Forsythe P. Mast Cells in Neuroimmune Interactions. Trends Neurosci. 2019;42:43–55.
Article
CAS
PubMed
Google Scholar
Undem BJ, Riccio MM, Weinreich D, Ellis JL, Myers AC. Neurophysiology of mast cell-nerve interactions in the airways. Int Arch Allergy Immunol. 1995;107:199–201.
Article
CAS
PubMed
Google Scholar
Spanos C, Pang X, Ligris K, Letourneau R, Alferes L, Alexacos N, Theoharides TC. Stress-induced bladder mast cell activation: implications for interstitial cystitis. J Urol. 1997;157:669–72.
Article
CAS
PubMed
Google Scholar
Godinhosilva C, Cardoso F, Veigafernandes H. Neuro–immune cell units: a new paradigm in physiology. Annu Rev Immunol. 2019;37:19–46.
Article
CAS
Google Scholar
Dudeck A, Koberle M, Goldmann O, Meyer N, Dudeck J, Lemmens S, Biedermann T. Mast cells as protectors of health. J Allergy Clin Immun. 2019;144:S4–S18.
Article
CAS
PubMed
Google Scholar
Shi G, Bot I, Kovanen PT. Mast cells in human and experimental cardiometabolic diseases. Nat Rev Cardiol. 2015;12:643–58.
Article
CAS
PubMed
Google Scholar
Forsythe P. The parasympathetic nervous system as a regulator of mast cell function. Methods Mol Biol. 2015;1220:141–54.
Article
CAS
PubMed
Google Scholar
Yu M, Mukai K, Tsai M and Galli SJ. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immun. 2018;142:1618-1627.e9.
Bouzat C, Lasala M, Nielsen BE, Corradi J, Esandi MD. Molecular function of α7 nicotinic receptors as drug targets. J Physiol. 2017;596:1847–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M. IgE-induced degranulation of mucosal mast cell is negatively regulated via nicotinic acetylcholine receptors. Biochem Biophys Res Commun. 2008;377:321–5.
Article
CAS
PubMed
Google Scholar
Guzmán-Mejía F, López-Rubalcava C, González-Espinosa C. Stimulation of nAchRα7 receptor inhibits TNF synthesis and secretion in response to LPS treatment of mast cells by targeting ERK1/2 and TACE activation. J Neuroimmune Pharmacol. 2018;13:39–52.
Article
PubMed
Google Scholar
Douaoui S, Djidjik R, Boubakeur M, Ghernaout M, Touil-Boukoffa C, Oumouna M, Derrar F, Amrani Y. GTS-21, an alpha 7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function. Immunobiology. 2020;225:151950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra NC, Rir-sima-ah J, Boyd RT, Singh SP, Sopori ML. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. J Immunol. 2010;185:588–96.
Article
CAS
PubMed
Google Scholar
Mazloomi E, Ilkhanizadeh B, Zare A, Mohammadzadeh A, Delirezh N, Shahabi S. Evaluation of the efficacy of nicotine in treatment of allergic asthma in BALB/c mice. Int Immunopharmacol. 2018;63:239–45.
Article
CAS
PubMed
Google Scholar
Sun D, Qi Y, Yang T, Lin Y, Li S, Li Y, Xu P. Early oral nutrition improves postoperative ileus through the TRPA1/CCK1-R-mediated mast cell-nerve axis. Ann Transl Med. 2020;8:179.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Haan JJ, Hadfoune M, Lubbers T, Hodin CM, Lenaerts K, Ito A, Buurman WA. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am J Physiol-Gastr L. 2013;305:G383–91.
Google Scholar
Gottwald TP, Hewlett BR, Lhotak S, Stead RH. Electrical stimulation of the vagus nerve modulates the histamine content of mast cells in the rat jejunal mucosa. Neuroreport. 1995;7:313–7.
Article
CAS
PubMed
Google Scholar
Radosa J, Dyck W, Goerdt S, Kurzen H. The cholinergic system in guttate psoriasis with special reference to mast cells. Exp Dermatol. 2011;20:677–9.
Article
CAS
PubMed
Google Scholar
Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Lung eosinophilia induced by house dust mites or ovalbumin is modulated by nicotinic receptor α7 and inhibited by cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2018;315:L553–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, Pena-Philippides JC, Koga T, et al. Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J Immunol. 2008;180:7655–63.
Article
CAS
PubMed
Google Scholar
Barnes PJ. Non-adrenergic non-cholinergic neural control of human airways. Arch Int Pharmacodyn Ther. 1986;280:208–28.
CAS
PubMed
Google Scholar
Iikura M, Takaishi T, Hirai K, Yamada H, Iida M, Koshino T. Exogenous nitric oxide regulates the degranulation of human basophils and rat peritoneal mast cells. Int Arch Allergy Immunol. 1998;115:129–36.
