellum 2005, 4:206–210.
Article
CAS
PubMed
Google Scholar
Ahlsén G, Rosengren L, Belfrage M, Palm A, Haglid K, Hamberger A, Gillberg C: Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders.
Biol Psychiatry 1993, 33:734–743.
Article
PubMed
Google Scholar
Chahrour M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology.
Neuron 2007, 56:422–437.
Article
CAS
PubMed
Google Scholar
Ballas U, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology.
Nat Neurosci 2009, 12:311–317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lioy DT, Garg SK, Monaghan CE, Jacob R, Foust KD, Kaspar BK, Hirrlinger PG, Frank K, Bissonnette JM, Ballas N, Mandel G: A role for glia in the progression of Rett’s syndrome.
Nature 2011, 475:497–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelley J, Meera N, Doering LC: Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression.
BMC Neurosci 2010, 11:132.
Article
Google Scholar
Stoscheck CM: Quantitation of Protein.
Methods Enzymol 1990, 182:50–69.
Article
CAS
PubMed
Google Scholar
Fatemi SH, Folsom TD, Reutiman TJ, Lee S: Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism.
Synapse 2008, 62:501–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pekny M, Pekna M: Astrocyte intermediate filaments in CNS pathologies and regeneration.
J Pathol 2004, 204:428–437.
Article
CAS
PubMed
Google Scholar
Anderová M, Kubinová S, Mazel T, Chvátal A, Eliasson C, Pekny M, Syková E: Effect of elevated K(1), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice.
Glia 2001, 35:189–203.
Article
PubMed
Google Scholar
Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland M: Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.
Brain Res 2004, 124:114–123.
Article
CAS
Google Scholar
Baorto DM, Mellado W, Shelanski ML: Astrocyte process growth induction by actin breakdown.
J Cell Biol 1997, 117:357–367.
Article
Google Scholar
Danbolt NC: Glutamate uptake.
ProgNeurobiol 2001, 65:1–105.
CAS
Google Scholar
Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV: Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: Implications for CNS glutamate homeostasis.
Glia 2004, 45:155–169.
Article
PubMed
Google Scholar
Torres-Platas SG, Christa H, Maria Antonietta Davoli1 , Gilles Maussion1 , Benoit L, Gustavo T, Naguib M: Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides.
Neuropsychopharmacology 2011, 36:2650–2658.
Article
PubMed
PubMed Central
Google Scholar
Bechmann I, Galea I, Perry VH: What is the blood–brain barrier (not)?
Trends Immunol 2007, 28:5–11.
Article
CAS
PubMed
Google Scholar
Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity.
Trends Immunol 2007, 28:138–145.
Article
CAS
PubMed
Google Scholar
Herx LM, Yong VW: Interleukin-1b is required for the early evolution of reactive astrogliosis following CNS lesion.
J NeuropatholExpNeurol 2001, 60:961–971.
Article
CAS
Google Scholar
Herx LM, Rivest S, Yong VW: Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1b is required for the production of ciliaryneurotrophic factor.
J Immunol 2000, 165:2232–2239.
Article
CAS
PubMed
Google Scholar
Mason JL, Suzuki K, Chaplin DD, Matsushima GK: Interleukin-1b promotes repair of the CNS.
J Neurosci 2001, 21:7046–7052.
CAS
PubMed
Google Scholar
Penkowa M, Moos T, Carrasco J, Hadberg H, Molinero A, Bluethmann H, Hidalgo J: Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice.
Glia 1999, 25:343–357.
Article
CAS
PubMed
Google Scholar
Swartz KR, Liu F, Sewell D, Schochet T, Campbell I, Sandor M, Fabry Z: Interleukin-6 promotes post-traumatic healing in the central nervous system.
Brain Res 2011, 896:86–95.
Article
Google Scholar
Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Brown T, Malik M: Elevated immune response in the brain of autistic patients.
