McNicol A, Israels SJ: Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets. 2008, 8: 99-117. 10.2174/187152908784533739.
CAS
PubMed
Google Scholar
Martin JF, Levine RP: Evidence in favor of the lungs and against the bone marrow as the site of platelet production. The Platelet in Health and Disease. Edited by: Page CP. 1991, London Blackwell Scientific
Google Scholar
Aarts PA, vandenBroek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM: Blood platelets are concentrated near the wall and red cells in the center in flowing blood. Arteriosclerosis. 1985, 8: 819-24.
Google Scholar
Jy W, Jimenez JJ, Horstman LL, Ahn YS: Platelets, coagulation and thrombosis. Ch. 8. Interventional Cardiology Secrets. Edited by: Marchena Ed, Ferrara A. 2003, NY London Elsevier Press, 42-50.
Google Scholar
Gresele P, Falcinelli E, Momi S: Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharm Sci. 2008, 29: 352-60. 10.1016/j.tips.2008.05.002.
CAS
PubMed
Google Scholar
Zwaal RFA, Schroit AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997, 89: 1121-32.
CAS
PubMed
Google Scholar
Bick RL: Hematology: Clinical and Laboratory Practice [2 volumes]. 1993, St Louis MO Mosby
Google Scholar
Hoffman R, Benz EJ, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P: Hematology: Basic Principles and Practice [4th Ed'n; portions updated 2005]. 2005, Philadelphia: Elsevier, Churchill, Livingstone
Google Scholar
Handin RL, Lux SE, Stossel TP: Blood: Principles and Practice of Hematology [2nd Ed'n]. 2003, Philadelphia: Lippincott, Williams and Wilkins
Google Scholar
Colman RW, Hirsh J, Marder VJ, Salzman EW: Hemostasis and Thrombosis [3rd Ed'n]. 1994, Philadelphia, PA: J B Lippincott Co
Google Scholar
Gresele P, Page CP, Fuster V, Vermylen J: Platelets in thrombotic and non-thrombotic disorders: Pathophysiology, pharmacology and therapeutics. 2002, Cambridge, UK: Cambridge University Press
Google Scholar
Clawson CC: Platelets in bacterial infections. Immunopharmacology of Platelets. Edited by: Joseph M. 1995, London/New York: Academic Press, 83-124. full_text.
Google Scholar
Joseph M: The generation of free radicals by blood platelets (Ch. 11). Immunopharmacology of Platelets. Edited by: Joseph M. 1995, London/New York: Academic Press, 209-23. full_text.
Google Scholar
Herd CM, Page CP: Do platelets have a role as inflammatory cells? (Ch. 2). Immunopharmacology of Platelets. Edited by: Joseph M. 1995, London/New York: Academic Press, 1-12. full_text.
Google Scholar
McGregor JL: The role of human platelet membrane receptors in inflammation [Ch 4; see also Ch. 2]. Immunopharmacology of Platelets. Edited by: Joseph M. 1995, London/New York: Academic Press, 66-82.
Google Scholar
Weyrich AS, Lindemann S, Zimmerman CA: The evolving role of platelets in inflammation (Review). J Thromb Haemost. 2003, 1: 1897-905. 10.1046/j.1538-7836.2003.00304.x.
CAS
PubMed
Google Scholar
Tang BL: ADAMTS: a novel family of extracellular matrix proteases. Internat J Biochem Cell Biol. 2001, 33: 33-44. 10.1016/S1357-2725(00)00061-3.
CAS
Google Scholar
Nagase H, Visse R, Murphy G: Structure and function of matrix metalloproteinases and TIMPs [Theme Issue on MMP]. Cardiovasc Res. 2006, 69: 562-73. 10.1016/j.cardiores.2005.12.002.
CAS
PubMed
Google Scholar
Waubant E: Biomarkers indicitive of blood-brain barrier disruption in multiple sclerosis. Dis Markers. 2006, 22: 235-44.
PubMed Central
CAS
PubMed
Google Scholar
Yong VW, Power C, Forsyth P, Edwards DR: Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001, 2: 502-13. 10.1038/35081571.
CAS
PubMed
Google Scholar
Graesser D, Mahooti S, Haas T, Davis S, Clark RB, Madri JA: The interrelationship of alpha-4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis. Lab Invest. 1998, 78: 1445-8.
CAS
PubMed
Google Scholar
Leppert D, Raija L, Lindberg P, Kappos L, Leib SL: Matrix metalloproteinases: Multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Rev. 2001, 36: 249-57. 10.1016/S0165-0173(01)00101-1.
CAS
PubMed
Google Scholar
Yong VW, Zabad RK, Agrawal S, Dasilva AG, Metz LM: Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulation. J Neurol Sci. 2007, 259: 79-84. 10.1016/j.jns.2006.11.021.
CAS
PubMed
Google Scholar
Alldinger S, Groters S, Miao Q, Fonfara S, Kremmer E, Baumgartner W: Roles of extracellular matrix (ECM) receptor and ECM processing enzymes in dymelinating canine distemper encephalitis. DTschTieraxti Wochenschr. 2006, 113: 151-6.
CAS
Google Scholar
Sporer B, Koedel U, Paul R, Ertle V, Fontana A, Pfister HW: Human immunodeficiency virus type-1 Nef protein induces blood-brain barier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol. 2000, 102: 125-30. 10.1016/S0165-5728(99)00170-8.
CAS
PubMed
Google Scholar
Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT: Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009, 276: 13-26. 10.1111/j.1742-4658.2008.06766.x.
CAS
PubMed
Google Scholar
Ram M, Sherer T, Shoenfeld Y: Matrrix metalloproteinase-9 in autoimmune diseases. J Clin Immunol. 2006, 26: 299-307. 10.1007/s10875-006-9022-6.
CAS
PubMed
Google Scholar
Prince HE: Biomarkers for diagnosing and monitoring autoimmune diseases. Biomarkers. 2005, 10 (sup1): S44-S9. 10.1080/13547500500214194.
CAS
PubMed
Google Scholar
Muraski ME, Roycik MD, Newcomer RG, VanDenSteen PE, Opdenakker G, Monroe HR, Sahab ZJ, Sang QX: Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonarty disease and multiple sclerosis. Curr Pharm Biotech. 2009, 9: 4-46.
Google Scholar
Minagar A, Alexander JS, Schwendimann RN, Kelley RE, Gonzalez-Toledo E, Jimenez JJ, Mauro L, Jy W, Smith SJ: Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol. 2008, 65: 199-204. 10.1001/archneurol.2007.41.
PubMed
Google Scholar
Kim HS, Suh YH: Minocycline and neurodegenerative diseases. Behav Brain Res. 2009, 196: 168-79. 10.1016/j.bbr.2008.09.040.
CAS
PubMed
Google Scholar
Yong VW, Giuliani F, Xue M, Bar-Or A, Metz LM: Experimental models of neuroprotection relevant to multiple sclerosis. Neuropathology. 2007, 68 (22 Sup3): S32-S7.
CAS
Google Scholar
Clerico M, Contessa G, Durelli L: Interferon-beta 1a for the treatment of multiple sclerosis. Expert Opin Biol Ther. 2007, 7: 535-42. 10.1517/14712598.7.4.535.
CAS
PubMed
Google Scholar
Markowitz CE: Interferon-beta: mechanism of action and dosing issues. Neurology. 2007, 68 (24 sup4): S8-S11. 10.1212/01.wnl.0000277703.74115.d2.
CAS
PubMed
Google Scholar
Yong VW, Agrawal SM, Stirling DP: Targeting MMPs in acute and chronic neurological conditions. Neurotherapeutics. 2007, 4: 580-9. 10.1016/j.nurt.2007.07.005.
CAS
PubMed
Google Scholar
Gasche Y, Soccal PM, Kanemitsu M, Copin JC: Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front Biosci. 2006, 11: 1289-301. 10.2741/1883.
CAS
PubMed
Google Scholar
Agrawal SM, Lau L, Yong VW: MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol. 2008, 19: 42-51. 10.1016/j.semcdb.2007.06.003.
CAS
PubMed
Google Scholar
Santos-Martinez MJ, Medina C, Jurasz P, Radomski MW: Role of metalloproteinases in platelet function. Thromb Res. 2008, 121: 535-42. 10.1016/j.thromres.2007.06.002.
CAS
PubMed
Google Scholar
Jy W, Lin A, Bidot L, Bang J, Ahn E, Horstman LL, Jimenez JJ, Bidot CJ, Ahn YS: A significant fraction of ADAMTS13 activity is associated with activated platelets and their microparticles (PMP): implication for regulating ADAMTS13 activity. Blood. 2006, 108 (11): 317a.
Google Scholar
Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med. 2006, 38: 333-47.
CAS
PubMed
Google Scholar
Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR: Dynamics of leukocyte-platelet adhesion in whole blood. Blood. 1991, 78: 1730-7.
CAS
PubMed
Google Scholar
Rinder HM, Bonan JL, Rinder CS, Ault RA, Smith BR: Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood. 1991, 78: 1760-9.
CAS
PubMed
Google Scholar
Jy W, Mao WW, Horstman LL, Tao J, Ahn YS: Platelet microparticles bind, activate and aggregate neutrophils in vitro [with color photomicrographs]. BCMD (Blood Cells, Molecules and Diseases). 1995, 21: 217-31. 10.1006/bcmd.1995.0025.
CAS
Google Scholar
Ruef J, Kuehni P, Meinertz T, Merten M: The complement factor properdin induces formation of platelet-leukocyte aggregates via leukocyte activation. Platelets. 2008, 19: 359-64. 10.1080/09537100802105040.
CAS
PubMed
Google Scholar
Izzi B, Pampuch A, Constanzo S, Vanhout B, Iacoviello L, Cerietti C, deGaetano G: Determination of platelet conjugate formation with polymorphonuclear leukocytes in whole blood. Thromb Haemost. 2007, 98: 1276-84.
CAS
PubMed
Google Scholar
Hilberg T, Menzel K, Glaser D, Zimmermann S, Gabriel HH: Exercise intensity: platelet function and platelet-leukocyte conjugate formation in untrained subjects. Thromb Res. 2008, 122: 77-84. 10.1016/j.thromres.2007.08.018.
CAS
PubMed
Google Scholar
Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, Jimenez JJ, Horstman LL, Kett DH, Schein RMH, Ahn YS: Levels of endothelial and platelet microparticles and their interactions with leukocytes correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005, 33: 2540-6. 10.1097/01.CCM.0000186414.86162.03.