Article
CAS
PubMed
Google Scholar
Peh KH, Moulson A, Wan BY, Assem ES, Pearce FL. Role of nitric oxide in histamine release from human basophils and rat peritoneal mast cells. Eur J Pharmacol. 2001;425:229–38.
Article
CAS
PubMed
Google Scholar
Eastmond NC, Banks EM, Coleman JW. Nitric oxide inhibits IgE-mediated degranulation of mast cells and is the principal intermediate in IFN-gamma-induced suppression of exocytosis. J Immunol. 1997;159:1444–50.
CAS
PubMed
Google Scholar
Bidri M, Becherel PA, Legoff L, Pieroni L, Guillosson JJ, Debre P, Arock M. Involvement of cyclic nucleotides in the immunomodulatory effects of nitric oxide on murine mast cells. Biochem Biophys Res Commun. 1995;210:507–17.
Article
CAS
PubMed
Google Scholar
Davis BJ, Flanagan BF. Gilfi llan AM, Metcalfe DD, Coleman JW. Nitric oxide inhibits IgE-dependent cytokine production and Fos and Jun activation in mast cells. J Immunol. 2004;173:6914–20.
Article
CAS
PubMed
Google Scholar
Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994;74:376–82.
Article
CAS
PubMed
Google Scholar
Masini E, Salvemin D, Pistelli A, Mannaioni PF, Vane JR. Rat mast cells synthesize a nitric oxide like-factor which modulates the release of histamine. Agents Actions. 1991;33:61–3.
Article
CAS
PubMed
Google Scholar
Kanwar S, Wallace JL, Befus D, Kubes P. Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol. 1994;266:G222–9.
Article
CAS
PubMed
Google Scholar
Forsythe P, Befus AD. Inhibition of calpain is a component of nitric oxide-induced down-regulation of human mast cell adhesion. J Immunol. 2003;170:287–93.
Article
CAS
PubMed
Google Scholar
Varga S, Juhasz L, Gal P, Bogats G, Boros M, Palasthy Z, Kaszaki J. Neuronal nitric oxide mediates the anti-inflammatory effects of intestinal ischemic preconditioning. J Surg. Res. 2019:241–50.
Costantini TW, Bansal V, Krzyzaniak M, Putnam JG, Peterson CY, Loomis WH, Coimbra R. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1308–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzyzaniak M, Peterson CY, Loomis WH, Hageny A, Wolf PL, Reys L, Coimbra R. Postinjury vagal nerve stimulation protects against intestinal epithelial barrier breakdown. J Trauma. 2011;70:1168–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramachandran R, Bhatt DK, Ploug KB, Hayschmidt A, Jansenolesen I, Gupta S, Olesen J. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia. 2014;34:136–47.
Article
PubMed
Google Scholar
Pedersen SH, Ramachandran R, Amrutkar DV, Petersen SE, Olesen J, Jansenolesen I. Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia. 2015;35:1287–97.
Article
PubMed
Google Scholar
Kilinc E, Tore F, Dagistan Y, Bugdayci G. Thymoquinone inhibits neurogenic inflammation underlying migraine throughmodulation of calcitonin gene-related peptide release and stabilization of meningeal mast cells in glyceryltrinitrate-induced migraine model in rats. Inflammation. 2020;43:264–73.
Article
CAS
PubMed
Google Scholar
Pradhan AA, Bertels Z, Akerman S. Targeted nitric oxide synthase inhibitors for migraine. Neurotherapeutics. 2018;15:391–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemmati S, Rahimi N, Dabiri S, Alaeddini M, Etemadmoghadam S, Dehpour AR. Inhibition of ovalbumin-induced allergic rhinitis by sumatriptan through the nitric oxide pathway in mice. Life Sci. 2019;236:116901.
Article
CAS
PubMed
Google Scholar
Donnarumma E, Trivedi RK, Lefer DJ. Protective actions of h2s in acute myocardial infarction and heart failure. Compr Physiol. 2017;7:583.
Article
PubMed
Google Scholar
Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A. Hydrogen sulfide: a novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am J Resp Cell Mol. 2017;57:403–10.
Article
CAS
Google Scholar
Liu Y, Lu M, Xie Z, Hua F, Xie L, Gao JH, Bian J. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid Redox Signal. 2014;20:759–69.
Article
CAS
PubMed
Google Scholar
Roviezzo F, Bertolino A, Sorrentino R, Terlizzi M, Matteis M, Calderone V, Cirino G. Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation. Pharmacol Res. 2015:85–92.
Marino A, Martelli A, Citi V, Fu M, Wang R, Calderone V, Levi R. The novel H2S donor 4-carboxy-phenyl isothiocyanate inhibits mast cell degranulation and renin release by decreasing intracellular calcium. Brit J Pharmacol. 2016;173:3222–34.
