Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J Neurosci. 2002;22(20):8797–807. https://doi.org/10.1523/jneurosci.22-20-08797.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Logan T, Bendor J, Toupin C, Thorn K, Edwards RH. α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci. 2017;20(5):681–9. https://doi.org/10.1038/nn.4529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spillantini MG. Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are α-synucleinopathies. Parkinsonism Relat Disord. 1999;5(4):157–62. https://doi.org/10.1016/S1353-8020(99)00031-0.
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG. Lewy body diseases and multiple system atrophy as α-synucleinopathies. Mol Psychiatry. 1998;3(6):462–5. https://doi.org/10.1038/sj.mp.4000458.
Article
CAS
PubMed
Google Scholar
Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399. https://doi.org/10.1101/cshperspect.a009399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211. https://doi.org/10.1016/S0197-4580(02)00065-9.
Article
PubMed
Google Scholar
Li J-Y, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14(5):501–3. https://doi.org/10.1038/nm1746.
Article
CAS
PubMed
Google Scholar
Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord. 2008;23(16):2303–6. https://doi.org/10.1002/mds.22369.
Article
PubMed
Google Scholar
McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285–91. https://doi.org/10.1212/wnl.38.8.1285.
Article
CAS
PubMed
Google Scholar
Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119(1):182–92. https://doi.org/10.1172/JCI36470.
Article
CAS
PubMed
Google Scholar
Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol. 2005;58(6):963–7. https://doi.org/10.1002/ana.20682.
Article
CAS
PubMed
Google Scholar
Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology. 2010;74(12):995–1002. https://doi.org/10.1212/WNL.0b013e3181d5a4a3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabatino JJ, Pröbstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20(12):728–45. https://doi.org/10.1038/s41583-019-0233-2.
Article
CAS
PubMed
Google Scholar
Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 2015;34(22):2735–57. https://doi.org/10.15252/embj.201591881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thielens NM, Aude CA, Lacroix MB, Gagnon J, Arlaud GJ. Ca2+ binding properties and Ca2+-dependent interactions of the isolated NH2-terminal α fragments of human complement proteases C1̄r and C1̄s. J Biol Chem. 1990;265(24):14469–75. https://doi.org/10.1016/S0021-9258(18)77326-2.
Article
CAS
PubMed
Google Scholar
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78. https://doi.org/10.1016/j.cell.2007.10.036.
Article
CAS
PubMed
Google Scholar
Hong S, Beja-glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;8373:1–9. https://doi.org/10.1126/science.aad8373.
Article
CAS
Google Scholar
Ma SX, Kim D, Xiong Y, et al. Complement and coagulation cascades are potentially involved in dopaminergic neurodegeneration in α-synuclein-based mouse models of Parkinson’s disease. bioRxiv. 2020;2020(1):11.900886. https://doi.org/10.1101/2020.01.11.900886.
Article
Google Scholar
Yamada T, McGeer PL, McGeer EG. Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol. 1992;84(1):100–4. https://doi.org/10.1007/BF00427222.
Article
CAS
PubMed
Google Scholar
Finehout EJ, Franck Z, Lee KH. Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis Markers. 2005;21(2):93–101. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3851089&tool=pmcentrez&rendertype=abstract. https://doi.org/10.1155/2005/806573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Hancock AM, Bradner J, Chung KA, Quinn JF, Peskind ER, et al. Complement 3 and factor H in human cerebrospinal fluid in Parkinson’s disease, Alzheimer’s disease, and multiple-system atrophy. Am J Pathol. 2011;178(4):1509–16. https://doi.org/10.1016/j.ajpath.2011.01.006.
Article
PubMed
PubMed Central
Google Scholar
Betzer C, Movius AJ, Shi M, Gai WP, Zhang J, Jensen PH. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS One. 2015;10(2):1–24. https://doi.org/10.1371/journal.pone.0116473.
Article
CAS
Google Scholar
Joisel F, Leroux-Nicollet I, Lebreton JP, Fontaine M. A hemolytic assay for clinical investigation of human C2. J Immunol Methods. 1983;59(2):229–35. https://doi.org/10.1016/0022-1759(83)90035-2.
Article
CAS
PubMed
Google Scholar
Da Costa MG, Poppelaars F, Van Kooten C, et al. Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population. Front Immunol. 2018;9(NOV):2664. https://doi.org/10.3389/fimmu.2018.02664.
Article
CAS
Google Scholar
Lindersson E, Lundvig D, Petersen C, Madsen P, Nyengaard JR, Højrup P, et al. p25α stimulates α-synuclein aggregation and is co-localized with aggregated α-synuclein in α-synucleinopathies. J Biol Chem. 2005;280(7):5703–15. https://doi.org/10.1074/jbc.M410409200.
Article
CAS
PubMed
Google Scholar
Jensen PH, Hager H, Nielsen MS, Højrup P, Gliemann J, Jakes R. α-synuclein binds to tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem. 1999;274(36):25481–9. https://doi.org/10.1074/jbc.274.36.25481.
