American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. 2000, Washington, DC: American Psychiatric Association, 4
Google Scholar
Esposito G, Venuti P: Analysis of toddlers’ gait after six months of independent walking to identify autism: a preliminary study. Percept Mot Skills. 2008, 106 (1): 259-269. 10.2466/pms.106.1.259-269.
Article
PubMed
Google Scholar
Lord C, Rutter M, le Couteur A: Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994, 24 (5): 659-685. 10.1007/BF02172145.
Article
PubMed
Google Scholar
Baranek G: Sensory and motor features in autism: assessment and intervention. Handbook of Autism and Pervasive Developmental Disorders. Edited by: Volkmar FR, Paul R, Klin A, Cohen D. 2005, Hoboken NJ: John Wiley & Sons Inc, 831-857. 3
Google Scholar
Ozonoff S, Young GS, Goldring S, Greiss-Hess L, Herrera AM, Steele J, Macari S, Hepburn S, Rogers SJ: Gross motor development, movement abnormalities, and early identification of autism. J Autism Dev Disord. 2008, 38 (4): 644-656. 10.1007/s10803-007-0430-0.
Article
PubMed Central
PubMed
Google Scholar
Esposito G, Venuti P, Maestro S, Muratori F: An exploration of symmetry in early autism spectrum disorders: analysis of lying. Brain Dev. 2009, 31 (2): 131-138. 10.1016/j.braindev.2008.04.005.
Article
PubMed
Google Scholar
Pizzarelli R, Cherubini E: Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast. 2011, Article ID: 297153.
Google Scholar
Rogers SJ, Vismara LA: Evidence-based comprehensive treatments for early autism. J Clin Child Adolesc Psychol. 2008, 37: 8-38. 10.1080/15374410701817808.
Article
PubMed Central
PubMed
Google Scholar
Kałuzna-Czaplińska J, Socha E, Rynkowski J: Determination of homovanillic acid and vanillylmandelic acid in urine of autistic children by gas chromatography/mass spectrometry. Med Sci Monit. 2010, 16 (9): 445-450.
Google Scholar
Hammock E, Veenstra-VanderWeele J, Yan Z, Kerr TM, Morris M, Anderson GM, Carter CS, Cook EH, Jacob S: Examining autism spectrum disorders by biomarkers: example from the oxytocin and serotonin systems. J Am Acad Child Adolesc Psychiatry. 2012, 51 (7): 712-721. 10.1016/j.jaac.2012.04.010.
Article
PubMed Central
PubMed
Google Scholar
Anderson GM, Hertzig ME, McBride PA: Platelet-poor plasma serotonin in autism. J Autism Dev Disord. 2012, 42 (7): 1510-1514. 10.1007/s10803-011-1371-1.
Article
PubMed
Google Scholar
El-Ansary AK, Bacha AB, Ayahdi LY: Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clin Biochem. 2011, 44: 1116-1120. 10.1016/j.clinbiochem.2011.06.982.
Article
PubMed
Google Scholar
Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD: Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum. 2009, 8 (1): 64-69. 10.1007/s12311-008-0075-3.
Article
PubMed Central
PubMed
Google Scholar
Blatt GJ, Fatemi SH: Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications. Anat Rec (Hoboken). 2011, 294 (10): 1646-1652. 10.1002/ar.21252.
Article
Google Scholar
Kubas B, Kułak W, Sobaniec W, Tarasow E, Lebkowska U, Walecki J: Metabolite alterations in autistic children: a 1H MR spectroscopy study. Adv Med Sci. 2012, 57 (1): 152-156.
Article
PubMed
Google Scholar
Al-Ayadhi LY: Altered oxytocin and vasopressin levels in autistic children in Central Saudi Arabia. Neurosciences (Riyadh). 2005, 10 (1): 47-50.
Google Scholar
Ragini M, Banji O, Banji D, Pratusha G, Kumar K, Ananthula MR: Biomarkers in Autism. Int J Pharm Tech Res. 2011, 3: 1281-1289.
Google Scholar
Haroon E, Raison CL, Miller AH: Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012, 37: 137-162. 10.1038/npp.2011.205.
