Nissl F: Über einige Beziehungen zwischen Nervenzellerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen.
Arch f Psychiatr 1899, 32:656–676.
Google Scholar
Graeber MB: Changing face of microglia.
Science 2010, 330:783–788.
Article
CAS
PubMed
Google Scholar
Cajal SR: History of Neuroscience No 5: Cajal’s Degeneration and Regeneration of the Nervous System. Edited by: DeFelipe J, Jones EG. New York: Oxford Press; 1991.
Chapter
Google Scholar
Graeber MB, Mehraein P: Microglial rod cells.
Neuropath Applied Neurobiol 1994, 20:178–180.
Article
CAS
Google Scholar
Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, Dalmau I, Diemer NH, Dagnaes-Hansen F, Johansen FF, Keating A, Finsen B: Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia.
J Neuropathol Exp Neurol 2011, 70:481–494.
Article
PubMed
Google Scholar
Ohno M, Higashi Y, Suzuki K: Microglial cell response to neuronal degeneration in the brain of brindled mouse.
Brain Res Dev Brain Res 1992, 67:37–45.
Article
CAS
PubMed
Google Scholar
Wierzba-Bobrowicz T, Gwiazda E, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Bertrand E, Szpak GM, Schmidt-Sidor B: Morphological analysis of active microglia–rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer’s disease and Wilson’s disease).
Folia Neuropathol 2002, 40:125–131.
PubMed
Google Scholar
Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD, Meyermann R: Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14.
Acta Neuropathol 2000, 100:313–322.
Article
CAS
PubMed
Google Scholar
Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, Nicoll JA: Long-term intracerebral inflammatory response after traumatic brain injury.
Forensic Sci Int 2004, 146:97–104.
Article
CAS
PubMed
Google Scholar
Wilson S, Raghupathi R, Saatman KE, MacKinnon MA, McIntosh TK, Graham DI: Continued in situ DNA fragmentation of microglia/macrophages in white matter weeks and months after traumatic brain injury.
J Neurotrauma 2004, 21:239–250.
Article
PubMed
Google Scholar
Das M, Leonardo CC, Rangooni S, Pennypacker KR, Mohapatra S, Mohapatra SS: Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats.
J Neuroinflammation 2011, 8:148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley BJ, Lifshitz J, Povlishock JT: Neuroinflammatory responses after experimental diffuse traumatic brain injury.
J Neuropathol Exp Neurol 2007, 66:989–1001.
Article
CAS
PubMed
Google Scholar
Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice.
J Cereb Blood Flow Metab 2010, 30:769–782.
Article
PubMed
Google Scholar
Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC: Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury.
Brain Res 2011, 1414:94–105.
Article
CAS
PubMed
Google Scholar
Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC: Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration.
Exp Neurol 2007, 204:220–233.
Article
CAS
PubMed
Google Scholar
Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC: Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses.
J Neurotrauma 2010, 27:1997–2010.
Article
PubMed
Google Scholar
Hosseini AH, Lifshitz J: Brain injury forces of moderate magnitude elicit the fencing response.
Med Sci Sports Exerc 2009, 41:1687–1697.
Article
PubMed
Google Scholar
Lifshitz J: Fluid percussion injury. In Animal Models of Acute Neurological Injuries. Edited by: Chen J, Xu X-M, Zhang JH. Totowa: The Humana Press, Inc; 2008.
Google Scholar
Lifshitz J, Kelley BJ, Povlishock JT: Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death.
J Neuropathol Exp Neurol 2007, 66:218–229.
Article
PubMed
Google Scholar
McNamara KC, Lisembee AM, Lifshitz J: The whisker nuisance task identifies a late onset, persistent sensory sensitivity in diffuse brain-injured rats.
J Neurotrauma 2010, 27:695–706.
Article
PubMed
Google Scholar
Taylor SE, Cao T, Talauliker PM, Lifshitz J: Objective morphological quantification of microscopic images using a fast fourier transformation (FFT) analysis.
Current Protocols 2012, in press
Alvarez-Buylla A, Buskirk DR, Nottebohm F: Monoclonal antibody reveals radial glia in adult avian brain.
J Comp Neurol 1987, 264:159–170.
Article
CAS
PubMed
Google Scholar
Gotz M, Barde YA: Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons.
Neuron 2005, 46:369–372.
Article
PubMed
Google Scholar
Gregg C, Weiss S: Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells.
J Neurosci 2003, 23:11587–11601.
CAS
PubMed
Google Scholar
Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Gotz M: Reelin signaling directly affects radial glia morphology and biochemical maturation.
Development 2003, 130:4597–4609.
Article
CAS
PubMed
Google Scholar
Malatesta P, Hartfuss E, Gotz M: Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage.
Development 2000, 127:5253–5263.
CAS
PubMed
Google Scholar
Loane DJ, Byrnes KR: Role of microglia in neurotrauma.
Neurotherapeutics 2010, 7:366–377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function.
Brain Res Brain Res Rev 1999, 30:77–105.
Article
CAS
PubMed
Google Scholar
Stence N, Waite M, Dailey ME: Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices.
Glia 2001, 33:256–266.
Article
CAS
PubMed
Google Scholar
Perry VH, O’Connor V: The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective.
ASN Neuro 2010, 2:e00047.
PubMed
Google Scholar
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals.
J Neurosci 2009, 29:3974–3980.
Article
CAS
PubMed
Google Scholar
Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain.
Neuroscience 1990, 39:151–170.
Article
CAS
PubMed
Google Scholar
Navascues J, Cuadros MA, Calvente R, Marin-Teva JL: Roles of microglia in the developing avian visual system. In Microglia in the Regenerating and Degenerating Central Nervous System. Edited by: Streit WJ. New York: Springer; 2002:15–35.
Chapter
Google Scholar
Ziebell JM, Morganti-Kossmann MC: Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury.
Neurotherapeutics 2010, 7:22–30.
Article
CAS
PubMed
Google Scholar
Greer JE, McGinn MJ, Povlishock JT: Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population.
J Neurosci 2011, 31:5089–5105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lifshitz J, Lisembee AM: Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury.
Brain Struct Funct 2012, 217:49–61.
Article
PubMed
Google Scholar
Reneer DV: Blast-induced brain injury: Influence of shockwave components. Lexington, KY: The University of Kentucky; 2012.
Google Scholar
Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R: Evidence for synaptic stripping by cortical microglia.
Glia 2007, 55:360–368.
Article
PubMed
Google Scholar
Hall KD, Lifshitz J: Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.
Brain Res 2010, 1323:161–173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoll G, Jander S, Schroeter M: Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system.
Adv Exp Med Biol 2002, 513:87–113.
CAS
PubMed
Google Scholar
Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK: The duality of the inflammatory response to traumatic brain injury.
Mol Neurobiol 2001, 24:169–181.
Article
CAS
PubMed
Google Scholar
Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M: Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective.
Mol Cell Neurosci 2005, 29:381–393.
Article
CAS
Google Scholar
Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M: Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells.
Mol Cell Neurosci 2006, 31:149–160.
Article
CAS
PubMed
Google Scholar
Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R: Neuroprotection by T-cells depends on their subtype and activation state.
J Neuroimmunol 2002, 133:72–80.
Article
CAS
PubMed
Google Scholar
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia.
Physiol Rev 2011, 91:461–553.
Article
CAS
PubMed
Google Scholar
Kreutzberg GW: Microglia: a sensor for pathological events in the CNS.
Trends Neurosci 1996, 19:312–318.
Article
CAS
PubMed
Google Scholar