Article
CAS
PubMed
Google Scholar
Tenner A, Lesavre P, Cooper N. Purification and radiolabeling of human C1q. J Immunol. 1981;127(2):648–53 http://www.jimmunol.org/content/127/2/648.short. Accessed June 16, 2014.
CAS
PubMed
Google Scholar
Vekrellis K, Xilouri M, Emmanouilidou E, Stefanis L. Inducible over-expression of wild type α-synuclein in human neuronal cells leads to caspase-dependent non-apoptotic death. J Neurochem. 2009;109(5):1348–62. https://doi.org/10.1111/j.1471-4159.2009.06054.x.
Article
CAS
PubMed
Google Scholar
Betzer C, Lassen LB, Olsen A, et al. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep. 2018;e44617. https://doi.org/10.15252/embr.201744617.
Wolbink GJ, Bollen J, Baars JW, ten Berge RJM, Swaak AJG, Paardekooper J, et al. Application of a monoclonal antibody against a neoepitope on activated C4 in an ELISA for the quantification of complement activation via the classical pathway. J Immunol Methods. 1993;163(1):67–76. http://www.ncbi.nlm.nih.gov/pubmed/7687639. https://doi.org/10.1016/0022-1759(93)90240-8.
Article
CAS
PubMed
Google Scholar
Wenning GK, Tison F, Seppi K, et al. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord. 2004;19(12). https://doi.org/10.1002/mds.20255.
Don AS, Hsiao JHT, Bleasel JM, Couttas TA, Halliday GM, Kim WS. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun. 2014;2(1):1–14. https://doi.org/10.1186/s40478-014-0150-6.
Article
Google Scholar
Jore MM, Johnson S, Sheppard D, Barber NM, Li YI, Nunn MA, et al. Structural basis for therapeutic inhibition of complement C5. Nat Struct Mol Biol. 2016;23(5):378–86. https://doi.org/10.1038/nsmb.3196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia AR, et al. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur J Clin Investig. 2015;45(4):423–40. https://doi.org/10.1111/eci.12419.
Article
CAS
Google Scholar
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou L, Bao X, Zang C, Yang H, Sun F, Che Y, et al. Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway. Redox Biol. 2018;14:600–8. https://doi.org/10.1016/j.redox.2017.11.010.
Article
CAS
PubMed
Google Scholar
Stephan A. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev. 2012. https://doi.org/10.1146/annurev-neuro-061010.
Loeffler DA, Camp DM, Conant SB. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinflammation. 2006;3(1):29. https://doi.org/10.1186/1742-2094-3-29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao X, Ou MT, Karuppagounder SS, et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307):aah3374. https://doi.org/10.1126/science.aah3374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 2013;4(1):1562. https://doi.org/10.1038/ncomms2534.
Article
CAS
PubMed
Google Scholar
Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W, Wenning GK. Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol. 2011;179(2):954–63. https://doi.org/10.1016/j.ajpath.2011.04.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Surguchev AA, Emamzadeh FN, Surguchov A. Cell responses to extracellular α-synuclein. Molecules. 2019;24(2). https://doi.org/10.3390/molecules24020305.
Ferreira DG, Temido-Ferreira M, Miranda HV, et al. α-synuclein interacts with PrP C to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci. 2017;20(11):1569–79. https://doi.org/10.1038/nn.4648.
Article
CAS
PubMed
Google Scholar
Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, et al. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A. 2005;102(30):10427–32. https://doi.org/10.1073/pnas.0502066102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener. 2012;7(1):42. https://doi.org/10.1186/1750-1326-7-42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med. 2011;17(3-4):317–29. https://doi.org/10.2119/molmed.2010.00149.
Article
CAS
PubMed
Google Scholar
Lo MW, Woodruff TM. Complement: bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol. 2020;108(1):339–51. https://doi.org/10.1002/JLB.3MIR0220-270R.
Article
CAS
PubMed
Google Scholar
Walker DG, Kim SU, McGeer PL. Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J Neurosci Res. 1995;40(4):478–93. https://doi.org/10.1002/jnr.490400407.
Article
CAS
PubMed
Google Scholar
Hosokawa M, Klegeris A, Maguire J, McGeer PL. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia. 2003;42(4):417–23. https://doi.org/10.1002/glia.10234.
Article
PubMed
Google Scholar
Shen Y, Li R, McGeer EG, McGeer PL. Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res. 1997;769(2):391–5. https://doi.org/10.1016/S0006-8993(97)00850-0.
Article
CAS
PubMed
Google Scholar
Klegeris A, McGeer PL. Complement activation by islet amyloid polypeptide (IAPP) and alpha-synuclein 112. Biochem Biophys Res Commun. 2007;357(4):1096–9. https://doi.org/10.1016/j.bbrc.2007.04.055.
Article
CAS
PubMed
Google Scholar
Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov. 2019;18(9):707–29. https://doi.org/10.1038/s41573-019-0031-6.
Article
CAS
PubMed
PubMed Central
Google Scholar