Marder SR, Cannon TD. Schizophrenia. Ropper AH, editor. N Engl J Med. 2019;381(18):1753–61 Available from: http://www.nejm.org/doi/10.1056/NEJMra1808803. (Cited: 13th November, 2019).
Article
PubMed
CAS
Google Scholar
Sawa A, Sedlak TW. Oxidative stress and inflammation in schizophrenia. Schizophr Res. 2016;176(1):1–2 Available from: https://linkinghub.elsevier.com/retrieve/pii/S092099641630281X.
Article
PubMed
Google Scholar
Takahashi T, Nakamura K, Nishiyama S, Furuichi A, Ikeda E, Kido M, et al. Increased pituitary volume in subjects at risk for psychosis and patients with first-episode schizophrenia. Psychiatry Clin Neurosci. 2013;67(7):540–8.
Article
PubMed
Google Scholar
Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–82 https://doi.org/10.1093/schbul/sby024.
Article
PubMed
PubMed Central
Google Scholar
Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–82 Available from: https://academic.oup.com/schizophreniabulletin/article/44/5/973/4965841.
Article
PubMed
PubMed Central
Google Scholar
Lipner E, Murphy SK, Ellman LM. Prenatal maternal stress and the cascade of risk to schizophrenia spectrum disorders in offspring. Curr Psychiatry Rep. 2019;21(10):99 Available from: http://link.springer.com/10.1007/s11920-019-1085-1.
Article
PubMed
PubMed Central
Google Scholar
Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 2012;62(3):1308–21 https://doi.org/10.1016/j.neuropharm.2011.01.009.
Article
PubMed
CAS
Google Scholar
Girgis RR, Kumar SS, Brown AS. The cytokine model of schizophrenia: emerging therapeutic strategies. Biol Psychiatry. 2014;75(4):292–9 Available from: http://linkinghub.elsevier.com/retrieve/pii/S000632231301069X.
Article
PubMed
CAS
Google Scholar
Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702 Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2178-07.2007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Himmerich H, Sorge S, Kirkby KC, Steinberg H. Schizophrene Störungen: Die Entwicklung immunologischer Krankheits-und Therapiekonzepte. Nervenarzt. 2012;83(1):7–15.
Article
PubMed
CAS
Google Scholar
Müller N, Schwarz MJ. A psychoneuroimmunological perspective to Emil Kraepelins dichotomy: schizophrenia and major depression as inflammatory CNS disorders. Eur Arch Psychiatry Clin Neurosci. 2008;258(SUPPL. 2):97–106.
Article
PubMed
Google Scholar
Martínez-Gras I, Pérez-Nievas BG, García-Bueno B, Madrigal JLM, Andrés-Esteban E, Rodríguez-Jiménez R, et al. The anti-inflammatory prostaglandin 15d-PGJ2 and its nuclear receptor PPARgamma are decreased in schizophrenia. Schizophr Res. 2011;128(1–3):15–22 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0920996411000521.
Article
PubMed
Google Scholar
García-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martínez-Cengotitabengoa M, Pina-Camacho L, et al. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40(2):376–87 Available from: https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbt001.
Article
PubMed
Google Scholar
Cabrera B, Bioque M, Penadés R, González-Pinto A, Parellada M, Bobes J, et al. Cognition and psychopathology in first-episode psychosis: are they related to inflammation? Psychol Med. 2016;46(10):2133–44.
Article
PubMed
CAS
Google Scholar
Martinez-Cengotitabengoa M, Macdowell KS, Alberich S, Diaz FJ, Garcia-Bueno B, Rodriguez-Jimenez R, et al. BDNF and NGF signalling in early phases of psychosis: relationship with inflammation and response to antipsychotics after 1 year. Schizophr Bull. 2016;42(1):142–51.
PubMed
CAS
Google Scholar
Watanabe Y, Someya T, Nawa H. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci. 2010;64(3):217–30 Available from: http://doi.wiley.com/10.1111/j.1440-1819.2010.02094.x.
Article
PubMed
CAS
Google Scholar
Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Müller N, Schwarz MJ. The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl. 2007;72:269–80 https://doi.org/10.1007/978-3-211-73574-9_33.
Article
Google Scholar
Erhardt S, Schwieler L, Imbeault S, Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112:297–306 https://doi.org/10.1016/j.neuropharm.2016.05.020.