PubMed
Google Scholar
Chung AW, Radomski A, Alonso-Escolano D, Jurasz P, Stewart MW, Malinsky T, Radomski MW: Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinass. Br J Pharmacol. 2004, 143: 845-55. 10.1038/sj.bjp.0705997.
PubMed Central
CAS
PubMed
Google Scholar
Janowska-Wieczorek A, Marquez-Curtis L, Wieczorek M, Ratajczak MZ: Enhancing effect of platelet-derived microvesicles on the invasive potetial of breast cancercells. Transfusion. 2005, 46: 1199-209. 10.1111/j.1537-2995.2006.00871.x.
Google Scholar
Dashevsky O, Varon D, Brill A: Platelet-derived microparticles promote invasiveness of prostate cancer cells with upregulation of MMP-2 production. Int J Cancer. 2009, 14: 1773-7. 10.1002/ijc.24016.
Google Scholar
Janowska-Wieczorek A, Wieczorek M, Kijowski J, Marquez-Curtis L, Michalinski B, Ratajczak J, Ratajczak MZ: Microparticles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005, 113: 752-60. 10.1002/ijc.20657.
CAS
PubMed
Google Scholar
Horstman LL, Minagar A, Jy W, Bidot CJ, Jimenez JJ, Ahn YS: Cell-derived microparticles and exosomes in neuroinflammatory conditions [Review]. Int Rev Neurobiol. 2007, 79: 229-68.
Google Scholar
Horstman LL, Jy W, Bidot C, Nordberg ML, Minagar A, Alexander JS, Kelley RE, Ahn YS: Possible roles of cell-derived microparticls in ischemic brain disease. Neurol Res. 2009, 31: 799-806. 10.1179/016164109X12445505689526.
CAS
PubMed
Google Scholar
Cananzi AR, Ferro-Milone F, Grigoletto F, Toldo M, Meneghin F, Brotoloni F, D'Andrea G: Relevance of platelet factor 4 (PF4) plasma levels in multiple sclerosis. Acta Neurol Scand. 1987, 76 (2): 79-85. 10.1111/j.1600-0404.1987.tb03550.x.
CAS
PubMed
Google Scholar
Ludwig A, Weber C: Transmembrane chemokines: Versatile 'special agents' in vascular biology. Thromb Haemost. 2007, 91: 694-703.
Google Scholar
Power CA, Clemetson JM, Clemetson KJ, Wells TN: Chemokine and chemokine receptor mRNA expression in human platelets. Cytokine. 1995, 7 (6): 479-82. 10.1006/cyto.1995.0065.
CAS
PubMed
Google Scholar
Power CA, Furness RB, Brawand C, Wells TN: Cloning and full-length cDNA encoding the neutrophil-activating peptide ENA-78 from human platelets. Gene. 1994, 151: 333-334. 10.1016/0378-1119(94)90682-3.
CAS
PubMed
Google Scholar
Power CA, Meyer A, Nemeth K, Bacon KB, Hoogewerf AJ, Proudfoot AE, Wells TN: Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line. J Bio Chem. 1995, 270: 19495-500. 10.1074/jbc.270.33.19495.
CAS
Google Scholar
Wang JF, Liu ZY, Groopman JE: The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulated migration and adhesion. Blood. 1998, 92: 756-64.
CAS
PubMed
Google Scholar
Clemetson KJ, Clemetson JM, Proudfoot AEI, Power CA, Baggiolini M, Wells TNC: Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood. 2000, 96: 4046-54.
CAS
PubMed
Google Scholar
Sheng GY, Huang XL, Bai ST: Study on CXCR4 receptor on megakaryocytes and its ligand in bone marrow in children with acute idiopathic thrombocytopenic purpura. Blood. 2003, 102 (11): 65b Ab 3962.
Google Scholar
Gear ARL, Camerine D: Platelet chemokines and chemokine receptors: Linking hemostasis, inflammation, and host defense. Microcirculation. 2003, 10: 335-59.
CAS
PubMed
Google Scholar
vonHundelshausen P, Peterson F, Brandt E: Platelet-derived chemokines in vascular biology. Thromb Haemost. 2007, 97: 704-13.
CAS
Google Scholar
Gleissner CA, vonHundelshausen P, Ley K: Platelet chemokines in vascular disease. Arterioscl Thromb Vasc Biol. 2008, 28: 1920-7. 10.1161/ATVBAHA.108.169417.
PubMed Central
CAS
PubMed
Google Scholar
Horstman LL, Jy W, Jimenez JJ, Ahn YS: Endothelial microparticles as markers of endothelial dysfunction [Review]. Frontiers in Bioscience. 2004, 9: 1118-35. 10.2741/1270.
CAS
PubMed
Google Scholar
Horstman LL, Jy W, Bidot CJ, Ahn YS, Kelley RE, Zivadinov R, Maghzi AH, Etemadifar M, Mousavi AS, Minagar A: Antiphospholipid antibodies: Paradigm in transition. J Neuroinflammation. 2009, 6: 1-21. 10.1186/1742-2094-6-3.
Google Scholar
Jimenez J, Jy W, Mauro L, Horstman L, Ahn Y: Elevated endothelial microparticles in thrombotic thrombocytopenic purpura (TTP): Findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol. 2001, 112: 81-90. 10.1046/j.1365-2141.2001.02516.x.
CAS
PubMed
Google Scholar
Jimenez JJ, Jy W, Mauro L, Soderland C, Horstman LL, Ahn YS: Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. 2003, 109: 175-80. 10.1016/S0049-3848(03)00064-1.
CAS
PubMed
Google Scholar
Baltus T, vonHundelshausen P, Mause SF, Buhre W, Rossaint R, Weber C: Differential and additive effects of platelet-derived chemokines on monocyte arrest on inflamed endothelium under flow conditions. J Leukoc Biol. 2005, 78: 435-41. 10.1189/jlb.0305141.
CAS
PubMed
Google Scholar
Subileau EA, Rezale P, Davies HA, Colyer FM, Greenwood J, Male DK, Romero IA: Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J Neuropathol Exp Neurol. 2009, 68: 227-40. 10.1097/NEN.0b013e318197eca7.
CAS
PubMed
Google Scholar
Szczuchinski A, Losy J: Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scandia. 2007, 115: 137-46. 10.1111/j.1600-0404.2006.00749.x.
Google Scholar
Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM: Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med. 1992, 176: 587-92. 10.1084/jem.176.2.587.
CAS
PubMed
Google Scholar
Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y: Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndromes. Thromb Haemost. 2003, 89: 506-12.
CAS
PubMed
Google Scholar
Mause SF, vonHundelshausen P, Zernecke A, Koenen RR, Weber C: Platelet microparticles, a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscl Thromb Vasc Biol. 2005, 25: 1512-8. 10.1161/01.ATV.0000170133.43608.37.
CAS
PubMed
Google Scholar
vanVeen T, Nielsen J, Berkhof J, Barkhof F, Kamphorst W, Bo L, Ravid R, Verweij CL, Huitinga J, Polman CH, Uitdehaag BM: CCL5 and CCR5 genotypes modify clinical, radiological and pathological features of multiple sclerosis. J Neuroimmunol. 2007, 190: 157-64. 10.1016/j.jneuroim.2007.08.005.
CAS
Google Scholar
Ubogu EE, Callahan MK, Tucky BH, Ranschoff RM: Determination of CCL5-driven mononuclear cll migration across the blood-brain barrier. Implications for therapeutic modulation of neuroinflamation. J Neuroimmunol. 2006, 179: 132-44. 10.1016/j.jneuroim.2006.06.004.
CAS
PubMed
Google Scholar
Ubogu EE, Callahan MK, Tucky BH, Ranschoff RM: CCR5 expression on mononuclear and T cells: modulation by transmigration across the blood-brain barrier in vitro. Cell Immunol. 2006, 243: 19-29. 10.1016/j.cellimm.2006.12.001.
PubMed Central
CAS
PubMed
Google Scholar
Jalosinski M, Karolczak M, Mazurek A, Glabinski A: The effects of methylprednisolone and mitroxantrone on CCL5-induce migration of lymphocytes in multiple sclerosis. Acta Neurol Scand. 2008, 118: 120-5. 10.1111/j.1600-0404.2008.00998.x.
CAS
PubMed
Google Scholar
Merritt JR, Liu J, Quadros E, Morris ML, Liu R, Zhang R, Jacob B, Postelnek J, Hicks CM, Chen W, Kimble EF, Rogers WL, O'Brien L, et al: Novel pyrrolidone urease as C-C chemokine receptor 1 (CCR1) antagonist. J Med Chem. 2009.
Google Scholar
Proudfoot AE, deSouza AL, Muzio Y: The use of chemokine antagonists in EAE models. J Neuroimmunol. 2008, 198: 27-30. 10.1016/j.jneuroim.2008.04.007.
CAS
PubMed
Google Scholar
Zheng Y, Gu B, Ji X, Ding X, Song C, Wu F: Sinomedine, an antirheumatic alkaloid, ameliorates clinical signs of disease in the Lewis rat model of acute experimental autoimmune encephalomyelitis. Biol Pharm Bull. 2007, 30: 1438-44. 10.1248/bpb.30.1438.
Google Scholar
Vollmar P, Nessler S, Kalluri SR, Hartung HP, Hemmer B: The antidepressant venlafaxine ameliorates murine experimental autoimmune encephalomyelitis by suppression of pro-inflammatory cytokines. Int J Neuropsychopharacol. 2009, 12: 525-36. 10.1017/S1461145708009425.
CAS
Google Scholar
Nath N, Khan M, Paintlia MK, Hoda MN, Giri S: Metformin attentuates the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol. 2009, 182: 8005-14. 10.4049/jimmunol.0803563.
PubMed Central
CAS
PubMed
Google Scholar
Klesney-Tait J, Turnbull IR, Colonna M: The TREM receptor family and signal integration. Nat Immunol. 2006, 7: 1266-73. 10.1038/ni1411.
CAS
PubMed
Google Scholar
Ford JW, McVicar DW: TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol. 2009, 21: 38-46. 10.1016/j.coi.2009.01.009.
PubMed Central
CAS
PubMed
Google Scholar
Giomarelli B, Washington VA, Chisolm MM, Quigley L, McMahon JB, More T, McVicar DW: Inhibition of thrombin-induced platelet aggregation using single-chain Fv antibodies specific for TREM-like transcript-1. Thromb Haemost. 2007, 97: 955-63.