Article
PubMed Central
PubMed
Google Scholar
Leonard BE: Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry. 2014, 48: 261-267.
Article
PubMed
Google Scholar
Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 2005, 4: 206-210. 10.1080/14734220500208846.
Article
PubMed
Google Scholar
Fatemi SH, Folsom TD, Reutiman TJ, Lee S: Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse. 2008, 62: 501-507. 10.1002/syn.20519.
Article
PubMed Central
PubMed
Google Scholar
Müller N, Schwarz MJ: The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007, 12: 988-1000. 10.1038/sj.mp.4002006.
Article
PubMed
Google Scholar
Pacheco R, Gallart T, Lluis C, Franco R: Role of glutamate on T-cell mediated immunity. J Neuroimmunol. 2007, 185: 9-19. 10.1016/j.jneuroim.2007.01.003.
Article
PubMed
Google Scholar
Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ: GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neurosci Biobehav Rev. 2012, 36: 2044-2055. 10.1016/j.neubiorev.2012.07.005.
Article
PubMed Central
PubMed
Google Scholar
Hussman JP: Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord. 2001, 31 (2): 247-248. 10.1023/A:1010715619091.
Article
PubMed
Google Scholar
Fatemi SH, Folsom TD, Kneeland RE, Liesch SB: Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken). 2011, 294 (10): 1635-1645. 10.1002/ar.21299.
Article
Google Scholar
Singh VK: Plasma increase of interleukin-12 and interferon-gamma: pathological significance in autism. J Neuroimmunol. 1996, 66: 143-145. 10.1016/0165-5728(96)00014-8.
Article
PubMed
Google Scholar
El-Ansary A, Ben Bacha AG, Al-Ayadhi LY: Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J Neuroinflammation. 2011, 8: 142-10.1186/1742-2094-8-142.
Article
PubMed Central
PubMed
Google Scholar
Wei H, Alberts I, Li X: Brain IL-6 and autism. Neuroscience. 2013, 252 (12 N): 320-325.
Article
PubMed
Google Scholar
El-Ansary A, Al-Ayadhi LY: Neuroinflammation in autism spectrum disorders. J Neuroinflammation. 2012, 9: 265-10.1186/1742-2094-9-265.
Article
PubMed Central
PubMed
Google Scholar
Boehm U, Klamp T, Groot M, Howard JC: Cellular responses to interferon-gamma. Annu Rev Immunol. 1997, 15: 749-795. 10.1146/annurev.immunol.15.1.749.
Article
PubMed
Google Scholar
Mick KA: Diagnosing Autism: Comparison of the Childhood Autism Rating Scale (CARS) and the Autism Diagnostic Observation Schedule (ADOS).PhD Dissertation. 2005, Kansas: Wichita State University
Google Scholar
Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W: Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord. 2003, 33: 427-433. 10.1023/A:1025014929212.
Article
PubMed
Google Scholar
Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijsdijk F, Tabrizi SJ, Banner S, Shaw CE, Foy C, Poppe M, Archer N, Hamilton G, Powell J, Brown RG, Sham P, Ward M, Lovestone S: Proteome-based plasma biomarkers for Alzheimer’s disease. Brain. 2006, 129: 3042-3050. 10.1093/brain/awl279.
Article
PubMed
Google Scholar
Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Fitzgerald PB: GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology. 2013, 68: 202-209.
Article
PubMed
Google Scholar
Blatt GJ: The neuropathology of autism. Scientifica (Cairo). 2012, 2012: 703675.
Google Scholar
Mendez MA, Horder J, Myers J, Coghlan S, Stokes P, Erritzoe D, Howes O, Lingford-Hughes A, Murphy D, Nutt D: The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology. 2013, 68: 195-201.
Article
PubMed Central
PubMed
Google Scholar
DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW: Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci. 1998, 18 (20): 8505-8514.
PubMed
Google Scholar
Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, Garner CC, Heller HC: Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down’s syndrome. Br J Pharmacol. 2013, 169 (5): 963-973. 10.1111/bph.12169.
Article
PubMed Central
PubMed
Google Scholar
Meneses A: 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci. 2013, 24 (6): 629-664.
