Ahlbom A, Bridges J, de Seze R, Hillert L, Juutilainen J, Mattsson MO, Neubauer G, Schuz J, Simko M, Bromen K: Possible effects of electromagnetic fields (EMF) on human health – opinion of the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Toxicology. 2008, 246: 248-250.
Article
PubMed
Google Scholar
Koivisto M, Krause CM, Revonsuo A, Laine M, Hämäläinen H: The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport. 2000, 11: 1641-1643. 10.1097/00001756-200006050-00009.
Article
CAS
PubMed
Google Scholar
Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, Persson BR, Salford LG, Eberhardt J: Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics. 2008, 29: 219-232. 10.1002/bem.20386.
Article
PubMed
Google Scholar
Schüz J, Böhler E, Berg G, Schlehofer B, Hettinger I, Schlaefer K, Wahrendorf J, Kunna-Grass K, Blettner M: Cellular phones, cordless phones, and the risk of glioma and meningioma (Interphone study group, Germany). Am J Epidemiol. 2006, 163: 512-520. 10.1093/aje/kwj068.
Article
PubMed
Google Scholar
Hepworth SJ, Schoemaker MJ, Muir KR, Swerdlow AJ, van Tongeren MJ, McKinney PA: Mobile phone use and risk of glioma in adults: case–control study. BMJ. 2006, 332: 883-887. 10.1136/bmj.38720.687975.55.
Article
PubMed Central
PubMed
Google Scholar
Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC: Elevated risk of Alzheimer’s disease among workers with likely electromagnetic field exposure. Am Acad Neurol. 1996, 47: 1477-1481.
CAS
Google Scholar
Garcıa AM, Sisternas A, Hoyos SP: Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. Int J Epidemiol. 2008, 37: 329-340. 10.1093/ije/dym295.
Article
PubMed
Google Scholar
Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Sèze R: Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis. 2004, 17: 445-454. 10.1016/j.nbd.2004.07.004.
Article
CAS
PubMed
Google Scholar
Brillaud E, Piotrowski A, de Seze R: Effect of an acute 900 MHz GSM exposure on glia in the rat brain: a time-dependent study. Toxicol. 2007, 238: 23-33. 10.1016/j.tox.2007.05.019.
Article
CAS
Google Scholar
Ammari M, Brillaud E, Gamez C, Lecomte A, Sakly M, Abdelmelek H, de Seze R: Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. Biomed Pharmacother. 2008, 62: 273-281. 10.1016/j.biopha.2008.03.002.
Article
CAS
PubMed
Google Scholar
Hao YT, Yang XS, Chen CH, Wang Y, Wang XB, Li MQ, Yu ZP: STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Int J Radiat Biol. 2010, 86: 27-36. 10.3109/09553000903264507.
Article
CAS
PubMed
Google Scholar
Czeh M, Gressens P, Kaindl AM: The yin and yang of microglia. Dev Neurosci. 2011, 33: 199-209. 10.1159/000328989.
Article
CAS
PubMed
Google Scholar
Napoli I, Neumann H: Microglial clearance function in health and disease. Neuroscience. 2009, 158: 1030-1038. 10.1016/j.neuroscience.2008.06.046.
Article
CAS
PubMed
Google Scholar
Li W: Eat-me signals: keys to molecular phagocyte biology and ‘appetite’ control. J Cell Physiol. 2012, 227: 1291-1297. 10.1002/jcp.22815.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fuller AD, Van Eldik LJ: MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol. 2008, 3: 246-256. 10.1007/s11481-008-9118-2.
Article
PubMed Central
PubMed
Google Scholar
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S: Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002, 417: 182-187. 10.1038/417182a.
Article
CAS
PubMed
Google Scholar
Komura H, Miksa M, Wu R, Goyert SM, Wang P: Milk fat globule epidermal growth factor–factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol. 2009, 182: 581-587.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miksa M, Amin D, Wu R, Jacob A, Zhou M, Dong W, Yang WL, Ravikumar TS, Wang P: Maturati-induced down-regulation of MFG-E8 impairs apoptotic cell clearance and enhances endotoxin response. Int J Mol Med. 2008, 22: 743-748.