CAS
PubMed
Google Scholar
Nurden AT, Nurden P, Bermejo E, Combrie R, McVicar DW, Washington VA: Phenotypic heterogeneity in the Gray platelet syndrome extends to the expression of TREM family member, TLT-1. Thromb Haemost. 2008, 100: 45-51.
PubMed Central
CAS
PubMed
Google Scholar
Haselmayer P, Grosse-Hovest L, vanLandenberg P, Schild H, Radsak MP: TREM-1 ligand expression on platelets enhances neurophil activation. Blood. 2007, 110: 1029-35. 10.1182/blood-2007-01-069195.
CAS
PubMed
Google Scholar
Sanchais BS, Higazi AA, Cines DB, Poncz M, Kowalska MA: Interaction of platelet factor 4 with the vessel wall. Semin Thromb Hemost. 2004, 30: 351-8. 10.1055/s-2004-831048.
Google Scholar
Mixon TA, Dehmer GJ: Recombinant platelet factor 4 for heparin neutralization. Semin Thromb Hemost. 2004, 30: 369-77. 10.1055/s-2004-831050.
CAS
PubMed
Google Scholar
Warkentin TE: An overview of heparin-induced thrombocytopenia syndrome [Theme issue]. Semin Thromb Hemost. 2004, 30: 273-83. 10.1055/s-2004-831039.
CAS
PubMed
Google Scholar
Arnout J: The pathogensis of the anti-phospholipid syndrome: A hypothesis based on parallelisms with heparin-induced thrombocytopenia. Thromb Haemost. 1996, 75: 536-41.
CAS
PubMed
Google Scholar
Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT: Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004, 91: 4-15.
CAS
PubMed
Google Scholar
Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E: Platelets and wound healing. Front Biosci. 2008, 1: 3532-48.
Google Scholar
Rozman P, Bolta Z: Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Panonica Adriat. 2007, 16: 155-65.
Google Scholar
Loppnow H, Bil R, Hirt S, Schonbeck U, Herzberg M, Werdan K, Rietschel ET, Brandt E, Flad HD: Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood. 1998, 91: 134-41.
CAS
PubMed
Google Scholar
Hawrylowicz CM, Howells GL, Feldmann M: Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med. 1991, 174: 785-90. 10.1084/jem.174.4.785.
CAS
PubMed
Google Scholar
Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, Stein CS, Nieswandt B, Wang Y, Davidson BL, Ratliff TL: Platelet-mediated modulation of adaptive immunity: A communication link between innate and adaptive immune comparments. Immunity. 2003, 19: 9-19. 10.1016/S1074-7613(03)00177-8.
CAS
PubMed
Google Scholar
Czapiga M, Kirk AD, Lekstrom-Himes L: Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol. 2004, 32: 135-9. 10.1016/j.exphem.2003.11.004.
CAS
PubMed
Google Scholar
Sprague DL, Sowa JM, Elzey BD, Ratiff TL: The role of platelet CD154 in the modulation of adaptive immunity. Immunol Res. 2007, 39: 185-93. 10.1007/s12026-007-0074-3.
CAS
PubMed
Google Scholar
Martinson J, Bae J, Klingemann HG, Tam Y: Activated platelets rapidly up-regulate CD40L expression and can effecively mature and activate autologous ex vivo differentiated DC. Cytotherapy. 2004, 6: 487-97. 10.1080/14653240410005249-1.
CAS
PubMed
Google Scholar
Nguyen XD, Muller-Berghaus J, Kalsch T, Schadendorf D, Borggrefe M, Kluer H: Differentiation of monocyte-derived dendritic cells under the influence of platelets. Cytotherapy. 2008, 10 (7): 720-9. 10.1080/14653240802378912.
CAS
PubMed
Google Scholar
Hamzeh-Cognasse H, Cognasse F, Palle S, Chavarin P, Olivier T, Delazay O, Pozzetto B, Garraud O: Direct contact of platelets and their release products exert differential effects on human dendritic cell maturation. BMC Immunol. 2008, 25: 54-10.1186/1471-2172-9-54.
Google Scholar
Chitnis T, Khoury SJ: Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J Allergy Clin Immunol. 2003, 112: 837-49. 10.1016/j.jaci.2003.08.025.
CAS
PubMed
Google Scholar
Benveniste EN, Nguyen VT, Wesemann DR: Molecular regulation of CD40 gene expresson in macrophages and microglia. Brain Behav Immun. 2004, 18: 7-12. 10.1016/j.bbi.2003.09.001.
CAS
PubMed
Google Scholar
Allen SD, Rawale SV, Whitacre CC, Kaumaya PT: Therapeutic peptidomimetic strategies for autoimune disease: costimulation blockade. J Pept Rs. 2005, 65: 591-604. 10.1111/j.1399-3011.2005.00256.x.
CAS
Google Scholar
Levesque MC: Translational Mini-Review Series on B Cell-Directed Therapies: recent advancs in B cell-directed biological therapies for autoimmune disorders. Clin Exp Immunol. 2009, 157: 198-208. 10.1111/j.1365-2249.2009.03979.x.
PubMed Central
CAS
PubMed
Google Scholar
Filion LG, Matusevicius D, Graziani-Bowering GM, Kumar A, Freedman MS: Monocyte-derived IL12, CD88 (B7-2) and CD40L expression in relapsing and progressive multiple sclerosis. Clin Immunol. 2003, 106: 127-38. 10.1016/S1521-6616(02)00028-1.
CAS
PubMed
Google Scholar
Harp CT, Lovett-Racke AF, Racke MK, Frohman EM, Monson NL: Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis. Clin Immunol. 2008, 28 (3): 382-91. 10.1016/j.clim.2008.05.002.
Google Scholar
Santilli F, Basili S, Ferroni P, Davi G: CD40/CD40L system and vascular disease. Intern Emerg Med. 2007, 2: 256-68. 10.1007/s11739-007-0076-0.
CAS
PubMed
Google Scholar
Ahn ER, Lander G, Jy W, Bidot C, Jimenez JJ, Horstman LL, Ahn YS: Differences of soluble CD40L in sera and plasma: Implications on CD40L assay as a marker of thrombotic risk. Thromb Res. 2004, 114: 143-8. 10.1016/j.thromres.2004.06.005.
CAS
PubMed
Google Scholar
Myong S, Cui S, Cornish PV, Kirchofer A, Gack MU, Jung JU, Hopfner K, Taekjip H: Cytosolic viral sensor RIG-1 is a 5'-triphosphate-dependent translocase on double-stranded RNA. Science. 2009, 323: 1070-4. 10.1126/science.1168352.
PubMed Central
CAS
PubMed
Google Scholar
Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ: HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009, 323: 1057-60. 10.1126/science.1169841.
CAS
PubMed
Google Scholar
Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi U, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M: Expression of Toll-like receptors on human platelets. Thromb Res. 2004, 113: 375-85. 10.1016/j.thromres.2004.03.023.
Google Scholar
Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O: Evidence of Toll-like receptor molecules on human platelets [Brief Communication]. Immunol Cell Biol. 2005, 83: 196-8. 10.1111/j.1440-1711.2005.01314.x.
CAS
PubMed
Google Scholar
Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O: Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol. 2008, 141: 84-91. 10.1111/j.1365-2141.2008.06999.x.
CAS
PubMed
Google Scholar
Cognasse F, Hamzeh-Cognasse H, Garraud O: Platelets "Toll-like receptor" engagement stimulates the release of immunomodulatory molecules [French]. Transfus Clin Biol. 2008, 15: 139-47. 10.1016/j.tracli.2008.07.010.
CAS
PubMed
Google Scholar
Chearwae W, Bright JJ: 15-deoxy-Delta (12,14)-prostaglandin J(2) and curcumin modulate the expression of toll-like receptors 4 and 9 in autoimmune T lymphocytes. J Clin Immunol. 2008, 28: 558-70. 10.1007/s10875-008-9202-7.
CAS
PubMed
Google Scholar
Drew PD, Xu J, Racke MK: PPAR gamma: Therapeutic potential for multiple sclerosis. PPAR Res. 2008, 2008: 627463.
PubMed Central
PubMed
Google Scholar
Xu J, Racke MK, Drew PD: Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J Neurochem. 2007, 103 (5): 1801-10. 10.1111/j.1471-4159.2007.04875.x.
PubMed Central
CAS
PubMed
Google Scholar
Bright JJ, Walline CC, Kanakasabai S, Chakraborty S: Targeting PPAR as a therapy to treatmultiple sclerosis. Expert Opin Ther Targets. 2008, 12 (12): 1565-75. 10.1517/14728220802515400.
CAS
PubMed
Google Scholar
Heneka MT, Landreth GE: PPARs in the brain. Biochim Biophys Acta. 2007, 1771 (8): 1031-45.
CAS
PubMed
Google Scholar
Mrak RE, Landreth GE: PPARgamma, neuroinflammation and disease. J Neuroinflammation. 2004, 1: 5-10.1186/1742-2094-1-5.
PubMed Central
PubMed
Google Scholar
Kummer MP, Heneke MT: PPARs in Alzheimer's disease. PPAR Res. 2008, 2008: 403896.
PubMed Central
PubMed
Google Scholar
Chaturvedi RK, Beal MF: PPAR: a therapeutic target in Parkinson's disease. J Neurochem. 2008, 106: 506-18. 10.1111/j.1471-4159.2008.05388.x.
CAS
PubMed
Google Scholar
Yang Y, Gocke AR, Lovett-Racke A, Drew PD, Rcke MK: PPAR alpha regulation of the immune response and autoimmune encephalomyelitis. PPAR Res. 2008, 2008: 546753.
PubMed Central
PubMed
Google Scholar
Lleo A, Galea E, Sastre M: Molecular targets of non-steroidal anti-inflammatory drugs in neurodegtenerative diseases. Cell Mol Life Sci. 2007, 64: 1402-18. 10.1007/s00018-007-6516-1.
Google Scholar
Panchatcharam M, Miriyala S, Yang F, Rojas M, End C, Vallant C, Dong A, Lynch K, Chun J, Morris AJ, Smyth SS: Lysophosphatidic acid receptors 1 and 2 play roles in regulation of vascular injury responses but not blood pressure. Circ Res. 2008, 103: 662-70. 10.1161/CIRCRESAHA.108.180778.