Article
CAS
Google Scholar
Hori A, Hara T, Honma K, Joh T. Suppressive effect of γ-aminobutyric acid (GABA) on histamine release in rat basophilic RBL-2H3 cells. Bull Fac Agric Niigata Univ. 2008;61:47–51.
CAS
Google Scholar
Kawasaki A, Hara T, Joh T. Inhibitory effect of γ-aminobutyric acid (GABA) on histamine release from rat basophilic leukemia RBL-2H3 cells and rat peritoneal exudate cells. Nippon Shokuhin Kagaku Kogaku Kaishi. 2014;61:362–6.
Article
CAS
Google Scholar
Damasceno SR, Silva RO, Aragão KS, Souza MH, Medeiros JV, Barbosa AL. Gabapentin, a synthetic analogue of gamma aminobutyric acid, reverses systemic acute inflammation and oxidative stress in mice. Inflammation. 2014;37:1826–36.
Article
PubMed
CAS
Google Scholar
Hokazono H, Omori T, Ono K. Effects of single and combined administration of fermented barley extract and gamma-aminobutyric acid on the development of atopic dermatitis in NC/Nga mice. Biosci Biotechnol Biochem. 2010;74:135–9.
Article
CAS
PubMed
Google Scholar
Lee YJ, Kim JE, Kwak MH, Go J, Kim DS, Son HJ, Hwang DY. Quantitative evaluation of the therapeutic effect of fermented soybean products containing a high concentration of GABA on phthalic anhydride-induced atopic dermatitis in IL-4/Luc/CNS-1 Tg mice. Int J Mol Med. 2014;33:1185–94.
Article
CAS
PubMed
Google Scholar
Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci. 2002;3:748–55.
Article
CAS
PubMed
Google Scholar
Alfredson H, Lorentzon R. Chronic tendon pain: no signs of chemical inflammation but high concentrations of the neurotransmitter glutamate. Implications for treatment? Curr Drug Targets. 2002;3:43–54.
Article
CAS
PubMed
Google Scholar
Scott A, Alfredson H, Forsgren S. VGluT2 expression in painful Achilles and patellar tendinosis: evidence of local glutamate release by tenocytes. J Orthop Res. 2008;26:685–92.
Article
PubMed
PubMed Central
Google Scholar
Alim MA, Ackermann PW, Eliasson P, Blomgran P, Kristiansson P, Pejler G, Peterson M. Increased mast cell degranulation and co-localization of mast cells with the NMDA receptor-1 during healing after Achilles tendon rupture. Cell Tissue Res. 2017;370:451–60.
Article
PubMed
CAS
Google Scholar
Alim MA, Grujic M, Ackerman PW, Kristiansson P, Eliasson P, Peterson M, Pejler G. Glutamate triggers the expression of functional ionotropic and metabotropic glutamate receptors in mast cells. Cell Mol Immunol. 2020;20 In Press.
Alim MA, Peterson M, Pejler G. Do mast cells have a role in tendon healing and inflammation? Cells. 2020;9:1134.
Article
PubMed Central
Google Scholar
Chen MC, Chen CS, Wu YW, Yang YY. Poly-γ-Glutamate microneedles as transdermal immunomodulators for ameliorating atopic dermatitis-like skin lesions in Nc/Nga mice. Acta Biomater. 2020;114:183–92.
Article
CAS
PubMed
Google Scholar
Mori T, Kabashima K, Fukamachi S, Kuroda E, Sakabe J, Kobayashi M, Nakajima S, Nakano K, Tanaka Y, Matsushita S, Nakamura M, Tokura Y. D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J Dermatol Sci. 2013;71:37–44.
Article
CAS
PubMed
Google Scholar
Nakajima S, Manita S, Yu G, Ishimaru K, Kono K, Kitamura K. Nakao A. Allergy: Activation of the reward system ameliorates passive cutaneous anaphylactic reaction in mice; 2020. Epub ahead of print.
Google Scholar
Casale TB, Shelhamer JH, Parrillo JE, Kaliner MA. Dopamine inhibition of histamine-mediated cutaneous responses. J Allergy Clin Immunol. 1984;73:837–41.
Article
CAS
PubMed
Google Scholar
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol. 2016;36:187–98.
Article
CAS
PubMed
Google Scholar
Capellino S. Dopaminergic agents in rheumatoid arthritis. J Neuroimmune Pharmacol. 2020;15:48–56.
Article
PubMed
Google Scholar
Xue L, Li X, Chen Q, He J, Dong Y, Wang J, Shen S, Jia R, Zang QJ, Zhang T, Li M, Geng Y. Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis. Clin Rheumatol. 2018;37(10):2621–32.
