Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcin C, et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012;5(3):160–79. https://doi.org/10.1002/aur.239.
Article
PubMed
PubMed Central
Google Scholar
Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011;168(9):904–12. https://doi.org/10.1176/appi.ajp.2011.10101532.
Article
PubMed
Google Scholar
Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1.
Article
PubMed
PubMed Central
Google Scholar
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–44. https://doi.org/10.1038/s41588-019-0344-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
An JY, Lin K, Zhu L, Werling DM, Dong S, Brand H, et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. 2018;362(6420):eaat6576. https://doi.org/10.1126/science.aat6576.
Article
CAS
PubMed
PubMed Central
Google Scholar
RKCY, Merico D, Bookman M, LH J, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20:602–11.
Article
Google Scholar
Ruzzo EK, Perez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, et al. Inherited and de novo genetic risk for autism impacts shared networks. Cell. 2019;178(4):850–66 e826. https://doi.org/10.1016/j.cell.2019.07.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krumm N, O'Roak BJ, Karakoc E, Mohajeri K, Nelson B, Vives L, et al. Transmission disequilibrium of small CNVs in simplex autism. Am J Hum Genet. 2013;93(4):595–606. https://doi.org/10.1016/j.ajhg.2013.07.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72. https://doi.org/10.1038/nature09146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poultney CS, Goldberg AP, Drapeau E, Kou Y, Harony-Nicolas H, Kajiwara Y, et al. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. Am J Hum Genet. 2013;93(4):607–19. https://doi.org/10.1016/j.ajhg.2013.09.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63(9):1026–32. https://doi.org/10.1001/archpsyc.63.9.1026.
Article
PubMed
Google Scholar
Sandin S, Schendel D, Magnusson P, Hultman C, Suren P, Susser E, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry. 2016;21(5):693–700. https://doi.org/10.1038/mp.2015.70.
Article
CAS
PubMed
Google Scholar
Goldmann JM, Wong WS, Pinelli M, Farrah T, Bodian D, Stittrich AB, et al. Parent-of-origin-specific signatures of de novo mutations. Nat Genet. 2016;48(8):935–9. https://doi.org/10.1038/ng.3597.
Article
CAS
PubMed
Google Scholar
Jonsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature. 2017;549(7673):519–22. https://doi.org/10.1038/nature24018.
Article
CAS
PubMed
Google Scholar
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488(7412):471–5. https://doi.org/10.1038/nature11396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki SA, et al. Timing, rates and spectra of human germline mutation. Nat Genet. 2016;48(2):126–33. https://doi.org/10.1038/ng.3469.
Article
CAS
PubMed
Google Scholar
Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285–99. https://doi.org/10.1016/j.neuron.2012.04.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41. https://doi.org/10.1038/nature10945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010;68(4):368–76. https://doi.org/10.1016/j.biopsych.2010.05.024.
Article
PubMed
Google Scholar
Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the cerebral cortex in autism. J Autism Dev Disord. 2012;42(12):2569–84. https://doi.org/10.1007/s10803-012-1513-0.
Article
PubMed
Google Scholar
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81. https://doi.org/10.1002/ana.20315.
Article
CAS
PubMed
Google Scholar
Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70(1):49–58. https://doi.org/10.1001/jamapsychiatry.2013.272.
Article
PubMed
Google Scholar
Takano T. Role of microglia in autism: recent advances. Dev Neurosci. 2015;37(3):195–202. https://doi.org/10.1159/000398791.
Article
CAS
PubMed
Google Scholar
Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 2011;7(2-4):205–13. https://doi.org/10.1017/S1740925X12000142.
Article
PubMed
PubMed Central
Google Scholar
Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, Croen LA, et al. Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol. 2008;204(1-2):149–53. https://doi.org/10.1016/j.jneuroim.2008.07.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol. 2011;232(1-2):196–9. https://doi.org/10.1016/j.jneuroim.2010.10.025.
Article
CAS
PubMed
Google Scholar
Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M. Activation of the inflammatory response system in autism. Neuropsychobiology. 2002;45(1):1–6. https://doi.org/10.1159/000048665.