Article
PubMed
CAS
Google Scholar
Bagasrawala I, Zecevic N, Radonjić NV. N-methyl D-aspartate receptor antagonist kynurenic acid affects human cortical development. Front Neurosci. 2016;30(10):1–15 Available from: http://journal.frontiersin.org/Article/10.3389/fnins.2016.00435/abstract.
Google Scholar
Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, et al. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: potential role of glial NMDA receptor modulators and impaired bloodbrain barrier integrity. World J Biol Psychiatry. 2012;13(7):482–92.
Article
PubMed
Google Scholar
Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Graff-guerrero A. Kynurenic acid in schizophrenia : a systematic review and meta-analysis. Schizophr Bull. 2017;43(4):764–77 https://doi.org/10.1093/schbul/sbw221.
Article
PubMed
PubMed Central
Google Scholar
Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005;49(1):15–23 https://doi.org/10.1002/glia.20090.
Article
PubMed
Google Scholar
Braidy N, Grant R. Kynurenine pathway metabolism and neuroinflammatory disease. Neural Regen Res. 2017;12(1):39 https://doi.org/10.4103/1673-5374.198971.
Article
PubMed
PubMed Central
Google Scholar
Stavrum AK, Heiland I, Schuster S, Puntervoll P, Ziegler M. Model of tryptophan metabolism, readily scalable using tissue-specific gene expression data. J Biol Chem. 2013;288(48):34555–66 https://doi.org/10.1074/jbc.M113.474908.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heyes MP, Chen CY, Major EO, Saito K. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J. 1997;326(2):351–6 https://doi.org/10.1042/bj3260351.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, et al. Characterization of the kynurenine pathway in human neurons. J Neurosci. 2007;27(47):12884–92 https://doi.org/10.1523/JNEUROSCI.4101-07.2007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78(4):842–53 https://doi.org/10.1046/j.1471-4159.2001.00498.x.
Article
PubMed
CAS
Google Scholar
Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. In: Current topics in behavioral neurosciences; 2016. p. 117–38. Available from: http://link.springer.com/chapter/10.1007/7854_2011_176.
Google Scholar
Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15(4):393–403 Available from: http://www.nature.com/articles/mp2009116.
Article
PubMed
CAS
Google Scholar
Arnone D, Saraykar S, Salem H, Teixeira AL, Dantzer R, Selvaraj S. Role of kynurenine pathway and its metabolites in mood disorders: a systematic review and meta-analysis of clinical studies. Neurosci Biobehav Rev. 2018;92:477–85 https://doi.org/10.1016/j.neubiorev.2018.05.031.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muneer A. Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investig. 2016;18(1) Available from: http://psychiatryinvestigation.org/journal/view.php?doi=10.4306/pi.2016.13.1.18.
Article
PubMed
CAS
Google Scholar
Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav. 2019;177:12–9 https://doi.org/10.1016/j.pbb.2018.12.006.
Article
PubMed
CAS
Google Scholar
Olsson S. Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder. J Psychiatry Neurosci. 2010;35(3):195–9 Available from: http://jpn.ca/jpn/vol35-issue3/195.
Article
PubMed
PubMed Central
Google Scholar
Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, et al. Kynurenine pathway in depression: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;90:16–25 https://doi.org/10.1016/j.neubiorev.2018.03.023.
Article
PubMed
CAS
Google Scholar
Raison CL, Miller AH. Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. In: Inflammation in Psychiatry; 2013.
Google Scholar
Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83 Available from: http://academic.oup.com/schizophreniabulletin/article/44/1/75/3074362.
Article
PubMed
Google Scholar
Ribeiro-Santos A, Lucio Teixeira A, Salgado JV. Evidence for an immune role on cognition in schizophrenia: a systematic review. Curr Neuropharmacol. 2014;12(3):273–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097 Available from: https://dx.plos.org/10.1371/journal.pmed.1000097. [cited 2019 Nov 10].
Article
PubMed
PubMed Central
Google Scholar
Kanchanatawan B, Sirivichayakul S, Thika S, Ruxrungtham K, Carvalho A, Geffard M, Anderson G, Noto C, Ivanova R, Maes M. Physio-somatic symptoms in schizophrenia: association with depression, anxiety, neurocognitive deficits and the tryptophan catabolite pathway. Metab Brain Dis. 2017;32(4):1003–16.