Article
PubMed
Google Scholar
Tancowny BP, Victor K, Robert PS, Marianna K. Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2. Immunology. 2010;131:220–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asadi S, Alysandratos K, Angelidou A, Miniati A, Sismanopoulos N, Vasiadi M, Theoharides TC. Substance P (SP) induces expression of functional corticotropin-releasing hormone receptor-1 (CRHR-1) in human mast cells. J Invest Dermatol. 2012;132:324–9.
Article
CAS
PubMed
Google Scholar
Stander S and Yosipovitch G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Brit J Dermatol. 2019;181:932-938.
Pariser DM, Bagel J, Lebwohl M, Yosipovitch G, Chien E, Spellman MC. Serlopitant for psoriatic pruritus: a phase 2 randomized, double-blind, placebo-controlled clinical trial. J Am Acad Dermatol. 2020;82:1314–20.
Article
CAS
PubMed
Google Scholar
Widiapradja A, Manteufel EJ, Dehlin HM, Pena JR, Goldspink PH, Sharma A, Levick SP. Regulation of cardiac mast cell maturation and function by the neurokinin-1 receptor in the fibrotic heart. Scientific Reports. 2019;9:11004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mcneil B, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519:237–41.
Article
CAS
PubMed
Google Scholar
Azimi E, Lerner EA. Implications of MRGPRX2 in human and experimental cardiometabolic diseases. Nat Rev Cardiol. 2017;14:124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N, Galli SJ. Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest. 2016;126:3981–98.
Article
PubMed
PubMed Central
Google Scholar
Heller D, Doyle JR, Raman VS, Beinborn M, Kumar K, Kopin AS. Novel probes establish Mas-related G protein-coupled receptor X1 variants as receptors with loss or gain of function. J Pharmacol Exp Ther. 2016;356:276–83.
Article
CAS
PubMed
Google Scholar
Alkanfari I, Gupta K, Jahan T, Ali H. Naturally occurring missense MRGPRX2 variants display loss of function phenotype for mast cell degranulation in response to substance P, hemokinin-1, human β-defensin-3, and icatibant. J Immunol. 2018;201:343–9.
Article
CAS
PubMed
Google Scholar
Green DP, Limjunyawong N, Gour N, Pundir P and Dong X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101:412-420.e3.
Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives nonhistaminergic itch. Immunity. 2019;5:1163-1171.e5.
Suzuki Y, Liu S, Ogasawara T, Sawasaki T, Mogi M. A novel mrgprx2-targeting antagonistic dna aptamer inhibits histamine release and prevents mast cell-mediated anaphylaxis. Eur J Pharmacol. 2020;878:173104.
Article
CAS
PubMed
Google Scholar
Azimi E, Reddy VB, Shad KC, Anthony RM, Talbot S, Pereira PJ, Lerner EA. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI insight. 2016;1:e89362.
Article
PubMed
PubMed Central
Google Scholar
Pundir P, Liu R, Vasavda C, Serhan N, Limjunyawong N, Yee R and Dong X. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity. Cell Host Microbe. 2019;26:114-122.e8.
Traina G. Mast cells in gut and brain and their potential role as an emerging therapeutic target for neural diseases. Front Cell Neurosci. 2019;13:345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi G, Bot I, Kovanen PT. Reply: The complexity of substance P-mediated mast cell activation. Nat Rev Cardiol. 2017;14:124.
Article
PubMed
Google Scholar
Lu L, Kulka M, Unsworth LD. Peptide-mediated mast cell activation: ligand similarities for receptor recognition and protease-induced regulation. J Leukocyte Biol. 2017;102:237–51.
Article
CAS
PubMed
Google Scholar
Lafleur M, Lobenhofer EK, Fort M, Werner J, Fan F, Balazs M. MRGPRX2 receptor activation as a rapid, high-throughput mechanistic-based approach for detecting peptide-mediated human mast cell degranulation liabilities. J Immunol. 2020;17:110–21.
CAS
Google Scholar
Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, Furuno M, Ogasawara H, Edamura K, Takagi H, Iwamura H, Noguchi M, Naito T. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun. 2006;349:1322–13288.
Article
CAS
PubMed
Google Scholar
Sahid MN, Liu S, Mogi M and Maeyama K2. Tachykinin-1 receptor antagonism suppresses substance-P- and compound 48/80-induced mast cell activation from rat mast cells expressing functional mas-related GPCR B3. Inflamm Res. 2020;69:289-298.
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Spadaro G. Heterogeneity of human mast cells with respect to MRGPRX2 receptor expression and function. Front Cell Neurosci. 2019;13:299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forsythe P, Bienenstock J. The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem Immunol allergy. 2012;98:196–221.