PubMed Central
CAS
PubMed
Google Scholar
Mestre J, Docagne F, Correa F, Loria F, Hernangomez M, Borrell J, Guazo C: A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci. 2009, 40: 258-66. 10.1016/j.mcn.2008.10.015.
CAS
PubMed
Google Scholar
Klotz L, Diehl L, Dani J, Neumann H, vonOppen N, Dolf A, Endl E, Klockgether T, Engelhardt B, Knolle P: Brain endothelial PPAR gamma controls inflammation induced CD4+ T cell adhesion and transmigration in vitro. J Neuroimmunol. 2007, 190: 34-10.1016/j.jneuroim.2007.07.017.
CAS
PubMed
Google Scholar
Spinelli SL, O'Brien JJ, Bancos S, Lehmann GW, Springer DL, Blumberg N, Francis CW, Taubman MB, Phipps RP: The PPAR-platelet connection: modulators of inflammation and potential cardiovascular effects [Article ID#328172]. PPAR Res. 2008, 2008: 1-16. 10.1155/2008/328172.
Google Scholar
Shimizu T: Lipid mediators in health and disease: enzyms and receptors as therapeutic targets for the regulatio of immunity and inflammation. Annu Rev Pharmacol Toxicol. 2009, 49: 123-50. 10.1146/annurev.pharmtox.011008.145616.
CAS
PubMed
Google Scholar
Farooqui AA: Lipid mediators in the neural cell nucleus: Their metabolism, signaling, and association with neurological diseases. Neuroscientist. 2009, 15: 392-407. 10.1177/1073858409337035.
CAS
PubMed
Google Scholar
Gardell S, Dubin AE, Chun J: Emerging medicinal roles for lysophospholipid signaling. Trends Molec Med. 2006, 12 (2): 65-75. 10.1016/j.molmed.2005.12.001.
CAS
Google Scholar
Morris AJ, Panchatcharam M, Cheng HY, Federico L, Fulkerson Z, Selim S, Miriyala S, Escalante-Alcalde D, Smyth SS: Regulation of blood and vascular cell function by bioactive lysophospholipids. JThromb Haemost. 2009, 7 (Supl1): 38-43. 10.1111/j.1538-7836.2009.03405.x.
CAS
Google Scholar
Chun J, Rosen H: Lysophospholipid receptors as potential targets in tissue transplantation and autoimmune diseases. Curr Pharm Des. 2006, 12: 161-71. 10.2174/138161206775193109.
CAS
PubMed
Google Scholar
Herr DR, Chun J: Effects of LPA and s1P on the nervous system and implications for their involvement in disease. Curr Drug Targets. 2007, 8: 155-67. 10.2174/138945007779315669.
CAS
PubMed
Google Scholar
Massberg S, vonAdrian UH: Fingolimod and sphingosine-1-phosphate: modifiers of lymphocyte migration. New Engl J Med. 2006, 355 (Sep 14): 1088-91. 10.1056/NEJMp068159.
CAS
PubMed
Google Scholar
Kappos L, al e: Oral fingolimod (FTY720) for relapsing multiple sclerosis [with editorial, p1088-91]. New Engl J Med. 2006, 355: 1124-40. 10.1056/NEJMoa052643.
CAS
PubMed
Google Scholar
Pamuklar Z, Federico L, Liu S, Umezu-Goto M, Dong A, Panchatcharam M, Fulerson Z, Berdyshev E, Natarajan V, Fang X, vanMeeteren LA, Moolenaar WH, Mills GB, Morris AJ, Smyth SS: Autotaxin/lysopholipase D and lysophosphatidic acid regulate murine hemostasis and thrombosis. J Biol Chem. 2009, 284: 7385-94. 10.1074/jbc.M807820200.
PubMed Central
CAS
PubMed
Google Scholar
Durgam G, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, vanMeeteren LA, Moolenaar WH, Wilke N, Siess W, Tigyi G, Miller DD: Synthesis, structure-activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARgamma, and inhibitors of autotaxin. J Med Chem. 2005, 48: 4919-30. 10.1021/jm049609r.
CAS
PubMed
Google Scholar
Li ZG, Yu ZC, Wang DZ, Ju WP, Zhang X, Wu QZ, Wu XJ, Cong HM, Man HH: Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular disease. Neurol Res. 2008, 30: 166-369.
Google Scholar
Siess W: Platelet interactions with bioactivelipids formed by mild oxidation of low-density lipoprotein. Pathophysiol Haeost Thromb. 2006, 35: 292-304. 10.1159/000093222.
CAS
Google Scholar
Williams JR, Khandoga AL, Goyal R, Fells JI, Perygin DH, Siess W, Parrill AL, Tigyi G, Fujiwara Y: Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol Chem. 2009, 284: 17304-19. 10.1074/jbc.M109.003194.
PubMed Central
CAS
PubMed
Google Scholar
Kang S, Yang C, Luo R: LysoPtdOH enhances CXCL16 prodction stiulated by LPS from macrophages and regulate T cell migration. Lipids. 2008, 43: 1075-83. 10.1007/s11745-008-3238-6.
CAS
PubMed
Google Scholar
Eriksson AC, Whiss PA, Nilsson UK: Adhesion of human platelets to albumin is synergistically increasd by lysophosphatidic acid and adrenaline in a donor-dependent fashion. Blood Coagul Fibrinolysis. 2006, 17: 359-68. 10.1097/01.mbc.0000233366.18605.b2.
CAS
PubMed
Google Scholar
Nakasaki T, Tanaka T, Okudaira S, Hirosawa M, Umemoto E, Otani K, Jin S, Bai Z, Hayasaka H, Fukui Y, Aozasa K, Fujita N, Tsuruo T, Ozono K, Aoki J, Miyasaka M: Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions. Am J Pathol. 2008, 173: 1566-76. 10.2353/ajpath.2008.071153.
PubMed Central
CAS
PubMed
Google Scholar
Smyth SS, Cheng HY, Miriyala S, Panchatcharam M, Morris AJ: Role of lysophosphatidic acid in cardiovascular pysiology and disease. Biochim Biophys Acta. 2008, 1781: 563-70.
PubMed Central
CAS
PubMed
Google Scholar
Lin CI, Chen CN, Lee H: Lysophospholipids increase IL-8 and MCP-1 expression in human umbilical cord vein endothelial cells through as IL-1-dependent mechanisms. J Cell Biochem. 2006, 99: 1216-32. 10.1002/jcb.20963.
CAS
PubMed
Google Scholar
MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Suprenant A: Rapid secretion of interleukin-1ß by microvesicle shedding. Immunity. 2001, 8: 825-35. 10.1016/S1074-7613(01)00229-1.
Google Scholar
Gupta GP, Massague J: Platelets and metastasis revisited: a novel fatty link. Clin Invest. 2004, 114: 1691-3.
CAS
Google Scholar
Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Gugliemi J, Clezardin R, Peyruchaud O: Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastasis in breast cancer. J Clin Invest. 2004, 114: 1714-25.
PubMed Central
CAS
PubMed
Google Scholar
Pamuklar Z, Lee JS, Cheng HY, Panchatcharam M, Steinhubl S, Morris AJ, Charnigo R, Smyth SS: Individual heterogeneity in platelet response to lysophosphatidic acid: Evidence for a novel inhibitory pathway. Arterioscl Thromb Vasc Biol. 2008, 28: 555-61. 10.1161/ATVBAHA.107.151837.
CAS
PubMed
Google Scholar
Khandoga AL, Fujiwara Y, Goyal P, Pandey D, Tsukahara R, Bolen A, Guo H, Wilke N, Liu J, Valentine WJ, Durgam GG, Miller DD, Jiang G, Prestwich GD, Tigyi G, Siess W: Lysophosphatidic acid-induced platelet shape change revealed through LPA(1-5) receptor-selective probes and albumin. Platelets. 2008, 19: 415-27. 10.1080/09537100802220468.
PubMed Central
CAS
PubMed
Google Scholar
Loria F, Petrosino S, Mestre L, Spagnolo A, Correa F, Hernangomez M, Guaza C, DiMarzo V, Docagne F: Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoyl ethanolamine. Eur J Neurosci. 2008, 28: 633-542. 10.1111/j.1460-9568.2008.06377.x.
PubMed
Google Scholar
Moriyama T, Urade R, Kito M: Purification and characterization of diacylglycerol lipase from human platelets. J Biochem. 1999, 125: 1077-85.
CAS
PubMed
Google Scholar
Jung KM, Astarita G, Zhu C, Wallace M, Mackie K, Piomelli D: A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol Pharmacol. 2007, 72: 612-21. 10.1124/mol.107.037796.
CAS
PubMed
Google Scholar
Baldassarri S, Bertoni A, Bagarotti A, Sarasso C, Zanfa M, Catani MV, Avigliano L, Maccarrone M, Torti M, Sinigaglia F: The endocannabinoid 2-arachidonyl glycerol activates human platelets through non-CB1/CB2 receptors. J Thriomb Haemost. 2008, 6: 1772-9. 10.1111/j.1538-7836.2008.03093.x.
CAS
Google Scholar
Schafer A, Pfrang J, Neumuller J, Fiedler S, Ertl G, Bauersachs J: The cannabinoid receptor-1 antagonist rimonabant inhibits platelet activation and reduces pro-inflammatory chemokines in leukocytes in Zucker rats. Br J Pharmacol. 2008, 154: 1047-54. 10.1038/bjp.2008.158.
PubMed Central
CAS
PubMed
Google Scholar
Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL: Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002, 196: 1025-37. 10.1084/jem.20020760.
PubMed Central
CAS
PubMed
Google Scholar
Ridker PM: Testing the inflammatory hypothesis of atherosclerosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J Thromb Haemost. 2009, 7 (supl1): 332-9. 10.1111/j.1538-7836.2009.03404.x.
CAS
PubMed
Google Scholar
Poulsen RC, Gotlinger KH, Serhan CN, Kruger MC: Identification of inflammatory and proresolving lipid mediators in bone marrow and their lipidomic profiles with ovariectomy and omega-3 intake. Am J Hematol. 2008, 83: 437-45. 10.1002/ajh.21170.
CAS
PubMed
Google Scholar
Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A: Simultaneous lipidomic analysis of three families of bioactive lipid mediators, leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22: 75-83. 10.1002/rcm.3331.
PubMed Central
CAS
PubMed
Google Scholar
Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG: Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003, 278: 43807-17. 10.1074/jbc.M305841200.