Article
PubMed
CAS
Google Scholar
Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, et al. Deficit, but not nondeficit, schizophrenia is characterized by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway with highly specific increases in IgA responses directed to picolinic, xanthurenic, and quinolinic acid. Mol Neurobiol. 2018;55(2):1524–36 Available from: http://link.springer.com/10.1007/s12035-017-0417-6.
Article
PubMed
CAS
Google Scholar
Kanchanatawan B, Sirivichayakul S, Carvalho AF, Anderson G, Galecki P, Maes M. Depressive, anxiety and hypomanic symptoms in schizophrenia may be driven by tryptophan catabolite (TRYCAT) patterning of IgA and IgM responses directed to TRYCATs. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;80:205–16 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278584617301999.
Article
CAS
Google Scholar
Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner HG. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood–CSF barrier dysfunction. J Psychiatr Res. 2010;44(5):321–30 https://doi.org/10.1016/j.jpsychires.2009.08.008.
Article
PubMed
CAS
Google Scholar
Szymona K, Zdzisińska B, Karakuła-Juchnowicz H, Kocki T, Kandefer-Szerszeń M, Flis M, et al. Correlations of kynurenic acid, 3-hydroxykynurenine, sIL-2R, IFN-α, and IL-4 with clinical symptoms during acute relapse of schizophrenia. Neurotox Res. 2017;32(1):17–26 Available from: http://link.springer.com/10.1007/s12640-017-9714-0.
Article
PubMed
CAS
Google Scholar
Barry S, Clarke G, Scully P, Dinan T. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol. 2009;23(3):287–94 Available from: http://journals.sagepub.com/doi/10.1177/0269881108089583.
Article
PubMed
CAS
Google Scholar
Kim Y, Myint A, Verkerk R, Scharpe S, Steinbusch H, Leonard B. Cytokine changes and tryptophan metabolites in medication-naïve and medication-free schizophrenic patients. Neuropsychobiology. 2009;59(2):123–9 Available from: https://www.karger.com/Article/FullText/213565.
Article
PubMed
CAS
Google Scholar
Schwieler L, Larsson MK, Skogh E, Kegel ME, Orhan F, Abdelmoaty S, et al. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia — significance for activation of the kynurenine pathway. J Psychiatry Neurosci. 2015;40(2):126–33 Available from: http://jpn.ca/vol40-issue2/40-2-126/.
PubMed
PubMed Central
Google Scholar
Kegel ME, Johansson V, Wetterberg L, Bhat M, Schwieler L, Cannon TD, et al. Kynurenic acid and psychotic symptoms and personality traits in twins with psychiatric morbidity. Psychiatry Res. 2017;247:105–12 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165178116310472.
Article
PubMed
CAS
Google Scholar
Wurfel BE, Drevets WC, Bliss SA, McMillin JR, Suzuki H, Ford BN, et al. Serum kynurenic acid is reduced in affective psychosis. Transl Psychiatry. 2017;7(5) https://doi.org/10.1038/tp.2017.88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127(3):701–721.e70 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091674910019494.
Article
PubMed
CAS
Google Scholar
Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091674916307151.
Article
PubMed
CAS
Google Scholar
Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8:1–22 Available from: http://journal.frontiersin.org/article/10.3389/fnins.2014.00012/abstract.
Article
Google Scholar
Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372 https://doi.org/10.3389/fnins.2015.00372.
Article
PubMed
PubMed Central
Google Scholar
King NJC, Thomas SR. Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol. 2007;39(12):2167–72 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1357272507000271.
Article
PubMed
CAS
Google Scholar
Koola MM. Kynurenine pathway and cognitive impairments in schizophrenia: pharmacogenetics of galantamine and memantine. Schizophr Res Cogn. 2016;4:4–9 https://doi.org/10.1016/j.scog.2016.02.001.
Article
PubMed
PubMed Central
Google Scholar
Chiappelli J, Notarangelo FM, Pocivavsek A, Thomas MAR, Rowland LM, Schwarcz R, et al. Influence of plasma cytokines on kynurenine and kynurenic acid in schizophrenia. Neuropsychopharmacology. 2018:1–6 https://doi.org/10.1038/s41386-018-0038-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Xu W, Sun X, Chen Y, Liu X, Tang H, et al. Fever of recombinant human interferon-alpha is mediated by opioid domain interaction with opioid receptor inducing prostaglandin E 2. J Neuroimmunol. 2004;156:107–12 https://doi.org/10.1016/j.jneuroim.2004.07.013.
