Feuerstein GZ, Wang X, Barone FC: Inflammatory gene expression in cerebral ischemia and trauma. Potential new therapeutic targets.
Ann NY Acad Sci 1997, 825:179–193.
Article
CAS
PubMed
Google Scholar
van Buul JD, Hordijk PL: Signaling in leukocyte transendothelial migration.
Arterioscler Thromb Vasc Biol 2004, 24:824–833.
Article
CAS
PubMed
Google Scholar
Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR: Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats.
Stroke 1994, 25:869–875.
Article
CAS
PubMed
Google Scholar
Zhang RL, Chopp M, Li Y, Zaloga C, Jiang N, Jones ML, Miyasaka M, Ward PA: Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat.
Neurology 1994, 44:1747–1751.
Article
CAS
PubMed
Google Scholar
Soriano SG, Lipton SA, Wang YF, Xiao M, Springer TA, Gutierrez-Ramos JC, Hickey PR: Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury.
Ann Neurol 1996, 39:618–624.
Article
CAS
PubMed
Google Scholar
Soriano SG, Coxon A, Wang YF, Frosch MP, Lipton SA, Hickey PR, Mayadas TN: Mice deficient in Mac-1 (CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury.
Stroke 1999, 30:134–139.
Article
CAS
PubMed
Google Scholar
Scallan J, Huxley VH, Korthuis RJ: Capillary Fluid Exchange: Regulation, Functions, and Pathology. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.
Google Scholar
Zhuang J, Shackford SR, Schmoker JD, Anderson ML: The association of leukocytes with secondary brain injury.
J Trauma 1993, 35:415–422.
Article
CAS
PubMed
Google Scholar
Knoblach SM, Faden AI: Administration of either anti-intercellular adhesion molecule-1 or a nonspecific control antibody improves recovery after traumatic brain injury in the rat.
J Neurotrauma 2002, 19:1039–1050.
Article
CAS
PubMed
Google Scholar
Fee D, Crumbaugh A, Jacques T, Herdrich B, Sewell D, Auerbach D, Piaskowski S, Hart MN, Sandor M, Fabry Z: Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury.
J Neuroimmunol 2003, 136:54–66.
Article
CAS
PubMed
Google Scholar
Utagawa A, Bramlett HM, Daniels L, Lotocki G, Dekaban GA, Weaver LC, Dietrich WD: Transient blockage of the CD11d/CD18 integrin reduces contusion volume and macrophage infiltration after traumatic brain injury in rats.
Brain Res 2008, 1207:155–163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenne E, Erlandsson A, Lindbom L, Hillered L, Clausen F: Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice.
J Neuroinflammation 2012, 9:17.
Article
PubMed
PubMed Central
Google Scholar
Hartl R, Medary M, Ruge M, Arfors KE, Ghajar J: Blood–brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence.
Acta Neurochir Suppl 1997, 70:240–242.
CAS
PubMed
Google Scholar
Hartl R, Medary MB, Ruge M, Arfors KE, Ghajar J: Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation.
JCereb Blood Flow Metab 1997, 17:1210–1220.
Article
CAS
Google Scholar
Whalen MJ, Carlos TM, Kochanek PM, Clark RS, Heineman S, Schiding JK, Franicola D, Memarzadeh F, Lo W, Marion DW, Dekosky ST: Neutrophils do not mediate blood–brain barrier permeability early after controlled cortical impact in rats.
J Neurotrauma 1999, 16:583–594.
Article
CAS
PubMed
Google Scholar
Whalen MJ, Carlos TM, Dixon CE, Robichaud P, Clark RS, Marion DW, Kochanek PM: Reduced brain edema after traumatic brain injury in mice deficient in P-selectin and intercellular adhesion molecule-1.
J LeukocBiol 2000, 67:160–168.
CAS
Google Scholar
Zweckberger K, Stoffel M, Baethmann A, Plesnila N: Effect of decompression craniotomy on increase of contusion volume and functional outcome after controlled cortical impact in mice.
J Neurotrauma 2003, 20:1307–1314.
Article
PubMed
Google Scholar
Schwarzmaier SM, Kim SW, Trabold R, Plesnila N: Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice.
J Neurotrauma 2010, 27:121–130.