Article
CAS
PubMed
Google Scholar
Abad C, Gomariz RP, Waschek JA, Leceta J, Martinez C, Juarranz Y, Arranz A. VIP in inflammatory bowel disease: state of the art. Endocr Metab Immune. 2012;12:316–22.
CAS
Google Scholar
Tuncel N, Sener E, Cerit C, Karasu U. Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson’s disease model in rats: brain microdialysis, behavior, and microscopy. Peptides. 2005;26:827–36.
Article
CAS
PubMed
Google Scholar
Kilinc E, Firat T, Tore F, Kiyan A, Kukner A, Tuncel N. Vasoactive Intestinal peptide modulates c-Fos activity in the trigeminal nucleus and dura mater mast cells in sympathectomized rats. J Neurosci Res. 2015;93:644–50.
Article
CAS
PubMed
Google Scholar
Korkmaz OT, Tunçel N, Tunçel M, Oncü EM, Sahintürk V, Celik M. Vasoactive intestinal peptide (VIP) treatment of Parkinsonian rats increases thalamic gamma-aminobutyric acid (GABA) levels and alters the release of nerve growth factor (NGF) by mast cells. J Mol Neurosci. 2010;41:278–87.
Article
CAS
PubMed
Google Scholar
Baig MH, Ahmad K, Saeed M, Alharbi AM, Barreto GE, Ashraf GM, Choi I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed Pharmacother. 2018;103:574–81.
Article
CAS
PubMed
Google Scholar
Tuncel N, Tore F, Şahinturk V, Ak D, Tuncel M. Vasoactive intestinal peptide inhibits degranulation and changes granular content of mast cells: a potential therapeutic strategy in controlling septic shock. Peptides. 2000;21:81–9.
Article
CAS
PubMed
Google Scholar
Can C, Tore F, Tuncel N, Uysal O, Gurer F, Ak D, Tuncel M. Protective effect of vasoactive intestinal peptide on testicular torsion-detorsion injury: association with heparin-containing mast cells. Urology. 2004;63:195–200.
Article
PubMed
Google Scholar
Pilkington SM, Barron MJ, Watson RE, Griffiths CE, Bulfonepaus S. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive intestinal peptide-positive nerve fibres. Brit J Dermatol. 2019;180:849–58.
Article
CAS
Google Scholar
Albertbayo M, Paracuellos I, Gonzalezcastro AM, Rodriguezurrutia A, Rodriguezlagunas MJ, Alonsocotoner C, Santos J, Vicario M. Intestinal mucosal mast cells: key modulators of barrier function and homeostasis. Cells. 2019;8:135.
Article
CAS
Google Scholar
Bednarska O, Walter S, Casadobedmar M, Strom M, Salvoromero E, Vicario M, Mayer EA, and Keita AV. Vasoactive intestinal polypeptide and mast cells regulate increased passage of colonic bacteria in patients with irritable bowel syndrome. Gastroenterology, 2017;153. 948-960.e3.
Casado-Bedmar M, Heil SDS, Myreli P, Söderholm JD, Keita ÅV. Upregulation of intestinal mucosal mast cells expressing VPAC1 in close proximity to vasoactive intestinal polypeptide in inflammatory bowel disease and murine colitis. Neurogastroenterol Motil. 2019;31:e13503.
Article
PubMed
CAS
Google Scholar
Takashima S, Tanaka F, Kawaguchi Y, Usui Y. Proton pump inhibitors enhance intestinal permeability via dysbiosis of gut microbiota under stressed conditions in mice. Neurogastroenterol Motil. 2020;32:e13841.
CAS
PubMed
Google Scholar
El-Shazly A, Berger P, Girodet PO, Fayon M, Vernejoux JM. Marthan Roger and Tunondelara JM. Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol. 2006;176:1860–8.
CAS
PubMed
Google Scholar
Verma AK, Manohar M, Venkateshaiah SU, Mishra A. Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine Growth F R. 2017;38:37–48.
Article
CAS
Google Scholar
Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol. 2004;44:525–57.
Article
CAS
PubMed
Google Scholar
Liu Y, Fang X, Yuan J, Sun Z, Li C, Li R, Li L, Zhu C, Wan R, Guo R, Jin L and Li S. The role of corticotropin-releasing hormone receptor 1 in the development of colitis-associated cancer in mouse model. Endocr Relat Cancer 2014;21:639-51.
Boyer PE, D’Costa S, Edwards LL, Milloway M, Susick E, Borst LB, Thakur S, Campbell JM. Crenshaw JD. Polo J and Moeser AJ. Early life dietary spray-dried plasma influences immunological and intestinal injury responses to later-life Salmonella typhimurium challenge. Brit J Nutr. 2015;113:783-793.