CAS
PubMed
Google Scholar
Dona M, Freedman G, Schwab JM, Chiang N, Arita M, Goodarzi A, Cheng G, vonAndrian UH, Serhan CN: Resolvin E1, an EPA-derived mediator in whole blood, selectively counter-regulates leukocytes and platelets. Blood. 2008, 112: 848-55. 10.1182/blood-2007-11-122598.
PubMed Central
CAS
PubMed
Google Scholar
Yang H, Chen C: Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des. 2008, 14: 1443-51. 10.2174/138161208784480144.
PubMed Central
CAS
PubMed
Google Scholar
Stewart TM, Bowling AC: Polyunsaturated fatty acid supplementation in MS. Int MS J. 2005, 12: 88-93.
CAS
PubMed
Google Scholar
vaMeeteren ME, Teunissen CE, Dijkstra CD, vanTol EA: Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nautr. 2005, 59: 1347-61. 10.1038/sj.ejcn.1602255.
Google Scholar
Minghetti L: Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004, 63: 901-10.
CAS
PubMed
Google Scholar
James-Krack MR, Sexe RB, Shukla SD: Picomolar platelet activating factor mobilizes Ca to change platelet shape without activating phopholipase C or protein kinase C: Simultaneous fluorometric measurements of intracellular free Ca concentration and aggregation. J Pharm Exper Ther. 1994, 271: 824-31.
Google Scholar
Stimler NP, Bloor CM, Hugli TE, Wykle RL, McCall CE, O'Flaherty JT: Anaphylactic action of platelet activating factor. Am J Pathol. 1981, 105: 64-9.
PubMed Central
CAS
PubMed
Google Scholar
Wardlaw AJ, Moqbel R, Cromwell O, Kay AB: Platelet-activating factor. A potent chemotactic and chemokinetic factor for human eosinophils. J Clin Invest. 1986, 78: 1701-6. 10.1172/JCI112765.
PubMed Central
CAS
PubMed
Google Scholar
O'Flaherty JT, Wykle RL, Miller CH, Lewis JC, Waite M, Bass DA, McCall CE, DeChatelet LR: 1-O -alkyl-sn-glyceryl-3- phosphorylcholines. A novel class of neutrophil stimulants. Am J Pathol. 1981, 103: 70-9.
PubMed Central
PubMed
Google Scholar
Braquet P, Touqui L, Shen TY, BB V: Perspectives in platelet activating factor research. Pharm Rev. 1987, 39: 97-145.
CAS
PubMed
Google Scholar
Braquet P: The ginkgolides: Potent platelet-activating factor antagonists isolated from Ginkgo biloba L.: Chemistry, pharmacology and clinical applications. Drugs of the Future. 1987, 12: 643-99.
Google Scholar
Farooqui AA, Ong WY, Horrocks LA: Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharm Rev. 2006, 58: 591-620. 10.1124/pr.58.3.7.
CAS
PubMed
Google Scholar
Kihara Y, Yanagida K, Masago K, Kita Y, Hishikawa D, Shindou H, Ishii S, Shimizu T: Platelet-activating factor production in the spinal cord of experimental allergic encephalomyelitis mice via the group IVA cytosolic phospholipase A2-lyso-PAFAT axis. J Immunol. 2008, 181: 5008-14.
CAS
PubMed
Google Scholar
Edwards LJ, Constantinescu CS: Platelet activating factor/platelet activating factor receptor pathways as a potetial therapeutic target in autoimmune diseases. Inflamm Allergy Drug Targets. 2009, 8: 182-90.
CAS
PubMed
Google Scholar
Iwamoto S, Kawasaki T, Kambayashi J, Ariyoshi H, Monden M: Platelet microparticles: A carrier of platelet-activating factor?. Biochem Biophys Res Com. 1996, 218: 940-4. 10.1006/bbrc.1996.0166.
CAS
PubMed
Google Scholar
Mitsios wV, Vini MP, Stengel D, Ninio E, Tselepis AD: Human platelets secrete the plasma type of platelet activating acetylhydrolase primarily associated with microparticles. Arterioscl Thromb Vasc Biol. 2006, 26: 1907-13. 10.1161/01.ATV.0000228821.79588.ef.
CAS
PubMed
Google Scholar
Tselepsis AD, Dentan C, Karabina SAP, Chapman MJ, Ninio E: PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Arterioscler Thromb Vasc Biol. 1995, 15: 1764-73.
Google Scholar
Coeffier E, Danielle J, Prevost MC, Vargaftig BB: Platelet-leukocyte interaction: Activation of rabbit platelets by FMLP-stimulated neutrophils. Br J Pharmacol. 1987, 92: 393-406.
PubMed Central
CAS
PubMed
Google Scholar
Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN: Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J Biol Chem. 2009, 284: 5381-94. 10.1074/jbc.M808958200.
PubMed Central
CAS
PubMed
Google Scholar
Adamson RH, Ly JC, Sarai RK, Lenz JF, Altangerel A, Drenckhahn D, Curry FE: Epac/Rap1 pathway regulates microvascular hyperpermeability induced by PAF in rat mesentery. Am J Physiol Heart Circ Physiol. 2008, 294: H1188-H96. 10.1152/ajpheart.00937.2007.
CAS
PubMed
Google Scholar
Jiang J, Wen K, Zhou X, Schwegler-Berry D, Castranova V, He P: Three-dimensional localization and quantification of PAF-induced gap formation in intact venular microvessels. J Biol Chem. 2009, 284: 5381-94.
Google Scholar
Brkovic A, Sirois MS: Vascular permeability induced by VEGF family members in vivo: role of endogenous PAF and NO synthesis. J Cell Biochem. 2007, 100: 727-37. 10.1002/jcb.21124.
CAS
PubMed
Google Scholar
Bate C, Rumbold L, Williams A: Cholesterol synthesis inhibitors protect against platelet activating factor-induced neuronal damage. J Neurioinflammation. 2007, 18: 5-10.1186/1742-2094-4-5.
Google Scholar
Tramontano AF, O'Leary J, Black AD, Muniyappa R, Cutaia MV, ElSherif N: Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res Com. 2004, 320: 34-8. 10.1016/j.bbrc.2004.05.127.
CAS
PubMed
Google Scholar
Osoegawa M, Niino M, Ochi H, Kikuchi S, Murai H, Fukazawa T, Minohara M, Tashiro K: Platelet-activating factor acetylhydrolase gene polymorphism and its activity in Japanese patients with multiple sclerosis. J Neuroimmunol. 2004, 150: 150-6. 10.1016/j.jneuroim.2004.01.008.
CAS
PubMed
Google Scholar
Osoegawa M, Miyagishi R, Ochi H, Nakamura I, Niino M, Kikuchi S, Murai H, Fukazawa T, Minohara M, Tashiro K, Kira : Platelet-activating factor receptor gene polymorphism in Japanese patients with multiple sclerosis. J Neuroimmunol. 2005, 161: 195-8. 10.1016/j.jneuroim.2004.12.014.
CAS
PubMed
Google Scholar
Lock C, Hermans G, Redotti R, Brendoland A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannell B, Allard J, Klonowski P, Austin AA, et al: Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 2002, 8: 500-8. 10.1038/nm0502-500.
CAS
PubMed
Google Scholar
Kihara Y, Ishii S, Kita Y, Toda A, Shimada A, Shimizu T: Dual phase regulation of experimental allergic encephalomyelitis by platelet activating factor. J Exp Med. 2005, 202: 853-63. 10.1084/jem.20050660.
PubMed Central
CAS
PubMed
Google Scholar
Callea L, Arese M, Orlandini A, Bargnani S, Priori A, Bussolino F: Platelet activating factor is elevated in cerebral spinal fluid and plasma of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol. 1999, 94: 212-21. 10.1016/S0165-5728(98)00246-X.
CAS
PubMed
Google Scholar
Meade CJ, Heuer H, Kempe R: Biochemical pharmacology of platelet activating factor (and PAF antagonists) in relation to clinical and experimental thrombocytopenia. Biochem Pharm. 1991, 41: 657-68. 10.1016/0006-2952(91)90064-C.
CAS
PubMed
Google Scholar
Lindsberg PJ, Hallenbeck JM, G GF: Platelet activating factor in stroke and brain injury (Review). Ann Neurol. 1991, 30: 117-29. 10.1002/ana.410300202.
CAS
PubMed
Google Scholar
Duran WN, Milazzo VJ, Sabido F, Hobson RW: Platelet-activating factor modulates leukocyte adhesion to endothelium is ischemia-reperfusion. Microvasc Res. 1996, 51: 108-15. 10.1006/mvre.1996.0011.
CAS
PubMed
Google Scholar
Osborn TM, Dahlgren C, Hartwig JH, Stossel TP: Modifications of cellular responses to lysophosphatidic acid and platelet-activating factor by plasa gelsolin. Am J Physiol Cell Pysiol. 2007, 292: C1323-C30. 10.1152/ajpcell.00510.2006.
CAS
Google Scholar
Cortes-Canteli M, Strickland S: Fibrinogen, a possible key player in Alzheimer's disease. JThromb Haemost. 2009, 7 (s1): 146-50. 10.1111/j.1538-7836.2009.03376.x.
CAS
Google Scholar
Ryu J, Davalos D, Akassoclou K: Fibrinogen signal transduction in the central nervous system [Annual Supplment, "State of the Art"]. J Thromb Haemost. 2009, 7 (s1): 151-4. 10.1111/j.1538-7836.2009.03438.x.
PubMed Central
CAS
PubMed
Google Scholar
Marlar RA: The protein C system - how complex is it?. Thromb Haemost. 2001, 85: 756-7.
CAS
PubMed
Google Scholar
Matthay MA: Severe sepsis: a new treatment with both anticoagulant and anti-inflammatory properties. New Engl J Med. 2001, 344: 759-62. 10.1056/NEJM200103083441009.
CAS
PubMed
Google Scholar
Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Hildebrand JD, Ely EW, FisherJr CJ: Efficacy and safety of recombinant human activated protein C for severe sepsis. New Engl J Med. 2001, 344: 699-709. 10.1056/NEJM200103083441001.
CAS
PubMed
Google Scholar
Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald CH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L: Proteomic analysis of active mulctiple sclerosis lesions reveals therapeutic targets. Nature. 2008, 451: 1076-81. 10.1038/nature06559.
