Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5:575–81.
Article
CAS
Google Scholar
Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology. 2014;141:314–27.
Article
CAS
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.
Article
CAS
Google Scholar
Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.
Article
CAS
Google Scholar
Silver R, Silverman AJ, Vitković L, Lederhendler II. Mast cells in the brain: evidence and functional significance. Trends Neurosci. 1996;19:25–31.
Article
CAS
Google Scholar
Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman A-J. Brain mast cell relationship to neurovasculature during development. Brain Res. 2007;1171:18–29.
Article
CAS
Google Scholar
Hendrix S, Warnke K, Siebenhaar F, Peters EMJ, Nitsch R, Maurer M. The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett. 2006;392:174–7.
Article
CAS
Google Scholar
Taiwo OB, Kovács KJ, Larson AA. Chronic daily intrathecal injections of a large volume of fluid increase mast cells in the thalamus of mice. Brain Res. 2005;1056:76–84.
Article
CAS
Google Scholar
Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14:478–94.
Article
CAS
Google Scholar
Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6:135–42.
Article
CAS
Google Scholar
Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res. 2012;61:113–24.
CAS
PubMed
Google Scholar
Gurish MF, Austen KF. The diverse roles of mast cells. J Exp Med. 2001;194:F1–5.
Article
CAS
Google Scholar
Theoharides TC, Alysandratos K-D, Angelidou A, Delivanis D-A, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochim Biophys Acta Mol Basis Dis. 2012;1822:21–33.
Article
CAS
Google Scholar
Bienenstock J, Macqueen G, Sestini P, Marshall JS, Stead RH, Perdue MH. Mast cell/nerve interactions in vitro and in vivo. Am Rev Respir Dis. 1991;143:S55–8.
Article
CAS
Google Scholar
Suzuki R, Furuno T, McKay DM, Wolvers D, Teshima R, Nakanishi M, et al. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J Immunol. 1999;163:2410–5.
CAS
PubMed
Google Scholar
van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. Relevance of mast cell–nerve interactions in intestinal nociception. Biochim Biophys Acta Mol Basis Dis. 2012;1822:74–84.
Article
Google Scholar
Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989;97:575–85.
Article
CAS
Google Scholar
Weinreich D, Undem BJ, Leal-Cardoso JH. Functional effects of mast cell activation in sympathetic ganglia. Ann N Y Acad Sci. 1992;664:293–308.
Article
CAS
Google Scholar
Kowalski ML, Kaliner MA. Neurogenic inflammation, vascular permeability, and mast cells. J Immunol. 1988;140:3905–11.
CAS
PubMed
Google Scholar
Dvorak A, Monahan R, Osage J, Dickersin G. Mast-cell degranulation in crohn’s disease. Lancet. 1978;311:498.
Article
Google Scholar
Raithel M, Winterkamp S, Pacurar A, Ulrich P, Hochberger J, Hahn EG. Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease. Scand J Gastroenterol. 2001;36:174–9.
Article
CAS
Google Scholar
Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R. Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci U S A. 2008;105:18053.
Article
CAS
Google Scholar
Shaik-Dasthagirisaheb Y, Conti P. The role of mast cells in Alzheimer’s disease. Adv Clin Exp Med. 2016;25:781–7.
Article
Google Scholar
Vliagoftis H, Befus AD. Rapidly changing perspectives about mast cells at mucosal surfaces. Immunol Rev. 2005;206:190–203.
Article
CAS
Google Scholar
Janiszewski J, Bienenstock J, Blennerhassett MG. Activation of rat peritoneal mast cells in coculture with sympathetic neurons alters neuronal physiology. Brain Behav Immun. 1990;4:139–50.
Article
CAS
Google Scholar
Suzuki A, Suzuki R, Furuno T, Teshima R, Nakanishi M. Calcium response and FcepsilonRI expression in bone marrow-derived mast cells co-cultured with SCG neurites. Biol Pharm Bull. 2005;28:1963–5.
Article
CAS
Google Scholar
Cabeza JM, Acosta J, Alés E. Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem. 2013;288:20293–305.
Article
CAS
Google Scholar
Kovarova M. Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol. 2013:109–19.
Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012;10:486–9.
Article
Google Scholar
Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, et al. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012;7:e52104.
Article
CAS
Google Scholar
KATZ B, MILEDI R. The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc London Ser B Biol Sci. 1965;161:496–503.
CAS
Google Scholar
Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005;15:266–74.
Article
CAS
Google Scholar
Hoopmann P, Rizzoli SO, Betz WJ. Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Cold Spring Harb Protoc. 2012;2012:77–83.
PubMed
Google Scholar
Ryan TA. Presynaptic imaging techniques. Curr Opin Neurobiol. 2001;11:544–9.
Article
CAS
Google Scholar
Chen C-C, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ. From The Cover: Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci. 2005;102:11408–13.