Mahajan S, Liao M, Barkan P, Takahashi K, Bhargava A. Urocortin 3 expression at baseline and during inflammation in the colon: corticotropin releasing factor receptors cross-talk. Peptides.2014;54:58-66.
Mendoza C, Barreto GE, Avila-Rodriguez M, Echeverria V. Role of neuroinflammation and sex hormones in war-related PTSD. Mol Cell Endocrinol. 2016;34:266–77.
Article
CAS
Google Scholar
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Lyer SS, Bhagavan SM, Beladakereramaswamy S, Zaheer A. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Front Cell Neurosc. 2017;11:703.
Article
Google Scholar
Eller-Smith OC, Nicol AL, Christianson JA. Potential mechanisms underlying centralized pain and emerging therapeutic interventions. Front Cell Neurosci. 2018;12:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Theoharides TC. Effect of stress on neuroimmune processes. Clin Ther. 2020;42:1007–14.
Article
CAS
PubMed
Google Scholar
Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim Rasoel S, Tόth J, Holvoet L, Farr´e R, Van Oudenhove L, Boeckxstaens G, Verbeke K, Tack J. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014; 63:1293–1299.
Ayyadurai S, Gibson A, Dcosta S, Overman EL, Sommerville L, Poopal A, Mackey E, Li Y, Moeser AJ. Frontline science: corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J Leukocyte Biol. 2017;102:1299–312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu C, Zhao L, Zhao J, Zhang S. Sini San ameliorates duodenal mucosal barrier injury and lowgrade inflammation via the CRF pathway in a rat model of functional dyspepsia. Int J MolL Med. 2019;45:53–60.
Google Scholar
Hagiwara S, Hasdemir B, Heyman MB, Chang L, Bhargava A. Plasma corticotropin-releasing factor receptors and B7-2+ extracellular vesicles in blood correlate with irritable bowel syndrome disease severity. Cells. 2019;8:101.
Article
CAS
PubMed Central
Google Scholar
Dcosta S, Ayyadurai S, Gibson A, Mackey E, Rajput M, Sommerville L and Moeser AJ. Mast cell corticotropin-releasing factor subtype 2 suppresses mast cell degranulation and limits the severity of anaphylaxis and stress-induced intestinal permeability. J Allergy Clin Immun. 2019;143:1865-1877.e4.
Alysandratos K, Asadi S, Angelidou A, Zhang B, Sismanopoulos N, Yang H, Critchfield A, Theoharides TC. Neurotensin and CRH interactions augment human mast cell activation. PLOS ONE. 2012;7:e48934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irmak DK, Kilinc E, Tore F. Shared Fate of meningeal mast cells and sensory neurons in migraine. Front Cell Neurosci. 2019;13:136.
Article
CAS
Google Scholar
Tepper SJ. History and review of anti-calcitonin gene-related peptide (CGRP) therapies: from translational research to treatment. Headache. 2018;58:238–75.
Article
PubMed
Google Scholar
Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Brit J Pharmacol. 2018;175:3–17.
Article
CAS
Google Scholar
Russell FA, Kin R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94:1099–142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickerson IM, Bussey-Gaborski R, Holt JC, Jordan PM, Luebke AE. Maturation of suprathreshold auditory nerve activity involves cochlear CGRP-receptor complex formation. Physiol Rep. 2016;4:e12869.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker CS, Li X, Whiting L, Glynjones S, Zhang S, Hickey AJR, Sewell MA, Ruggiero K, Phillips ARJ, Kraegen EW, Hay DL, Cooper GJS, Loomes KM. Mice lacking the neuropeptide α-calcitonin gene-related peptide are protected against diet-induced obesity. Endocrinology. 2010;151:4257–69.
Article
CAS
PubMed
Google Scholar
Liang Y, Khoshouei M, Deganutti G, Glukhova A, Koole C, Peat TS, Radjainia M, Plitzko JM, Baumeister W, Miller LJ, Hay DL. Christopoulos A, Reynolds CA, Wootten D. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature. 2018;561:492–497.
Hay DL, Walker CS. CGRP and its receptors. Headache. 2017;57:625–36.
Article
PubMed
Google Scholar
Hay DL. CGRP receptor biology: is there more than one receptor? Handb Exp Pharmacol. 2019;255:13–22.
Article
CAS
PubMed
Google Scholar
Bree D, Levy D. Development of CGRP-dependent pain and headache related behaviours in a rat model of concussion: implications for mechanisms of post-traumatic headache. Cephalalgia. 2018;38:246–58.
Article
PubMed
Google Scholar
Navratilova E, Rau J, Oyarzo J, Tien J, Mackenzie K, Stratton J, Porreca F. CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice. Cephalalgia. 2019;39:1762–75.