CAS
PubMed
Google Scholar
Genc K: Activated protein C: possible therapeutic implications for multiple sclerosis. Med Hypotheses. 2007, 68: 710-10.1016/j.mehy.2006.09.004.
CAS
PubMed
Google Scholar
Hagiwara S, Iwasaki W, Matsumoto S, Hasegawa A, Yasuda N, Noguchi T: In vivo and in vitro effects of the anticoagulant, thrombomodulin, on the inflammatory response in rodent models. Shock. 2009.
Google Scholar
DeLaCadena PA, Wachtfogel YT, Colman RW: Ch 11: Contact activation pathway: Inflammation and coagulation. Hemostasis and Thrombosis. Edited by: Colman R, Hirsh J, Marder VJ, Salzman EW. 1994, Philadelphia: J B Lippincott, 219-40.
Google Scholar
Colman RW, Cook JJ, Niewiarowski S: Ch 23: Mechanisms of platelet aggregation. Hemostasis and Thrombosis. Edited by: Colman R, Hirsh J, Marder VJ, Salzman EW. 1994, Philadelphia: J B Lippincott, 508-23.
Google Scholar
Khan MM, Bradford HN, Isordia-Salas I, Liu Y, Wu Y, Espinola RG, Ghebrehiwet B, Colman RW: High-molecular weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler Thromb Vasc Biol. 2005, 26: 2260-6. 10.1161/01.ATV.0000240290.70852.c0.
Google Scholar
Schulze-Topphoff U, Pratt A, Prozorovsky T, Siffrin V, Paterka M, Herz J, Bendix I, Ifergan I, Schadock I, Mori MA, VanHorssen J, Schroter F, et al: Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nature Med. 2009, 15: 788-93. 10.1038/nm.1980.
CAS
PubMed
Google Scholar
Sainz IM, Pixley RA, Colman RW: Fifty years of research on the plasma kallikrein-kinin system: From protein structure and function to cell biology and in-vivo pathophysiology. Thromb Haemost. 2007, 98: 77-83.
CAS
PubMed
Google Scholar
Thone-Reineke C, Steckelinger UM, Ungar T: Angiotensin receptor blockers and cerebral protection in stroke. J Hypteren Suppl. 2006, 24: S11-S21. 10.1097/01.hjh.0000220098.12154.88.
Google Scholar
Chavakis T, Santoso S, Clemetson KJ, Sachs UJ, Isordia-Salas I, Paxley RA, Nawroth PP, Colman RW, Preissner KT: High mlecular weight kininogen regulates platelet-leukocyte interaction by bridging Mac-1 and glycoprotein Ib. J Biol Chem. 2003, 278: 45375-81. 10.1074/jbc.M304344200.
CAS
PubMed
Google Scholar
Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu2009 H: Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nature Med. 2009, 15: 794-8. 10.1038/nm.1961.
CAS
PubMed
Google Scholar
Chen D, Dorling A: Critical roles for thrombin in acute and chronic inflammation [in annual supplement, "Stateof the Art"]. J Thromb Haemost. 2009, 7 (supl1): 122-6. 10.1111/j.1538-7836.2009.03413.x.
CAS
PubMed
Google Scholar
Blajchman MA, Ozge-Anwar AH: The role of the complement system in hemostasis. Prog Hemat. 1986, XIV: 149-82.
Google Scholar
Halkier T: Regulation of blood coagulation (Ch. 8). Mechanisms in Blood Coagulation, Fibrinolysis and the Complement System. 1991, New York, London: Cambridge Univ. Press
Google Scholar
Houle JJ, Leddy JP, Rosenfeld SI: Secretion of the terminal complement proteins C5-C9 by human platelets. Clin Immunol Immunopath. 1989, 50: 385-93. 10.1016/0090-1229(89)90145-1.
CAS
Google Scholar
Lachmann PJ: The control of homologous lysis. Imm Today. 1991, 12: 312-5. 10.1016/0167-5699(91)90005-E.
CAS
Google Scholar
Morgan BP, Meri S: Membrane proteins that protect against complement lysis. Spring Sem Immunopath. 1994, 15: 369-96. 10.1007/BF01837366.
CAS
Google Scholar
Morgan BP: Isolation and characterization of the complement-inhibiting protein CD59 antigen from platelet membranes. Biochem J. 1992, 282: 409-13.
PubMed Central
CAS
PubMed
Google Scholar
Kim DD, Miwa T, Kimura Y, Schwendener RA, vanCampagne ML, Song WC: Deficiency of decay accelerating factor [DAF] and complement receptor 1-related gene/protein y [Crry] on murine platelets leads to complement-dependent clearance by the macrophage phagocytic receptor CRIg. Blood. 2008, 112: 1109-19. 10.1182/blood-2008-01-134304.
PubMed Central
CAS
PubMed
Google Scholar
Kim DD, Miwa T, Song WC: Retrovirus-mediated over-expression of decay-acclerating factor rescues Crry-deficient erythrocytes from acute alternative pathway complement attack. J Immunol. 2006, 177: 5558-66.
CAS
PubMed
Google Scholar
Miwa T, Zhou L, Kimura Y, Kim D, Bhansoola A, Song WC: Complement-dependent T-cell lymphopenia caused by thymocyte deletion of the membrane complement regulator Crry. Blood. 2009, 113: 2684-1694. 10.1182/blood-2008-05-157966.
PubMed Central
CAS
PubMed
Google Scholar
Horstman LL, Jy W, Morgan BP, Ahn YS: CD59 expression on platelets in ITP and PNH [at the XXV Congress of ISTH; Cancun, Mexico]. La Revista de Investigacion Clinica (Suppl). 1994, 212: (Abst 110).
Google Scholar
Navratil JS, Manzi S, Kao AH, Krishnaswami S, Liu CC, Ruffing MJ, Shaw PS, Nilson AC, Dryden ER, Johnson JJ, Ahearn JM: Platelet C4d is highly specific for systemic lupus erythematosus. Athritis Rheum. 2008, 54: 670-4. 10.1002/art.21627.
Google Scholar
Mehta N, Uchino K, Fakhran S, Sattar A, Branstetter BF, Au K, Navratil JS, Paul B, Lee M, Gallagher KM, Manzi S, Ahearn JM, Kao AH: Platelet C4d is associated with acute ischemic stroke and stroke severity. Stroke. 2008, 39: 3236-41. 10.1161/STROKEAHA.108.514687.
CAS
PubMed
Google Scholar
Roach IT, Rebres RA, Fraser ID, Decamp DL, Lin KM, Sternweis PC, Simon MI, Seaman WE: Signaling and cross-talk by C5a and UDP in macrophages selectively use PLCbeta3 to regulate intracellular free calcium. J Biol Chem. 2008, 283: 17351-61. 10.1074/jbc.M800907200.
PubMed Central
CAS
PubMed
Google Scholar
Horstman LL, Jy W, Schultz DR, Mao WW, Ahn YS: Complement mediated fragmentation and lysis of opsonized platelets: Gender differences in sensitivity. J Lab Clin Med. 1994, 123: 515-25.
CAS
PubMed
Google Scholar
Sims PJ, Wiedmer T: Repolarization of the membrane potential of blood platelets after complement damage: Evidence for a Ca2+-dependant exocytotic elimination of C5b-9 pores. Blood. 1986, 68: 556-61.
CAS
PubMed
Google Scholar
Sims PJ, Wiedmer T: The response of human platelets to activated components of the complement system. Immunol Today. 1991, 12: 338-41. 10.1016/0167-5699(91)90012-I.
CAS
PubMed
Google Scholar
Butikofer P, Kuypers FA, Xu CM, Chiu DTY, Lubin B: Enrichment of two glycosyl-phosphatidylinositol-achored proteins, acetylcholinesterase and decay accelerating factor, in vesicles released from human red blood cells. Blood. 1989, 74: 1481-5.
CAS
PubMed
Google Scholar
Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB: Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004, 103: 2096-105. 10.1182/blood-2003-08-2804.
CAS
PubMed
Google Scholar
Garcia A, Prabhakar S, Hughan S, Anderson TW, Brack CJ, Pearce AC, Dwek RA, Watson SP, Hebestreit HF, Zitzmann N: Differential proteome analysis of TRAP-activated platelets and involvement of DOK-2 and phosphorylation of RGS proteins. Blood. 2004, 103: 2088-95. 10.1182/blood-2003-07-2392.
CAS
PubMed
Google Scholar
Coppinger JA, Maguire PB: Insights into the platelet releasate. Curr Pharm Des. 2007, 13: 262640-2646. 10.2174/138161207781662885.
Google Scholar
Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF: The platelet microparticle proteome. J Proteome Res. 2005, 4: 1516-22. 10.1021/pr0500760.
CAS
PubMed
Google Scholar
Foy M, Maguire PB: Recent advances in the characterization of the platelet membrane system by proteomics [Review]. Curr Pharm Des. 2007, 13: 2647-55. 10.2174/138161207781662911.
CAS
PubMed
Google Scholar
Bodin S, Viala C, Ragab A, Payrastre B: A critical role of lipid rafts in the organization of a key Fc-gamma-RIIa-mediated signaling pathway in human platelets. Thromb Haemost. 2003, 89: 318-30.
CAS
PubMed
Google Scholar
Bodin S, Tronchere H, Payrastre B: Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim Biophys Acta. 2003, 1610: 247-57. 10.1016/S0005-2736(03)00022-1.
CAS
PubMed
Google Scholar
DelConde I, Shrimpton CL, Thiagarajan P, Lopez JA: Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005, 106: 1604-11. 10.1182/blood-2004-03-1095.
CAS
Google Scholar
Bugert P, Dugrillon A, Gunaydin A, Eichler H, Kluter H: Messenger RNA profiling in human platelets by microarrary hybridization. Thromb Haemost. 2003, 90: 738-48.
CAS
PubMed
Google Scholar
Fink L, Holschermann H, Kwapiszewska G, Muyal JP, Lengermann B, Bohle RM, Santoso S: Characterization of platelet-specific mRNA by real-time PCR after laser-assisted microdissection. Thromb Haemost. 2003, 90: 749-56.
CAS
PubMed
Google Scholar
McRedmond J: Finding drug targets though analysis of the platelet transcriptome [Review]. Curr Pharm Des. 2007, 13: 2662-7. 10.2174/138161207781662993.
CAS
PubMed
Google Scholar
McRedmond JP, Park SD, Reilly DF, Coppinger JA, McGuire PB, Shields DC, Fitzgerald DJ: Integration of proteomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics. 2004, 3: 133-44.
