Lin Z-B. Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci. 2005;99:144–53. Japan.
Article
CAS
PubMed
Google Scholar
Sliva D. Cellular and physiological effects of Ganoderma lucidum (Reishi). Mini Rev Med Chem. 2004;4:873–9. Netherlands.
Article
CAS
PubMed
Google Scholar
Wubshet SG, Johansen KT, Nyberg NT, Jaroszewski JW. Direct (13)C NMR detection in HPLC hyphenation mode: analysis of Ganoderma lucidum terpenoids. J Nat Prod. 2012;75:876–82. United States.
Article
CAS
PubMed
Google Scholar
Pan K, Jiang Q, Liu G, Miao X, Zhong D. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. Int J Biol Macromol. 2013;55:301–6. Netherlands.
Article
CAS
PubMed
Google Scholar
Huang S-Q, Li J-W, Wang Z, Pan H-X, Chen J-X, Ning Z-X. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules. 2010;15:3694–708. Switzerland.
Article
CAS
PubMed
Google Scholar
Zhao H-B, Lin S-Q, Liu J-H, Lin Z-B. Polysaccharide extract isolated from ganoderma lucidum protects rat cerebral cortical neurons from hypoxia/reoxygenation injury. J Pharmacol Sci. 2004;95:294–8. Japan.
Article
CAS
PubMed
Google Scholar
Cheung WM, Hui WS, Chu PW, Chiu SW, Ip NY. Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Lett. 2000;486:291–6. Netherlands.
Article
CAS
PubMed
Google Scholar
Zhang J, Tang Q, Zhou C, Jia W, Da Silva L, Nguyen LD, et al. GLIS, a bioactive proteoglycan fraction from Ganoderma lucidum, displays anti-tumour activity by increasing both humoral and cellular immune response. Life Sci. 2010;87:628–37. Netherlands.
Article
CAS
PubMed
Google Scholar
Lai CS-W, Yu M-S, Yuen W-H, So K-F, Zee S-Y, Chang RC-C. Antagonizing beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res. 2008;1190:215–24. Netherlands.
Article
CAS
PubMed
Google Scholar
Zhou Y, Qu Z, Zeng Y, Lin Y, Li Y, Chung P, et al. Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol. 2012;64:673–80. Germany.
Article
PubMed
Google Scholar
Selkoe DJ. Alzheimer’s disease: genotypes, phenotypes, and treatments. Science. 1997;275:630–1. United States.
Article
CAS
PubMed
Google Scholar
Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007;184:69–91. Netherlands.
Article
CAS
PubMed
Google Scholar
Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6:193–201. England.
Article
PubMed
Google Scholar
Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15:209–16. England.
Article
CAS
PubMed
Google Scholar
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49:1422–34. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol. 2001;2:108–15. United States.
Article
CAS
PubMed
Google Scholar
Gao L, Tang H, Nie K, Wang L, Zhao J, Gan R, et al. MCP-1 and CCR2 gene polymorphisms in Parkinson’s disease in a Han Chinese cohort. Neurol Sci. 2015;36:571–6. Italy.
Article
PubMed
Google Scholar
Nagata T, Nagano I, Shiote M, Narai H, Murakami T, Hayashi T, et al. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res. 2007;29:772–6. England.
Article
CAS
PubMed
Google Scholar
El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med. 2003;197:1657–66. United States.
Article
PubMed
PubMed Central
Google Scholar
Hickman SE, El Khoury J. Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9:168–73. United Arab Emirates.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selenica M-LB, Alvarez JA, Nash KR, Lee DC, Cao C, Lin X, et al. Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. J Neuroinflammation. 2013;10:86. England.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci. 1997;51:135–8. Australia.
Article
CAS
PubMed
Google Scholar
Wang P, Liao W, Fang J, Liu Q, Yao J, Hu M, et al. A glucan isolated from flowers of Lonicera japonica Thunb. inhibits aggregation and neurotoxicity of Abeta42. Carbohydr Polym. 2014;110:142–7. England.
Article
CAS
PubMed
Google Scholar
Stine WB, Jungbauer L, Yu C, LaDu MJ. Preparing synthetic Abeta in different aggregation states. Methods Mol Biol. 2011;670:13–32. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou Y, Wang Y, Zhao J, Li X, Cui J, Ding J, et al. Smart Soup, a traditional Chinese medicine formula, ameliorates amyloid pathology and related cognitive deficits. PLoS One. 2014;9:e111215. United States.
Article
PubMed
PubMed Central
Google Scholar
Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron. 2013;79:873–86. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310. UNITED STATES.