Article
PubMed
Google Scholar
Kilinc E, Dagistan Y, Kukner A, Yilmaz B, Agus S, Soyler G, Tore F. Salmon calcitonin ameliorates migraine pain through modulation of CGRP release and dural mast cell degranulation in rats. Clin Exp Pharmacol P. 2018;45:536–46.
Article
CAS
Google Scholar
Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain. 2013;14:1289–303.
Article
CAS
PubMed
Google Scholar
Dara B, Levy D. Intact mast cell content during mild head injury is required for development of latent pain sensitization. PAIN. 2019;160:1050–8.
Article
Google Scholar
Manning BM, Gruba SM, Meyer AF, Haynes CL. Neuropeptide-induced mast cell degranulation and characterization of signaling modulation in Response to IgE conditioning. ACS Chem Biol. 2016;11:3077–83.
Article
CAS
PubMed
Google Scholar
Yu Y, Blokhuis BR, Garssen J, Redegeld FA. Non-IgE mediated mast cell activation. Eur J Pharmacol. 2016;778:33–43.
Article
CAS
PubMed
Google Scholar
Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 2017;151:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kritas SK, Caraffa A, Antinolfi P, Saggini A, Conti P. Nerve growth factor interactions with mast cells. Int J Immunopathol Pharmacol. 2014;27:15–9.
Article
CAS
PubMed
Google Scholar
Lopes DM, Denk F, Chisholm KI, Suddason T, Durrieux C, Thakur M, Mcmahon SB. Peripheral inflammatory pain sensitisation is independent of mast cell activation in male mice. Pain. 2017;158:1314–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magnusdottir EI, Grujic M, Roers A, Hartmann K, Pejler G, Lagerstrom MC. Mouse mast cells and mast cell proteases do not play a significant role in acute tissue injury pain induced by formalin. Mol Pain. 2018;14:1744806918808161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asadi S, Theoharides TC. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J Neuroinflamm. 2012;9:85.
Article
CAS
Google Scholar
Russjan E, Kaczynska K. Beneficial effects of neurotensin in murine model of hapten-induced asthma. Int J Mol Sci. 2019;20:5025.
Article
CAS
PubMed Central
Google Scholar
Russjan E, Andrzejewski K, Sulejczak D, Kleczkowska P, Kaczyńska K. Endomorphin-2- and neurotensin- based chimeric peptide attenuates airway inflammation in mouse model of nonallergic asthma. Int J Mol Sci. 2019;20:5935.
Article
CAS
PubMed Central
Google Scholar
Baun M, Pedersen MH, Olesen J, Jansen-Olesen I. Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38. Cephalalgia. 2012;32:337–45.
Article
PubMed
Google Scholar
Jansenolesen I, Pedersen SH. PACAP and its receptors in cranial arteries and mast cells. J Headache Pain. 2018;19:16.
Article
CAS
Google Scholar
Pedersen SH, La Cour SH, Calloe K, Hauser F, Olesen J, Klaerke DA, Jansenolesen I. PACAP-38 and PACAP (6-38) Degranulate rat meningeal mast cells via the orphan MrgB3-receptor. Front Cell Neurosci. 2019;13:114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida K, Ito M, Matsuoka I. Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells. Int Immunopharmacol. 2017;43:99–107.
Article
CAS
PubMed
Google Scholar
Bulanova E, Bulfone-Paus S. P2 receptor-mediated signaling in mast cell biology. Purinergic Signal. 2010;6:3–17.
Article
CAS
PubMed
Google Scholar
Arandjelovic S, McKenney KR, Leming SS, Mowen KA. ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. J. Immunol. 2012;189:4112–22.
Article
CAS
PubMed
Google Scholar
Wareham KJ, Seward EP. P2X7 receptors induce degranulation in human mast cells. Purinergic Signal. 2016;12:235–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida K, Ito M, Sato N, Obayashi K, Yamamoto K, Koizumi S, Tanaka S, Furuta K, Matsuoka I. Extracellular ATP augments antigen-induced murine mast cell degranulation and allergic responses via P2X4 receptor activation. J Immunol. 2020;204:077–3085.
Article
CAS
Google Scholar
Yoshida K, Tajima M, Nagano T, Obayashi K, Ito M, Yamamoto K, Matsuoka I. Co-Stimulation of purinergic P2X4 and prostanoid EP3 receptors triggers synergistic degranulation in murine mast cells. Int J Mol Sci. 2019;20:5157.