CAS
PubMed
Google Scholar
Malaver E, Romaniuk MA, Atri PD, Pozner RG, Negrotto S, Benzadon R, Schattner M: NF kappa B inhibitors impair platelet activation responses. J Thromb Haemost. 2009, 7: 1333-43. 10.1111/j.1538-7836.2009.03492.x.
CAS
PubMed
Google Scholar
Beaulieu LM, Freedman JE: NFkappaB regulation of platelet function: no nucleus, no genes, no prolem? [Comentary]. J Thromb Haemost. 2009, 7: 1329-32. 10.1111/j.1538-7836.2009.03505.x.
PubMed Central
CAS
PubMed
Google Scholar
Roeseler S, Sandrock K, Bartsch T, Zieger B: Septins, a novel group of GTP-binding proteins: relevance in hemostasis, neuopathology and oncogenesis. Klin Pediatr. 2009, 221: 150-5. 10.1055/s-0029-1220706.
CAS
Google Scholar
Harper AG, Brownlow SL, Sage SO: A role for TRPV1 in agonist-evoked activation of human platelets. J Thromb Haemost. 2009, 7: 330-8. 10.1111/j.1538-7836.2008.03231.x.
CAS
PubMed
Google Scholar
Goldstein DS, Eisenhofer G, Kopin IJ: Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003, 305: 800-11. 10.1124/jpet.103.049270.
CAS
PubMed
Google Scholar
Stahl SM: Platelets as pharmacologic models for the receptors and biochemistry of monoaminergic neurons (Ch 13). The Platelets. Edited by: Longnecker GL. 1985, New York: Academic Press, 308-40.
Google Scholar
Reed GL, Fitzgerald ML, Polgar J: Molecular mechanisms of platelet exocytosis: insights into the "secrete" life of thrombocytes (Review). Blood. 2000, 96: 3334-42.
CAS
PubMed
Google Scholar
Lemons PP, Chen D, Bernstein AM, Bennett MK, Whiteheart SW: Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery [see also letter, 92:2191]. Blood. 1997, 90: 1490-500.
CAS
PubMed
Google Scholar
Steidl U, Bork S, Schaub S, Selbach O, Seres J, Alvado M, Schroeder T, Rohr UP, Fenk R, Kliszewski S, Maercker C, Neubert P, et al: Primary human CD34+ hematopoietic and progenitor cells express functionally active receptors or neuromediators [and see Editorial pg5-6, "Blood cells: excitable at last"]. Blood. 2004, 104: 81-8. 10.1182/blood-2004-01-0373.
CAS
PubMed
Google Scholar
Horstman LL, Esquenazi J, Jy W, Ahn YS: Increased acetylcholinesterase activity of microparticles derived from red cells (RMP) compared to platelets (PMP). Blood. 2008, 112: Ab3849.
Google Scholar
Kirkpatrick CJ, Bittinger F, Ungar RE, Kriegsmann J, Kilbinger H, IWessler : The non-neuronal cholinergic system in the endothelium. Jpn J Pharmacol. 2001, 85: 24-8. 10.1254/jjp.85.24.
CAS
PubMed
Google Scholar
Kawashima K, Fujii T: Basic and clinical aspects of non-neuronal acetylcholine. J Pharmacol Sci. 2008, 106: 167-73. 10.1254/jphs.FM0070073.
CAS
PubMed
Google Scholar
Wessler I, Kirkpatrick CJ: Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008, 154: 1558-71. 10.1038/bjp.2008.185.
PubMed Central
CAS
PubMed
Google Scholar
Fuji T: An independent, non-neuronal cholinergic system in lymphocytes and its role in regulation of immune function [Japanese]. Nippon Yakurigaku Zasshi. 2004, 123: 179-88.
Google Scholar
Jonnakuty C, Gragnoli C: What do we know about serotonin?. J Cell Physiol. 2008, 217: 301-6. 10.1002/jcp.21533.
CAS
PubMed
Google Scholar
Linder AF, Ni W, Diaz J, Szasz T, Burnett R, Watts SW: Serotonin (5-HT) in veins: not all in vain. J Pharmacol Exp Ther. 2007, 323: 415-25. 10.1124/jpet.107.122630.
CAS
PubMed
Google Scholar
Rosen CJ: Serotonin rising. The bone, brain, bowel connection [For comments see issue 11 pg 2580]. N Engl J Med. 2009, 360: 957-9. 10.1056/NEJMp0810058.
CAS
PubMed
Google Scholar
Soga F, Katoh N, Inoue T, Kishimoto S: Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 2007, 127: 1947-55. 10.1038/sj.jid.5700824.
CAS
PubMed
Google Scholar
Ciz M, Komrskova D, Pracharova L, Okenkova K, Cizova H, Moravcova A, Jancinova V, Petrikova M, Lojek A, Nosal R: Serotonin modulates the oxidative burst of human phagocytes via various mechansisms. Platelets. 2007, 18: 583-90. 10.1080/09537100701471865.
CAS
PubMed
Google Scholar
Mostert JP, Admiraal-Behloul F, Hoogduin JM, Luyendijk J, Heersema DJ, vanBuchem MA, DeKeyser J: Effects of fluoxetine on disease activity in relapsing multple sclerosis: A double-blind, placebo-controlled exploratory study. J Neurol Neurosurg Psychiatry. 2008, 79: 1027-31. 10.1136/jnnp.2007.139345.
CAS
PubMed
Google Scholar
Brenner B, Harney JT, Ahmed BA, Jeffus BC, Unal B, Mehta JL, Kilic F: Plasma serotonin levels and the platelet serotonin transporter. J Neurochem. 2007, 102: 206-15. 10.1111/j.1471-4159.2007.04542.x.
PubMed Central
CAS
PubMed
Google Scholar
Frankhauser P, Baranyai R, Ahrens T, Schloss P, Deuschle M, Liederbogen F: Platelet surface P-selectin expression is highly correlated with serotonin transporter density in human subjects. Thromb Haemost. 2008, 100: 1201-3.
CAS
PubMed
Google Scholar
Galan AM, Lopez-Vilchez I, Diaz-Ricart M, Navalone F, Gomez E, Gasto C, Escolar G: Serotonergic mechanisms enhance platelet-mediated thrombogenicity. Thromb Haemost. 2009, 102: 511-9.
CAS
PubMed
Google Scholar
Abdelmalik N, Ruhé HG, Barwari K, VanDenDool EJ, Meijers JC, Middeldorp S, Büller HR, Schene AH, Kamphuisen PW: Effect of the selective serotonin reuptake inhibitor paroxetine on platelet function is modified by a SLC6A4 serotonin transporter polymorphism. J Thromb Haemost. 2008, 6: 2168-74. 10.1111/j.1538-7836.2008.03196.x.
CAS
PubMed
Google Scholar
Hoffstetter HH, Mossner R, Lesch KP, Linker RA, Toyka KV, Gold R: Absence of reuptake of serotonin influences susceptibility to clinical autoimmune disease and neuroantigen-specific interferon-gamme production in mouse EAE. Clin Exp Immunol. 2005, 142: 39-44. 10.1111/j.1365-2249.2005.02901.x.
Google Scholar
Velenovska M, Fizar Z: Effects of cannabinoids on platelet serotonin uptake. Addic Biol. 2007, 12: 158-66. 10.1111/j.1369-1600.2007.00065.x.
CAS
Google Scholar
Markianos S, Koutsis S, Evangelopoulos ME, Mandellos D, Karahalios G, Sfagos C: Relationship of CSF neurotransmitter metabolite levels to disease severity and disability in multiple sclerosis. J Neurochem. 2009, 108: 158-64. 10.1111/j.1471-4159.2008.05750.x.
CAS
PubMed
Google Scholar
Trincavelli ML, Cubano S, Montali M, Santaguida S, Lucacchini A, Martini C: Norepinephrine-mediated regulation of 5HT1 receptor functioning in human platelets. Neurochem Res. 2008, 33: 1292-300. 10.1007/s11064-007-9582-8.
CAS
PubMed
Google Scholar
Watts SW, Priestley JR, Priestley JM: Serotonylation of vasculart proteins important to contraction. PloS One. 2009, 4: e5682-10.1371/journal.pone.0005682.
PubMed Central
PubMed
Google Scholar
Alberio LJ, Clemetson KJ: All platelets are not equa. Curr Hematol Rep. 2004, 3: 338-43.
PubMed
Google Scholar
Sevush S, Jy W, Horstman LL, Mao WW, Kolodny L, Ahn YS: Platelet activation in Alzheimer's disease. Arch Neurol. 1998, 55: 530-6. 10.1001/archneur.55.4.530.
CAS
PubMed
Google Scholar
Ciabattoni G, Porreca E, DiFebbo C, DiIorio A, Paganelli R, Bucciarelli T, Pescara L, DelRe L, Giusti C, Falco A, Sau A, Patrono C, Davì G: Determinants of platelet activation in Alzheimer's disease. Neurobiol Aging. 2007, 28: 336-42. 10.1016/j.neurobiolaging.2005.12.011.
CAS
PubMed
Google Scholar
Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, Smith AD: Homocysteine as a predictor of cognitive decline in Alzheimer's disease. Int J Geriatr Psychiatry. 2010, 25: 82-90.
PubMed
Google Scholar
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Hiltunen M, et al: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009, 41: 1094-9. 10.1038/ng.439.
CAS
PubMed
Google Scholar
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, et al: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genetics. 2009, 41: 1088-93. 10.1038/ng.440.
CAS
PubMed
Google Scholar
Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH: Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009, 73: 768-74. 10.1212/WNL.0b013e3181b6bb95.
PubMed Central
CAS
PubMed
Google Scholar
Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, Stern Y: Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009, 302: 627-37. 10.1001/jama.2009.1144.
PubMed Central
CAS
PubMed
Google Scholar
Féart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues JF, Scarmeas N, Barberger-Gateau P: Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA. 2009, 302: 638-48. 10.1001/jama.2009.1146.
PubMed Central
PubMed
Google Scholar
Sizova D, Charbaut E, Delalande F, Poirier F, High AA, Parker F, VanDorsselaer A, Duchesne M, A AD-H: Proteomic analysis of brain tissue from an Alzheimer's disease mouse model by two-dimensional difference gel electrophoresis. Neurobiol Aging. 2007, 28: 357-70. 10.1016/j.neurobiolaging.2006.01.011.