Article
PubMed
Google Scholar
Kataoka H, Kim SW, Plesnila N: Leukocyte-endothelium interactions during permanent focal cerebral ischemia in mice.
J Cereb Blood Flow Metab 2004, 24:668–676.
Article
PubMed
Google Scholar
Thal SC, Plesnila N: Non-invasive intraoperative monitoring of blood pressure and arterial pCO2 during surgical anesthesia in mice.
J Neurosci Methods 2007, 159:261–267.
Article
PubMed
Google Scholar
Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, Plesnila N: Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice.
J Neurotrauma 2006, 23:1083–1093.
Article
PubMed
Google Scholar
Helmchen F, Denk W: Deep tissue two-photon microscopy.
Nat Methods 2005, 2:932–940.
Article
CAS
PubMed
Google Scholar
Plesnila N, von Baumgarten L, Retiounskaia M, Engel D, Ardeshiri A, Zimmermann R, Hoffmann F, Landshamer S, Wagner E, Culmsee C: Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity.
Cell Death Differ 2007, 14:1529–1541.
Article
CAS
PubMed
Google Scholar
Engel DC, Mies G, Terpolilli NA, Trabold R, Loch A, De Zeeuw CI, Weber JT, Maas AI, Plesnila N: Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol.
J Neurotrauma 2008, 25:739–753.
Article
PubMed
Google Scholar
Groger M, Lebesgue D, Pruneau D, Relton J, Kim SW, Nussberger J, Plesnila N: Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice.
J Cereb Blood Flow Metab 2005, 25:978–989.
Article
PubMed
Google Scholar
Kunkel EJ, Dunne JL, Ley K: Leukocyte arrest during cytokine-dependent inflammation
in vivo
.
J Immunol 2000, 164:3301–3308.
Article
CAS
PubMed
Google Scholar
Sahuquillo J, Poca MA, Amoros S: Current aspects of pathophysiology and cell dysfunction after severe head injury.
Curr Pharm Des 2001, 7:1475–1503.
Article
CAS
PubMed
Google Scholar
Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T: Role of cerebral inflammation after traumatic brain injury: a revisited concept.
Shock 2001, 16:165–177.
Article
CAS
PubMed
Google Scholar
Shojo H, Kaneko Y, Mabuchi T, Kibayashi K, Adachi N, Borlongan CV: Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury.
Neuroscience 2010, 171:1273–1282.
Article
CAS
PubMed
Google Scholar
McKeating EG, Andrews PJ, Mascia L: Leukocyte adhesion molecule profiles and outcome after traumatic brain injury.
Acta Neurochir Suppl 1998, 71:200–202.
CAS
PubMed
Google Scholar
Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T: Inflammatory response in acute traumatic brain injury: a double-edged sword.
Curr Opin Crit Care 2002, 8:101–105.
Article
PubMed
Google Scholar
Hall ED, Bryant YD, Cho W, Sullivan PG: Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fluorojade staining methods.
J Neurotrauma 2008, 25:235–247.
Article
PubMed
Google Scholar
Harlan JM: Leukocyte-endothelial interactions.
Blood 1985, 65:513–525.
CAS
PubMed
Google Scholar
Chen T, Liu W, Chao X, Zhang L, Qu Y, Huo J, Fei Z: Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice.
Brain Res Bull 2011, 84:163–168.
Article
CAS
PubMed
Google Scholar
Qu C, Mahmood A, Ning R, Xiong Y, Zhang L, Chen J, Jiang H, Chopp M: The treatment of traumatic brain injury with velcade.
J Neurotrauma 2010, 27:1625–1634.
Article
PubMed
PubMed Central
Google Scholar
Whalen MJ, Carlos TM, Dixon CE, Schiding JK, Clark RS, Baum E, Yan HQ, Marion DW, Kochanek PM: Effect of traumatic brain injury in mice deficient in intercellular adhesion molecule-1: assessment of histopathologic and functional outcome.
J Neurotrauma 1999, 16:299–309.
Article
CAS
PubMed
Google Scholar
Rothlein R: Overview of leukocyte adhesion.
Neurology 1997,49(Suppl 4):S3-S4.
Article
CAS
PubMed
Google Scholar
Diamond MS, Springer TA: A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen.
J Cell Biol 1993, 120:545–556.