Article
PubMed
CAS
Google Scholar
Johansson A, Owe-Larsson B, Asp L, Kocki T, Adler M, Hetta J, et al. 109. Enhanced kynurenic acid levels and cytokine-induced production of 3-hydroxykynurenine in fibroblasts from bipolar or schizophrenic patients. Brain Behav Immun. 2013;32:e31–2 https://doi.org/10.1016/j.bbi.2013.07.121.
Article
Google Scholar
Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: Much ado about IDO. Trends Immunol. 2003;24:242–8 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490603000723.
Article
PubMed
CAS
Google Scholar
Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004;15(3):618–29 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996104000026.
Article
PubMed
CAS
Google Scholar
Filiano AJ, Gadani SP, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 2015;1617:18–27 https://doi.org/10.1016/j.brainres.2014.07.050.
Article
PubMed
CAS
Google Scholar
Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpé S, Maes M. IDO and interferon-α-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry. 2005;10(6):538–44 Available from: http://www.nature.com/articles/4001600.
Article
PubMed
CAS
Google Scholar
Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10(4):217–24 https://doi.org/10.1038/nrneurol.2014.38.
Article
PubMed
CAS
Google Scholar
Nakazato R, Hotta S, Yamada D, Kou M, Nakamura S, Takahata Y, et al. The intrinsic microglial clock system regulates interleukin-6 expression. Glia. 2017;65(1):198–208 Available from: http://doi.wiley.com/10.1002/glia.23087.
Article
PubMed
Google Scholar
Ye S-M, Johnson RW. Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol. 1999;93(1–2):139–48 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165572898002173.
Article
PubMed
CAS
Google Scholar
Gądek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep. 2010;62(6):969–82 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1734114010703595.
Article
PubMed
Google Scholar
Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87.
Article
PubMed
CAS
Google Scholar
Chiappelli J, Shi Q, Kodi P, Savransky A, Kochunov P, Rowland LM, et al. Disrupted glucocorticoid—immune interactions during stress response in schizophrenia. Psychoneuroendocrinology. 2016;63:86–93 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306453015009130.
Article
PubMed
CAS
Google Scholar
Simpson RJ, Hammacher A, Smith DK, Matthews JM, Ward LD. Interleukin-6: structure-function relationships. Protein Sci. 1997;6(5):929–55 Available from: http://doi.wiley.com/10.1002/pro.5560060501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M. Increased IL-6 trans-signaling in depression: focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep. 2013;65(6):1647–54 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24553013.
Article
PubMed
CAS
Google Scholar
Brydon L, Walker C, Wawrzyniak A, Whitehead D, Okamura H, Yajima J, et al. Synergistic effects of psychological and immune stressors on inflammatory cytokine and sickness responses in humans. Brain Behav Immun. 2009;23(2):217–24 https://doi.org/10.1016/j.bbi.2008.09.007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Müller N, Schwarz MJ. Immunologische aspekte bei schizophrenen störungen. Nervenarzt. 2007;78(3):253–63.
Article
PubMed
Google Scholar
Croitoru-Lamoury J, Guillemin GJ, Boussin FD, Mognetti B, Gigout LI, Chéret A, et al. Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNFα and IFNγ in CXCR4 and CCR5 modulation. Glia. 2003;41(4):354–70 Available from: http://doi.wiley.com/10.1002/glia.10181.
Article
PubMed
Google Scholar
Guillemin GJ, Croitoru-Lamoury J, Dormont D, Armati PJ, Brew BJ. Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia. 2003;41(4):371–81 Available from: http://doi.wiley.com/10.1002/glia.10175.
Article
PubMed
Google Scholar
Papadimitriou C, Celikkaya H, Cosacak MI, Mashkaryan V, Bray L, Bhattarai P, et al. 3D culture method for Alzheimer’s disease modeling reveals Interleukin-4 rescues Aβ42-induced loss of human neural stem cell plasticity. Dev Cell. 2018;46(1):85–101.e8 https://doi.org/10.1016/j.devcel.2018.06.005.