Article
CAS
Google Scholar
Ramírez-Franco JJ, Munoz-Cuevas FJ, Luján R, Jurado S. Excitatory and inhibitory neurons in the hippocampus exhibit molecularly distinct large dense core vesicles. Front Cell Neurosci. 2016;10:202.
Article
Google Scholar
de Toledo GA, Fernández-Chacón R, Fernández JM. Release of secretory products during transient vesicle fusion. Nature. 1993;363:554–8.
Article
Google Scholar
Alés E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the kiss-and-runmechanism. Nat Cell Biol. 1999;1:40–4.
Article
Google Scholar
Segovia M, Alés E, Montes AM, Bonifas I, Jemal I, Lindau M, et al. Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A. 2010;107:19032–7.
Article
CAS
Google Scholar
Fulop T, Radabaugh S, Smith C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci. 2005;25:7324–32.
Article
CAS
Google Scholar
Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, et al. Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci. 2012;36:2347–59.
Article
Google Scholar
Cirulli F, Pistillo L, de Acetis L, Alleva E, Aloe L. Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav Immun. 1998;12:123–33.
Article
CAS
Google Scholar
Asarian L, Yousefzadeh E, Silverman A-J, Silver R. Stimuli from conspecifics influence brain mast cell population in male rats. Horm Behav. 2002;42:1–12.
Article
CAS
Google Scholar
Anand P, Singh B, Jaggi AS, Singh N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:657–70.
Article
CAS
Google Scholar
Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron Cell Press. 2008;59:861–72.
CAS
Google Scholar
Fernández-Alfonso T, Ryan TA. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron. 2004;41:943–53.
Article
Google Scholar
Cohen D, Segal M. Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools. J Neurophysiol. 2011;106:2314–21.
Article
Google Scholar
Forsythe P. Mast cells in neuroimmune interactions. Trends Neurosci. 2018.
Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE, Ceyhan GO, et al. Calcium imaging of nerve-mast cell signaling in the human intestine. Front Physiol. 2017;8:971.
Article
Google Scholar
Miettinen R, Freund TF. Neuropeptide Y-containing interneurons in the hippocampus receive synaptic input from median raphe and Gabaergic septal afferents. Neuropeptides. 1992;22:185–93.
Article
CAS
Google Scholar
Gordon JR, Galli SJ. Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med. 1991;174:103–7.
Article
CAS
Google Scholar
Grützkau A, Krüger-Krasagakes S, Baumeister H, Schwarz C, Kögel H, Welker P, et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell. 1998;9:875–84.
Article
Google Scholar
Caraffa A, Conti C, D Ovidio C, Gallenga CE, Tettamanti L, Mastrangelo F, et al. New concepts in neuroinflammation: mast cells pro-inflammatory and anti-inflammatory cytokine mediators. J Biol Regul Homeost Agents. 2018;32(3):449–454.
Wasserman SI. Mediators of immediate hypersensitivity. J Allergy Clin Immunol. 1983;72:101–15.
Article
CAS
Google Scholar
Lever R, Smailbegovic A, Riffo-Vasquez Y, Gray E, Hogwood J, Francis SM, et al. Biochemical and functional characterization of glycosaminoglycans released from degranulating rat peritoneal mast cells: insights into the physiological role of endogenous heparin. Pulm Pharmacol Ther. 2016;41:96–102.
Article
CAS
Google Scholar
Maroto M, Fernández-Morales J-C, Padín JF, González JC, Hernández-Guijo JM, Montell E, et al. Chondroitin sulfate, a major component of the perineuronal net, elicits inward currents, cell depolarization, and calcium transients by acting on AMPA and kainate receptors of hippocampal neurons. J Neurochem. 2013;125:205–13.
Article
CAS
Google Scholar
Albiñana E, Gutierrez-Luengo J, Hernández-Juarez N, Baraibar AM, Montell E, Vergés J, et al. Chondroitin sulfate induces depression of synaptic transmission and modulation of neuronal plasticity in rat hippocampal slices. Neural Plast. 2015;2015:463854.
Article
Google Scholar
Bekkers JM. Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science. 1993;261:104–6.
Article
CAS
Google Scholar
Skaper SD, Facci L, Kee WJ, Strijbos PJ. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem. 2001;76:47–55.
Article
CAS
Google Scholar
Kritas SK, Gallenga CE, D Ovidio C, Ronconi G, Caraffa A, Toniato E, et al. Impact of mold on mast cell-cytokine immune response. J Biol Regul Homeost. 2018;32(4):763–8.
CAS
Google Scholar
Gallenga CE, Pandolfi F, Caraffa A, Kritas SK, Ronconi G, Toniato E, et al. Interleukin-1 family cytokines and mast cells: activation and inhibition. J Biol Regul Homeost Agents. 2019;33(1):1–6.
CAS
PubMed
Google Scholar
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.
Article
CAS
Google Scholar
Niederhoffer N, Levy R, Sick E, Andre P, Coupin G, Lombard Y, et al. Amyloid β peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol. 2009;22:473–83.
Article
CAS
Google Scholar