Article
CAS
PubMed
Google Scholar
Edens HA, Parkos CA: Modulation of epithelial and endothelial paracellular permeability by leukocytes.
Adv Drug Deliv Rev 2000, 41:315–328.
Article
CAS
PubMed
Google Scholar
Johnson-Leger C, Aurrand-Lions M, Imhof BA: The parting of the endothelium: miracle, or simply a junctional affair?
J Cell Sci 2000, 113:921–933.
CAS
PubMed
Google Scholar
Elalamy I, Chakroun T, Gerotziafas GT, Petropoulou A, Robert F, Karroum A, Elgrably F, Samama MM, Hatmi M: Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients.
Thromb Res 2008, 121:843–848.
Article
CAS
PubMed
Google Scholar
He P, Zhang H, Zhu L, Jiang Y, Zhou X: Leukocyte-platelet aggregate adhesion and vascular permeability in intact microvessels: role of activated endothelial cells.
Am J Physiol Heart CircPhysiol 2006, 291:H591-H599.
Article
CAS
Google Scholar
Lehr HA, Olofsson AM, Carew TE, Vajkoczy P, von Andrian UH, Hubner C, Berndt MC, Steinberg D, Messmer K, Arfors KE: P-selectin mediates the interaction of circulating leukocytes with platelets and microvascular endothelium in response to oxidized lipoprotein
in vivo
.
Lab Invest 1994, 71:380–386.
CAS
PubMed
Google Scholar
Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP: P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin.
J Cell Biol 1995, 128:661–671.
Article
CAS
PubMed
Google Scholar
Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E: Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage.
Neurosurgery 2009, 64:546–553.
Article
PubMed
Google Scholar
van der Sande JJ, Emeis JJ, Lindeman J: Intravascular coagulation: a common phenomenon in minor experimental head injury.
J Neurosurg 1981, 54:21–25.
Article
CAS
PubMed
Google Scholar
Holmin S, Soderlund J, Biberfeld P, Mathiesen T: Intracerebral inflammation after human brain contusion.
Neurosurgery 1998, 42:291–298.
Article
CAS
PubMed
Google Scholar
Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM: Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models.
J Neurotrauma 1994, 11:499–506.
Article
CAS
PubMed
Google Scholar
Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM: Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats.
J Leukoc Biol 1997, 61:279–285.
CAS
PubMed
Google Scholar
Holmin S, Mathiesen T, Shetye J, Biberfeld P: Intracerebral inflammatory response to experimental brain contusion.
Acta Neurochir(Wien) 1995, 132:110–119.
Article
CAS
Google Scholar
Soares HD, Hicks RR, Smith D, McIntosh TK: Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury.
J Neurosci 1995, 15:8223–8233.
CAS
PubMed
Google Scholar
Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN: Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion.
Am J Physiol Heart Circ Physiol 2004, 287:H2555-H2560.
Article
CAS
PubMed
Google Scholar
Matsuo Y, Onodera H, Shiga Y, Shozuhara H, Ninomiya M, Kihara T, Tamatani T, Miyasaka M, Kogure K: Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat.
Brain Res 1994, 656:344–352.
Article
CAS
PubMed
Google Scholar
Prestigiacomo CJ, Kim SC, Connolly ES Jr, Liao H, Yan SF, Pinsky DJ: CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke.
Stroke 1999, 30:1110–1117.
Article
CAS
PubMed
Google Scholar
Bramlett HM, Dietrich WD: Pathophysiology of cerebral ischemia and brain trauma: similarities and differences.
J Cereb Blood Flow Metab 2004, 24:133–150.
Article
PubMed
Google Scholar
Lighthall JW, Dixon CE, Anderson TE: Experimental models of brain injury.
J Neurotrauma 1989, 6:83–97.
Article
CAS
PubMed
Google Scholar
Carbonell WS, Maris DO, McCall T, Grady MS: Adaptation of the fluid percussion injury model to the mouse.
J Neurotrauma 1998, 15:217–229.
Article
CAS
PubMed
Google Scholar
Dietrich WD, Alonso O, Halley M: Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats.
J Neurotrauma 1994, 11:289–301.
Article
CAS
PubMed
Google Scholar
Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL: A controlled cortical impact model of traumatic brain injury in the rat.
J Neurosci Methods 1991, 39:253–262.
Article
CAS
PubMed
Google Scholar