Article
PubMed
Google Scholar
Spivak B, Golubchik P, Mozes T, Vered Y, Nechmad A, Weizman A, Strous RD: Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology. 2004, 50 (2): 157-160. 10.1159/000079108.
Article
PubMed
Google Scholar
Mostafa GA, Al-Ayadhi LY: A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation. 2011, 22 (8): 71.
Article
Google Scholar
Connors SL: Prenatal β2-adrenergic receptor signaling and autism: dysmaturation and retained fetal function. Autism Current Theories and Evidence. Edited by: Zimmerman AW. 2008, Totowa: Humana Press, 147-182.
Google Scholar
Marazziti D, Dell’Osso B, Baroni S, Vivarelli L, Masala F, Mungai F, Muratori F: The serotonin transporter is increased in platelets of autistic children. Trends in Autism Research. Edited by: Ryaskin OT. 2004, New York: Nova Science, 187-195.
Google Scholar
Gorton GE, Swirsky-Sacchetti T, Sobel R, Samuel S, Gordon A: Neuropsychology of childhood mental disorders: interaction of phenomenological, neurobiological, and neuropsychological findings. Assessment of Neuropsychological Functions in Psychiatric Disorders. Edited by: Avraham C. 1999, Washington DC: American Psychiatric Press, 135-233.
Google Scholar
Kuperman S, Beeghly JH, Burns TL, Tsai LY: Association of serotonin concentration to behavior and IQ in autistic children. J Autism Dev Disord. 1987, 17 (1): 133-140. 10.1007/BF01487265.
Article
PubMed
Google Scholar
Gillberg C, Svennerholm L: CSF monoamines in autistic syndromes and other pervasive developmental disorders of early childhood. Br J Psychiatry. 1987, 151: 89-94. 10.1192/bjp.151.1.89.
Article
PubMed
Google Scholar
Toda Y, Mori K, Hashimoto T, Miyazaki M, Nozaki S, Watanabe Y, Kuroda Y, Kagami S: Administration of secretin for autism alters dopamine metabolism in the central nervous system. Brain Dev. 2006, 28: 99-103. 10.1016/j.braindev.2005.05.005.
Article
PubMed
Google Scholar
Previc FH: Prenatal influences on brain dopamine and their relevance to the rising incidence of autism. Medical Hypotheses. 2007, 68: 46-60. 10.1016/j.mehy.2006.06.041.
Article
PubMed
Google Scholar
Narayan M, Srinath S, Anderson GM, Meundi DB: Cerebrospinal fluid levels of homovanillic acid and 5-hydroxyindoleacetic acid in autism. Biol Psychiatry. 1993, 33 (8–9): 630-635.
Article
PubMed
Google Scholar
Field T, Diego M, Hernandez-Reif M, Figueiredo B, Deeds O, Ascencio A, Schanberg S: Cynthia Kuhn Prenatal dopamine and neonatal behavior and biochemistry. Infant Behav Dev. 2008, 31: 590-593. 10.1016/j.infbeh.2008.07.007.
Article
PubMed Central
PubMed
Google Scholar
Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE: Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci. 2003, 23 (6): 2008-2013.
PubMed
Google Scholar
Schouwenburg MV, Aarts E, Cools R: Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. Curr Pharm Des. 2010, 16: 2026-2032. 10.2174/138161210791293097.
Article
PubMed
Google Scholar
Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, Belovich AN, Sahai MA, Cook EH, Gether U, McHaourab HS, Matthies HJ, Sutcliffe JS, Galli A, NIH ARRA Autism Sequencing Consortium: De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013, 18: 1315-1323. 10.1038/mp.2013.102.
Article
PubMed Central
PubMed
Google Scholar
Kaufman S, Friedman S: Dopamine β-hydroxylase. Pharmacol Rev. 1965, 17: 71-100.
PubMed
Google Scholar
Elston RC, Namboodiri KK, Hames CG: Segregation and linkage analyses of dopamine-β-hydroxylase activity. Hum Hered. 1979, 29: 284-292. 10.1159/000153059.