J Neuroimmunol 2009, 207:111–116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism.
Ann Neurol 2005, 57:67–81.
Article
CAS
PubMed
Google Scholar
Ashwood P, Wakefield AJ: Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms.
J Neuroimmunol 2006, 173:126–134.
Article
CAS
PubMed
Google Scholar
Jyonouchi H, Sun S, Le H: Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression.
J Neuroimmunol 2001, 120:170–179.
Article
CAS
PubMed
Google Scholar
Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M: Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children.
PediatrNeurol 2007,36(6):361–365.
Google Scholar
Ingh VK: Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism.
J Neuroimmunol 1996, 66:143–145.
Article
Google Scholar
Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M: Activation of the inflammatory response system in autism.
Neuropsychobiology 2002, 45:1–6.
Article
CAS
PubMed
Google Scholar
Zhang C, Milunsky JM, Newton S, Ko J, Zhao G, Maher TA, Tager-Flusberg H, Bolliger MF, Carter AS, Boucard AA, Powell CM, Südhof TC: A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export.
J Neurosci 2009, 29:10843–10854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Sudhof TC, Brose N: Neuroligins determine synapse maturation and function.
Neuron 2006, 51:741–754.
Article
CAS
PubMed
Google Scholar
Levinson JN, Li R, Kang R, Moukhles H, El-Husseini A, Bamji SX: Postsynaptic scaffolding molecules modulate the localization of neuroligins.
Neuroscience 2010, 165:782–793.
Article
CAS
PubMed
Google Scholar
Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM: Neurexins induce differentiation of GAB-1026.
Thomas NS, Sharp AJ, Browne CE, Skuse D, Hardie C, Dennis NR: Xp deletions associated with autism in three females.
Hum Genet 1999, 104:43–48.
Article
CAS
PubMed
Google Scholar
Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T: Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.
Nat Genet 2003, 34:27–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert M, Smith J, Roskams AJ, Auld VJ: Neuroligin 3 is a vertebrate gliotactin expressed in the olfactory ensheathing glia, a growth-promoting class of macroglia.
Glia 2001, 34:151–164.
Article
CAS
PubMed
Google Scholar
Stephenson DT, O’Neill SM, Narayan S, Tiwari A, Arnold E, Samaroo HD, Du F, Ring RH, Campbell B, Pletcher M, Vaidya VA, Morton D: Histopathologic characterization of the BTBR mouse model of autisticlike behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis.
Mol Autism 2011, 2:7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freeman MR: Specification and Morphogenesis of Astrocytes.
Science 2010, 330:774.
Article
CAS
PubMed
Google Scholar
Hughes EG, Elmariah SB, Balice-Gordon RJ: Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis.
Mol Cell Neurosci 2010, 43:136.
Article
CAS
PubMed
Google Scholar
Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L, Krauss S: A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus.
DevBiol 2007, 311:223–237.
CAS
Google Scholar
Zhou C-J, Zhao C, Pleasure SJ: Wnt signaling mutants have decreased granule cell production and radial glial scaffolding abnormalities.
J Neurosci 2004, 24:121–126.
Article
CAS
PubMed
Google Scholar
Farias GG, Godoy JA, Cerpa W, Varela-Nallar L, Inestrosa NC: Wnt signaling modulates pre- and postsynaptic maturation: therapeutic considerations.
DevDyn 2010, 239:94–101.
CAS
Google Scholar
Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O, Jinde S, Nishida H, Sugiyama T, Kasai K, Watanabe K, Kano Y, Kato N: Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene.
Int J Neuropsychopharmacol 2010, 13:443–449.
Article
CAS
PubMed
Google Scholar
Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski RE, Pietila J, Braun T, Beck G, Folstein SE, Haines JL, Sheffield VC: Evidence supporting WNT2 as an autism susceptibility gene.
Am J Med Genet 2001, 105:406–413.
Article
CAS
PubMed
Google Scholar