Article
CAS
PubMed
Google Scholar
Tylee DS, Hess JL, Quinn TP, Barve R, Huang H, Zhang-James Y, et al. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis. Am J Med Genet B Neuropsychiatr Genet. 2017;174(3):181–201. https://doi.org/10.1002/ajmg.b.32511.
Article
CAS
PubMed
Google Scholar
Saffari A, Arno M, Nasser E, Ronald A, Wong CCY, Schalkwyk LC, et al. RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation. Mol Autism. 2019;10(1):38. https://doi.org/10.1186/s13229-019-0285-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albantakis L, Brandi ML, Zillekens IC, Henco L, Weindel L, Thaler H, et al. Alexithymic and autistic traits: Relevance for comorbid depression and social phobia in adults with and without autism spectrum disorder. Autism. 2020;24(8):2046–56. https://doi.org/10.1177/1362361320936024.
Article
PubMed
PubMed Central
Google Scholar
Rulten SL, Hodder E, Ripley TL, Stephens DN, Mayne LV. Alcohol induces DNA damage and the Fanconi anemia D2 protein implicating FANCD2 in the DNA damage response pathways in brain. Alcohol Clin Exp Res. 2008;32(7):1186–96. https://doi.org/10.1111/j.1530-0277.2008.00673.x.
Article
CAS
PubMed
Google Scholar
Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12(11):623–37. https://doi.org/10.1038/nrn3111.
Article
CAS
PubMed
PubMed Central
Google Scholar
CL, MR, PD, SR, KG, SB. Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles: Western Psychological Services; 2012.
Google Scholar
Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85. https://doi.org/10.1007/BF02172145.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/bioinformatics/btp101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez-Coro A, Sanchez-Hernandez BE, Montes S, Martinez-Lazcano JC, Gonzalez-Guevara E, Perez-Severiano F. Alterations in gene expression due to chronic lead exposure induce behavioral changes. Neurosci Biobehav Rev. 2021;126:361–7. https://doi.org/10.1016/j.neubiorev.2021.03.031.
Article
PubMed
Google Scholar
Jyonouchi H, Geng L, Davidow AL. Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: an inflammatory subtype? J Neuroinflammation. 2014;11(1):187. https://doi.org/10.1186/s12974-014-0187-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:120. https://doi.org/10.3389/fncel.2017.00120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jyonouchi H, Sun S, Le H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol. 2001;120(1-2):170–9. https://doi.org/10.1016/S0165-5728(01)00421-0.
Article
CAS
PubMed
Google Scholar
Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol. 2006;172(1-2):198–205. https://doi.org/10.1016/j.jneuroim.2005.11.007.
Article
CAS
PubMed
Google Scholar
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Altered T cell responses in children with autism. Brain Behav Immun. 2011;25(5):840–9. https://doi.org/10.1016/j.bbi.2010.09.002.
Article
CAS
PubMed
Google Scholar
Ashwood P, Anthony A, Torrente F, Wakefield AJ. Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10. J Clin Immunol. 2004;24(6):664–73. https://doi.org/10.1007/s10875-004-6241-6.
Article
CAS
PubMed
Google Scholar
Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 2017;42(1):284–98. https://doi.org/10.1038/npp.2016.158.
Article
CAS
PubMed
Google Scholar
Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013;35(5):601–12. https://doi.org/10.1007/s00281-013-0382-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lintas C, Sacco R, Persico AM. Genome-wide expression studies in autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiol Dis. 2012;45(1):57–68. https://doi.org/10.1016/j.nbd.2010.11.010.
Article
CAS
PubMed
Google Scholar
Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, et al. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun. 2009;23(1):124–33. https://doi.org/10.1016/j.bbi.2008.08.001.
Article
CAS
PubMed
Google Scholar
Siniscalco D, Mijatovic T, Bosmans E, Cirillo A, Kruzliak P, Lombardi VC, et al. Decreased numbers of CD57+CD3- cells identify potential innate immune differences in patients with autism spectrum disorder. In Vivo. 2016;30(2):83–9.
CAS
PubMed
Google Scholar
Whiteley P, Carr K, Shattock P. Is Autism Inborn And Lifelong For Everyone? Neuropsychiatr Dis Treat. 2019;15:2885–91. https://doi.org/10.2147/NDT.S221901.
Article
PubMed
PubMed Central
Google Scholar