CAS
PubMed
Google Scholar
Liao L, Cheng D, Wang L, Duong DM, TG TGL, Gearing M, Rees HD, Lah JJ, Levey AI, Peng J: Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem. 2004, 279: 37061-8. 10.1074/jbc.M403672200.
CAS
PubMed
Google Scholar
Lesage SR, Mosley TH, Wong TY, Szklo M, Knopman D, Catellier DJ, Cole SR, Klein R, Coresh J, Coker LH, Sharrett AR: Retinal microvascular abnormalities and cognitive decline: the ARIC 14-year follow-up study. Neurology. 2009, 73: 862-8. 10.1212/WNL.0b013e3181b78436.
PubMed Central
PubMed
Google Scholar
Chen M, Inestrosa NC, Ross GS, Fernandez HL: Platelets are the principal cource of amyloid beta peptide in human blood. Biochem Biophyis Res Commun. 1995, 213: 96-103. 10.1006/bbrc.1995.2103.
CAS
Google Scholar
Borroni B, Agosti C, Marcello E, DiLuca M, Padovani A: Blood cell markers in Alzheimer's disease: Amyloid precursor protein form ratios in human platelets. Exp Gerontol. 2009.
Google Scholar
Lambert JC, Schraen-Maschke S, Richard F, Fievet N, Rouaud O, Berr C, Dartigues JF, Tzourio C, Alpérovitch A, Buée L, P PA: Association of plasma amyloid beta with risk of dementia: the prospective Three-City Study. Neurology. 2009, 73: 847-53. 10.1212/WNL.0b013e3181b78448.
CAS
PubMed
Google Scholar
Matthew JP, Rinder HM, Smith BR, Newman MF, Rinder CS: Transcerebral platelet activation after aortic cross-clamp release is linked to neurocognitive decline. Ann Thorac Surg. 2006, 81: 1644-9. 10.1016/j.athoracsur.2005.12.070.
Google Scholar
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M: Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999, 286: 735-41. 10.1126/science.286.5440.735.
CAS
PubMed
Google Scholar
Colcianghi F, Marcello E, Borroni B, Zimmerman M, Caltagirone C, Cattabeni F, Padovani A, DiLuca M: Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer's disease. Neurology. 2004, 62: 498-501.
Google Scholar
Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Fahrenholz F: Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. PNAS USA. 1999, 96: 3922-7. 10.1073/pnas.96.7.3922.
PubMed Central
CAS
PubMed
Google Scholar
Johnston JA, Liu WW, Todd SA, Coulson DT, Murphy S, Irvine GB, Passmore AP: Expression and activity of beta-site amyloid precursor protein cleaving enzyme in Alzheimer's disease. Biochem Soc Trans. 2005, 33: 1096-100. 10.1042/BST20051096.
CAS
PubMed
Google Scholar
Johnston JA, Liu WW, Coulson DT, Todd S, Murphy S, Brennan S, Foy CJ, Craig D, Irvine GB, Passmore AP: Platelet beta-secretase activity is increased in Alzheimer's disease. Neurobiol Aging. 2008, 29: 661-8. 10.1016/j.neurobiolaging.2006.11.003.
CAS
PubMed
Google Scholar
Hu X, He W, Diacomu C, Tang X, Kidd GJ, Macklin WB, Trapp BT, Yan R: Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB j. 2008, 22: 2970-80. 10.1096/fj.08-106666.
PubMed Central
CAS
PubMed
Google Scholar
Liu WW, Todd S, Coulson DT, Irvine GB, Passmore AP, McGuiness B, McConville M, Craig D, Johnston JA: A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and human platelets. J Neurochem. 2009, 108: 341-9. 10.1111/j.1471-4159.2008.05753.x.
CAS
PubMed
Google Scholar
Gong X, Xie Z, Zuo H: A new track for understanding the pathogenesis of multiple sclerosis: From the perspective of early developmental deficit caused by the potential 5-HT deficiency in individuals in high latitude areas. Med Hypotheses. 2008, 71: 580-3. 10.1016/j.mehy.2008.04.026.
CAS
PubMed
Google Scholar
Putnam TJ: Studies in multiple sclerosis (iv) 'encephalitis' and sclerotic plaques produced by venular obstruction. Arch Neurol Neurosurg Psychiat. 1935, 33: 929-40.
Google Scholar
Savitsky JP: Platelet adhesiveness in multiple sclerosis. Bull NY Acad Med 2nd Series. 1952, 28: 462-8.
Google Scholar
Wright HP, Thompson RHS, Zilkha KJ: Platelet adhesiveness in multiple sclerosis. Lancet. 1965, 65: 1109-10.
Google Scholar
Sanders H, Thompson RHS, Wright P, Zilkha KJ: Further studies on platelet adhesiveness and serum cholesteryl linoleate levels in multiple scleross. J Neurol Neurosurg Psychiat. 1968, 31: 321-5. 10.1136/jnnp.31.4.321.
PubMed Central
CAS
PubMed
Google Scholar
Millar JHD, Merrett JD, Dalby AM: Platelet stickiness in multiple sclerosis. J Neurol Neurosurg Psychiat. 1966, 29: 187-9. 10.1136/jnnp.29.3.187.
PubMed Central
CAS
PubMed
Google Scholar
Granier H, Bellard S, Nicholas X, PLaborde J: Association sclerose en plaques et thrombocytopeni auto-immune. Rev Med Interne. 2001, 22: 1271-7. 10.1016/S0248-8663(01)00502-1.
CAS
PubMed
Google Scholar
Munteis E, Segura N, EMartinez J, Quadrado E, Galvez A, Roquer J: Idiopathic thrombocytopeic purpura in patients with multiple sclerosis [Abstract]. Mult Scler. 2006, 12: S210-10.1191/135248506ms1254oa.
Google Scholar
Segal JB, Powe NR: Prevalence of immune thrombocytopenia: Analysis of adminstrative data [see Table 4]. J Thromb Haemost. 2006, 4: 2377-83. 10.1111/j.1538-7836.2006.02147.x.
CAS
PubMed
Google Scholar
Sheremata WA, Fineberg M, Ahn YS: Association of immune thrombocytopenia and abnormal platelet functions with multiple sclerosis (Abstract). Brain Pathol. 1993, 3: 293.
Google Scholar
Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A: Evidence of platelet activation in multiple sclerosis. J Neuroinflammation. 2008, 5: 27-10.1186/1742-2094-5-27.
PubMed Central
PubMed
Google Scholar
Kirby S, Brown MG, Muray TJ, Fisk JD, Stadnyk K, MacKinnon-Cameron D, Bhan V: Progression of multiple sclerosis in patients with other autoimmune disorders [P128]; Prevalenceof other autoimmune diseases in patients with multiple sclerosis [P129]. Mult Scler. 2005, 11: S28-S9.
Google Scholar
Minagar A, Jy W, Jimenez JJ, Alexander JS: Multiple sclerosis as a vascular disease. Neurol Res. 2006, 28: 230-5. 10.1179/016164106X98080.
CAS
PubMed
Google Scholar
Losy J, Niezgoda A, Wender M: Increased serum levels of soluble PECAM-1 in multiple sclerosis patients with brain gadolinum-enhancing lesions. J Neuroimmunol. 1999, 99: 169-72. 10.1016/S0165-5728(99)00092-2.
CAS
PubMed
Google Scholar
Minagar A, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Ahn YS, Sheremata WA: Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001, 56: 1319-24.
CAS
PubMed
Google Scholar
Kuenz B, Lutterotti A, Khalil M, Ehling R, Gneiss C, Deisenhammer F, Reindl M, Berger T: Plasma levels of soluble adhsion molecules sPECAM-1, sP-selectin and sE-selectin are associated with relapsing/remitting disease course in multiple sclerosis. J Neuroimmunol. 2005, 167: 143-9. 10.1016/j.jneuroim.2005.06.019.
CAS
PubMed
Google Scholar
Gumina RJ, Kirschbaum NE, Rao PN, vanTuinen P, Newman PJ: The human PECAM-1 gene maps to 17q23. Genomics. 1996, 34: 229-32. 10.1006/geno.1996.0272.
CAS
PubMed
Google Scholar
Sciacca FL, Ferri C, D'Alfonso S, Bolognisi E, Martinelli F, Boneschi F, Cuzzilla B, Colombo B, Comi G, Canal N, Grialdi LM: Association study of a new polymorphism in the PECAM-1 gene in multiple sclerosis. J Neuroimmunol. 2000, 104: 174-8. 10.1016/S0165-5728(99)00274-X.
CAS
PubMed
Google Scholar
Nelissen I, Fiten P, Vandenbroeck K, Hillert J, Olsson T, Marrosu MG, Opdenakker G: PECAM1, MPO and PRKAR1A at chromosome 17q21-q24 and susceptibility for multiple sclerosis in Sweden and Sardinia. J Neuroimmunol. 2000, 108: 153-9. 10.1016/S0165-5728(00)00293-9.
CAS
PubMed
Google Scholar
Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogne M, Richard Y, Garraud O: Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol. 2007, 35: 1376-87. 10.1016/j.exphem.2007.05.021.
CAS
PubMed
Google Scholar
Humm AM, Z'Graggen WJ, Bühler R, Magistris MR, Rösler KM: Quantification of central motor conducion deficits in multiple sclerosis patients before and after treatment of acute exacerbations with methylprednisolone. J Neurol Neurosurg Psychiat. 2006, 77: 345-50. 10.1136/jnnp.2005.065284.
PubMed Central
CAS
PubMed
Google Scholar
Bidot CJ, Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS, Alexander JS, Gonzalez-Toledo E, Kelley RE, Minagar A: Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis. JCM Neurol. 2007, 7: 36.
Google Scholar
Blair P, Falumenhaft R: Plateletalpha-granules: basic biology and clinical correlates. Blood Rev. 2009, 23: 177-89. 10.1016/j.blre.2009.04.001.
PubMed Central
CAS
PubMed
Google Scholar
Lopez-Vilchez I, Diaz-Ricart M, White JG, Escolar G, Galan AM: Serotonin enhances platelet procoagulant properties and their activation induce during platelet tissue factor uptake. Cardiovasc Res. 2009.
Google Scholar
VanGeet C, Izzi B, Labarque V, Freson K: Human latelet pathology related to defects in the G-protein signaling cascade. J Thromb Haemost. 2009, 7: 282-6. 10.1111/j.1538-7836.2009.03399.x.
CAS
Google Scholar