Article
PubMed
Google Scholar
Robinson PD, Schutz CK, Macciardi F, White BN, Holden JJA: Genetically determined low maternal serum dopamine β-hydroxylase levels and the etiology of autism spectrum disorders. Am J Med Genet. 2001, 100: 30-36. 10.1002/ajmg.1187.
Article
PubMed
Google Scholar
Young LJ, Lim MM, Gingrich B, Insel TR: Cellular mechanisms of social attachment. Horm Behav. 2001, 40 (2): 133-138. 10.1006/hbeh.2001.1691.
Article
PubMed
Google Scholar
Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M: Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry. 2001, 50 (8): 609-613. 10.1016/S0006-3223(01)01139-8.
Article
PubMed
Google Scholar
Lee HJ, Caldwell HK, Macbeth AH, Tolu SG, Young WS: A conditional knockout mouse line of the oxytocin receptor. Endocrinology. 2008, 149 (7): 3256-3263. 10.1210/en.2007-1710.
Article
PubMed Central
PubMed
Google Scholar
Cao Y, Wu R, Tai F, Zhang X, Yu P, An X, Qiao X, Hao P: Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles. Horm Behav. 2014, 6: 57-65.
Article
Google Scholar
Lukas M, Neumann ID: Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behav Brain Res. 2013, 251: 85-94.
Article
PubMed
Google Scholar
Hoge EA, Pollack MH, Kaufman RE, Zak PJ, Simon NM: Oxytocin levels in social anxiety disorder. CNS Neurosci Ther. 2008, 14 (3): 165-170. 10.1111/j.1755-5949.2008.00051.x.
Article
PubMed
Google Scholar
El-Masry N, Soliman A, Abdel Moety H: Alterations of prolyl endopeptidase, oxytocin and vasopressin activity in the plasma of autistic children. Current Psychiatry. 2010, 17 (1): 31-37.
Google Scholar
Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR, Leckman JF, Grigorenko EL: Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry. 2008, 63: 911-916. 10.1016/j.biopsych.2007.11.015.
Article
PubMed Central
PubMed
Google Scholar
Borden EC: Gene regulation and clinical roles for interferons in neoplastic diseases. Oncologist. 1998, 3: 198-203.
PubMed
Google Scholar
Garcia-Sastre A, Biron CA: Type I interferons and the virus-host relationship: a lesson in détente. Science. 2006, 312: 879-882. 10.1126/science.1125676.
Article
PubMed
Google Scholar
Conrady CD, Zheng M, Mandal NA, van Rooijen N, Carr DJ: IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunol. 2013, 6 (1): 45-55. 10.1038/mi.2012.46.
Article
PubMed Central
PubMed
Google Scholar
Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM: Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis. 2008, 30 (3): 303-311. 10.1016/j.nbd.2008.01.012.
Article
PubMed Central
PubMed
Google Scholar
Santana-de Anda K, Gómez-Martín D, Soto-Solís R, Alcocer-Varela J: Plasmacytoid dendritic cells: key players in viral infections and autoimmune diseases. Semin Arthritis Rheum. 2013, 43 (1): 131-136. 10.1016/j.semarthrit.2012.12.026.
Article
PubMed
Google Scholar
Gugliesi F, Mondini M, Ravera R, Robotti A, de Andrea M, Gribaudo G, Gariglio M, Landolfo S: Up-regulation of the interferon-inducible IFI16 gene by oxidative stress triggers p53 transcriptional activity in endothelial cells. J LeukocBiol. 2005, 77 (5): 820-829.
Article
Google Scholar
Lam S, Li Q, Wei R, Zhang X, Chua S, McAlonan GM: Oxygen restriction of neonate rats elevates HIF-1a, IL-6, NF-kB and caspases-3 protein levels: possible relationship to neurodevelopmental disorders. Abstracts of the 3rd Biennial Schizophrenia Int Res Conf/Schizophr Res. 2012, 136 (Supplement 1): S1-S375.
Google Scholar
Malik M, Tauqeer Z, Sheikh AM, Wen G, Nagori A, Yang K, Brown WT, Li X: NF-κB signaling in the brain of autistic subjects. Mediators Inflamm. 2011, Article ID: 785265.
Google Scholar