Article
PubMed
CAS
Google Scholar
Schwarz MJ, Müller N, Riedel M, Ackenheil M. The Th2-hypothesis of schizophrenia: a strategy to identify a subgroup of schizophrenia caused by immune mechanisms. Med Hypotheses. 2001;56(4):483–6.
Article
PubMed
CAS
Google Scholar
Fagarasan S, Honjo T. Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol. 2003;3(1):63–72 Available from: http://www.nature.com/articles/nri982.
Article
PubMed
CAS
Google Scholar
Faugere M, Micoulaud-Franchi J-A, Faget-Agius C, Lançon C, Cermolacce M, Richieri R. High C-reactive protein levels are associated with depressive symptoms in schizophrenia. J Affect Disord. 2018;225:671–5 https://doi.org/10.1016/j.jad.2017.09.004.
Article
PubMed
CAS
Google Scholar
Müller N, Myint AM, Krause D, Weidinger E, Schwarz MJ. Anti-inflammatory treatment in schizophrenia. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;42:146–53 https://doi.org/10.1016/j.pnpbp.2012.11.008.
Article
CAS
Google Scholar
Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull. 2010;36(2):211–8 https://doi.org/10.1093/schbul/sbq002.
Article
PubMed
PubMed Central
Google Scholar
de Bie J, Lim CK, Guillemin GJ. Kynurenines, gender and neuroinflammation; showcase schizophrenia. Neurotox Res. 2016;30(3):285–94 https://doi.org/10.1007/s12640-016-9641-5.
Article
PubMed
CAS
Google Scholar
Pemberton LA, Kerr SJ, Smythe G, Brew BJ. Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interf Cytokine Res. 1997;17(10):589–95 https://doi.org/10.1089/jir.1997.17.589.
Article
CAS
Google Scholar
Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279(8):1356–65 https://doi.org/10.1111/j.1742-4658.2012.08485.x.
Article
PubMed
CAS
Google Scholar
Beggiato S, Notarangelo FM, Sathyasaikumar KV, Giorgini F, Schwarcz R. Maternal genotype determines kynurenic acid levels in the fetal brain: implications for the pathophysiology of schizophrenia. J Psychopharmacol. 2018;32(11):1223–32 https://doi.org/10.1177/0269881118805492.
Article
PubMed
CAS
Google Scholar
Hahn B, Reneski CH, Pocivavsek A, Schwarcz R. Prenatal kynurenine treatment in rats causes schizophrenia-like broad monitoring deficits in adulthood. Psychopharmacology. 2018;235(3):651–61 https://doi.org/10.1007/s00213-017-4780-9.
Article
PubMed
CAS
Google Scholar
Bortz DM, Wu HQ, Schwarcz R, Bruno JP. Oral administration of a specific kynurenic acid synthesis (KAT II) inhibitor attenuates evoked glutamate release in rat prefrontal cortex. Neuropharmacology. 2017;121:69–78 https://doi.org/10.1016/j.neuropharm.2017.04.023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Molteni R, Macchi F, Zecchillo C, Dell’Agli M, Colombo E, Calabrese F, et al. Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. Eur Neuropsychopharmacol. 2013;23(11):1645–55 https://doi.org/10.1016/j.euroneuro.2013.03.008.
Article
PubMed
CAS
Google Scholar
Muller N, Myint A-M, J. Schwarz M. Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des. 2011;17(2):130–6 https://doi.org/10.2174/138161211795049552.
Article
PubMed
Google Scholar
Thomas J, Khanam R, Vohora D. Activation of indoleamine 2, 3- dioxygenase pathway by olanzapine augments antidepressant effects of venlafaxine in mice. Psychiatry Res. 2017;258:444–8 https://doi.org/10.1016/j.psychres.2017.08.083.
Article
PubMed
CAS
Google Scholar
Zheng W, Cai D, Bin YXH, Ungvari GS, Ng CH, Müller N, et al. Adjunctive celecoxib for schizophrenia: a meta-analysis of randomized, double-blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139–46 https://doi.org/10.1016/j.jpsychires.2017.04.004.
Article
PubMed
Google Scholar
Schmidt L, Phelps E, Friedel J, Shokraneh F. Acetylsalicylic acid (aspirin) for schizophrenia. Cochrane Database Syst Rev. 2019;2016:10(3) Available from: http://doi.wiley.com/10.1002/14651858.CD012116.
Google Scholar