Article
CAS
PubMed Central
Google Scholar
Suleimanova A, Talanov M, Gafurov O, Gafarov F, Giniatullin R. Modeling a nociceptive neuro-immune synapse activated by atp and 5-ht in meninges: novel clues on transduction of chemical signals into persistent or rhythmic neuronal firing. Front Cell Neurosci. 2020;14:135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nurkhametova D, Kudryavtsev I, Guselnikova V, Serebryakova M, Giniatullina R, Wojciechowski S, Tore F, Rizvanov A, Koistinaho J, Malm T, Giniatullin R. Activation of P2X7 receptors in peritoneal and meningeal mast cells detected by uptake of organic dyes: possible purinergic triggers of neuroinflammation in meninges. Front Cell Neurosci. 2019;13:45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koroleva K, Gafurov O, Guselnikova V, Nurkhametova D, Giniatullina R, Sitdikova GF, Giniatullin R. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain. Front Cell Neurosci. 2019;13:195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grassin-Delyle S, Naline E, Buenestado A, Risse PA, Sage E, Advenier C, Devillier P. Expression and function of human hemokinin-1 in human and guinea pig airways. Respir Res. 2010;11:139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sumpter TL, Ho CH, Pleet AR, Tkacheva OA, Shufesky WJ, Rojas-Canales DM, Morelli AE and Larregina AT. Autocrine hemokinin-1 functions as an endogenous adjuvant for IgE-mediated mast cell inflammatory responses. J Allergy Clin Immunol. 2015;135:1019–30.e8.
Manorak W, Idahosa C, Gupta K, Roy S, Panettieri RA, Ali H. Upregulation of Mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Resp Res. 2018;19:1–5.
Article
CAS
Google Scholar
Sumpter TL, Tkacheva OA, Falo LD, Larregina AT. 504 Neurokinin A: a neuropeptide with the potential to inhibit the effector function of cutaneous mast cells. J Invest Dermatol. 2016;136.
Pomorska DK, Gach K, Janecka A. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors. Mini Rev Med Chem. 2014;14:1148–55.
Article
CAS
PubMed
Google Scholar
Pasternak GW. Mu Opioid pharmacology: 40 years to the promised land. Adv Pharmacol. 2018;82:261–91.
Article
CAS
PubMed
Google Scholar
Baldo BA, Pham NH. Histamine-releasing and allergenic properties of opioid analgesic drugs: resolving the two. Anaesth Intensive Care. 2012;40:216–35.
Article
CAS
PubMed
Google Scholar
Schmidt-Rondon E, Wang Z, Malkmus SA, Di Nardo A, Hildebrand K, Page L, Yaksh TL. Effects of opioid and nonopioid analgesics on canine wheal formation and cultured human mast cell degranulation. Toxicol Appl Pharmacol. 2018;338:54–64.
Article
CAS
PubMed
Google Scholar
Yaksh TL, Eddinger KA, Kokubu S, Wang Z, DiNardo A, Ramachandran R, Zhu Y, He Y, Weren F, Quang D, Malkmus SA, Lansu K, Kroeze WK, Eliceiri B, Steinauer JJ, Schiller PW, Gmeiner P, Page LM, Hildebrand KR. Mast cell degranulation and fibroblast activation in the morphine-induced spinal mass: role of Mas-related G protein-coupled receptor signaling. Anesthesiology. 2019;131:132–47.
Article
CAS
PubMed
Google Scholar
Kokubu S, Eddinger KA, Yamaguchi S, Huerta-Esquivel LL, Schiller PW, Yaksh TL. Characterization of analgesic actions of the chronic intrathecal infusion of H-Dmt-D-Arg-Phe-Lys-NH2 in Rat. Neuromodulation. 2019;22:781–9.
Article
PubMed
PubMed Central
Google Scholar
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic understanding of peptide analogues, DALDA, [Dmt1]DALDA, and KGOP01, binding to the mu opioid receptor. Molecules. 2020;25:2087.
Article
CAS
PubMed Central
Google Scholar
Li PH, Ue KL, Wagner A, Rutkowski R, Rutkowski K. Opioid Hypersensitivity: predictors of allergy and role of drug provocation testing. J Allergy Clin Immunol Pract. 2017;5:1601–6.
Article
CAS
PubMed
Google Scholar
Powell MZ, Mueller SW, Reynolds PM. Assessment of opioid cross-reactivity and provider perceptions in hospitalized patients with reported opioid allergies. Ann Pharmacother. 2019;53:1117–23.
Article
PubMed
Google Scholar
Lansu K, Karpiak J, Liu J, Huang XP, McCorvy JD, Kroeze WK, Che T, Nagase H, Carroll FI, Jin J, Shoichet BK, Roth BL. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat Chem Biol. 2017;13:529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Marone G, Spadaro G. Heterogeneity of human mast cells with respect to MRGPRX2 receptor expression and function. Front Cell Neurosci. 2019;13:299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta K, Harvima IT. Mast cell-neural interactions contribute to pain and itch. Immunol Rev. 2018;282:168–87.
Article
CAS
PubMed
PubMed Central
Google Scholar