Article
CAS
PubMed
Google Scholar
Li Y, Du X, Pei G, Du J, Zhao J. beta-Arrestin1 regulates the morphology and dynamics of microglia in zebrafish in vivo. Eur J Neurosci. 2016;43:131–8. France.
Article
PubMed
Google Scholar
Li Y, Du X-F, Liu C-S, Wen Z-L, Du J-L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell. 2012;23:1189–202. United States.
Article
CAS
PubMed
Google Scholar
Zhang R, Xu S, Cai Y, Zhou M, Zuo X, Chan P. Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation. Evid Based Complement Alternat Med. 2011;2011:156810. United States.
PubMed
PubMed Central
Google Scholar
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14:653–66. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Available from: http://dx.doi.org/10.1038/nri3737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H. Microglial CD33-related siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci. 2013;33:18270. LP – 18276. Available from: http://www.jneurosci.org/content/33/46/18270.abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopatz J, Beutner C, Welle K, Bodea LG, Reinhardt J, Claude J, et al. Siglec-h on activated microglia for recognition and engulfment of glioma cells. Glia. 2013;61:1122–33. United States.
Article
PubMed
Google Scholar
Neumann J, Sauerzweig S, Rönicke R, Gunzer F, Dinkel K, Ullrich O, et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci. 2008;28:5965. LP – 5975. Available from: http://www.jneurosci.org/content/28/23/5965.abstract.
Article
CAS
PubMed
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8. United States.
Article
CAS
PubMed
Google Scholar
Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553. United States.
Article
CAS
PubMed
Google Scholar
Rothwell N, Allan S, Toulmond S. The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest. 1997;100:2648–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006;8:929–47. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1963415/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su F, Bai F, Zhang Z. Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci Bull. 2016;32:469–80. China.
Article
CAS
PubMed
Google Scholar
Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68:930–41. United States.
Article
CAS
PubMed
Google Scholar
Zhou X, Spittau B, Krieglstein K. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation. 2012;9:210. Available from: http://dx.doi.org/10.1186/1742-2094-9-210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7:612–8. United States.
Article
CAS
PubMed
Google Scholar
Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, et al. Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease. Stem Cell Rep. 2017;8:84–94. United States.
Article
CAS
Google Scholar
Kurpius D, Nolley EP, Dailey ME. Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia. 2007;55:873–84. United States.
Article
PubMed
Google Scholar
Tremblay M-È, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010;8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970556/.
Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, et al. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. Block M, editor. PLoS One. 2011;6:e15973. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026789/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation. 2013;10:4. England.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cizkova D, Devaux S, Le Marrec-Croq F, Franck J, Slovinska L, Blasko J, et al. Modulation properties of factors released by bone marrow stromal cells on activated microglia: an in vitro study. Sci Rep. 2014;4:7514. England.
Article
CAS
PubMed
Google Scholar
Peri F, Nüsslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell. 2008;133:916–27. Available from: http://www.sciencedirect.com/science/article/pii/S0092867408006119.
Article
CAS
PubMed
Google Scholar
Park H-C, Kim C-H, Bae Y-K, Yeo S-Y, Kim S-H, Hong S-K, et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000;227:279–93. Available from: http://www.sciencedirect.com/science/article/pii/S0012160600998981.
Article
CAS
PubMed
Google Scholar
Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001;238:274–88. United States.
Article
CAS
PubMed
Google Scholar
Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development. 1999;126:3735–45. England.
CAS
PubMed
Google Scholar
Harris JA, Devidze N, Halabisky B, Lo I, Thwin MT, Yu G-Q, et al. Many neuronal and behavioral impairments in transgenic mouse models of Alzheimer’s disease are independent of caspase cleavage of the amyloid precursor protein. J Neurosci. 2010;30:372–81. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78. United States.
Article
CAS
PubMed
Google Scholar
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89. United States.
Article
CAS
PubMed
Google Scholar
Neher JJ, Emmrich JV, Fricker M, Mander PK, Thery C, Brown GC. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci U S A. 2013;110:E4098–107. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fricker M, Oliva-Martin MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Abeta is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation. 2012;9:196. England.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neniskyte U, Neher JJ, Brown GC. Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem. 2011;286:39904–13. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kao AW, Eisenhut RJ, Martens LH, Nakamura A, Huang A, Bagley JA, et al. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci U S A. 2011;108:4441–6. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marker DF, Puccini JM, Mockus TE, Barbieri J, Lu S-M, Gelbard HA. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. J Neuroinflammation. 2012;9:261. England.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27. United States.
Article
CAS
PubMed
Google Scholar
Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–41. United States.
Article
CAS
PubMed
PubMed Central
Google Scholar