PubMed Central
CAS
PubMed
Google Scholar
Cole GM, Morihara T, Lim GP, Yang F, Begum A, Frautschy SA: NSAID and antioxidant prevention of Alzheimer’s disease: lessons from in vitro and animal models. Ann N Y Acad Sci. 2004, 1035: 68-84. 10.1196/annals.1332.005.
Article
CAS
PubMed
Google Scholar
Zhang L, Fiala M, Cashman J, Sayre J, Espinosa A, Mahanian M, Zaghi J, Badmaev V, Graves MC, Bernard G, Rosenthal M: Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2006, 10: 1-7.
PubMed
Google Scholar
Karlstetter M, Lippe E, Walczak Y, Moehle C, Aslanidis A, Mirza M, Langmann T: Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation. 2011, 8: 125-10.1186/1742-2094-8-125.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jung KK, Lee HS, Cho JY, Shin WC, Rhee MH, Kim TG, Kang JH, Kim SH, Hong S, Kang SY: Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci. 2006, 79: 2022-2031. 10.1016/j.lfs.2006.06.048.
Article
CAS
PubMed
Google Scholar
Jin CY, Lee JD, Park C, Choi YH, Kim GY: Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol Sin. 2007, 28: 1645-1651. 10.1111/j.1745-7254.2007.00651.x.
Article
CAS
PubMed
Google Scholar
Kim HY, Park EJ, Joe EH, Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003, 171: 6072-6079.
Article
CAS
PubMed
Google Scholar
Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, Kim SS: Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappaB bindings in BV2 microglial cells. J Pharmacol Sci. 2004, 94: 325-328. 10.1254/jphs.94.325.
Article
CAS
PubMed
Google Scholar
Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini SD, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. Eur J Immunol. 1989, 19: 1443-1448. 10.1002/eji.1830190815.
Article
CAS
PubMed
Google Scholar
Corradin SB, Mauël J, Donini SD, Quattrocchi E, Ricciardi-Castagnoli P: Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia. 1993, 7: 255-262. 10.1002/glia.440070309.
Article
CAS
PubMed
Google Scholar
Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP: Antiinflammatory effects of estrogen on microglial activation. Endocrinology. 2000, 141: 3646-3656.
CAS
PubMed
Google Scholar
Uff CR, Pockley AG, Phillips RK: A rapid microplate-based fluorometric assay for phagocytosis. Immunol Invest. 1993, 22: 407-413. 10.3109/08820139309063419.
Article
CAS
PubMed
Google Scholar
Chan A, Magnus T, Gold R: Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia. 2001, 33: 87-95. 10.1002/1098-1136(20010101)33:1<87::AID-GLIA1008>3.0.CO;2-S.
Article
CAS
PubMed
Google Scholar
Koenigsknecht J, Landreth G: Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J Neurosci. 2004, 24: 9838-9846. 10.1523/JNEUROSCI.2557-04.2004.
Article
CAS
PubMed
Google Scholar
Zizza P, Iurisci C, Bonazzi M, Cossart P, Leslie CC, Corda D, Mariggiò S: Phospholipase A2IVα regulates phagocytosis independent of its enzymatic activity. J Biol Chem. 2012, 287: 16849-16859. 10.1074/jbc.M111.309419.
Article
PubMed Central
CAS
PubMed
Google Scholar
Koenigsknecht-Talboo J, Landreth GE: Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005, 25: 8240-8249. 10.1523/JNEUROSCI.1808-05.2005.
Article
CAS
PubMed
Google Scholar
Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RF, Brites D: Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis. 2010, 40: 663-675. 10.1016/j.nbd.2010.08.010.
Article
CAS
PubMed
Google Scholar
Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A: Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureusis mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem. 2005, 95: 1132-1143. 10.1111/j.1471-4159.2005.03422.x.
Article
CAS
PubMed
Google Scholar
Lamkanfi M: Emerging inflammasome effector mechanisms. Nat Rev Immunol. 2011, 11: 213-220. 10.1038/nri2936.
Article
CAS
PubMed
Google Scholar
Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature. 1997, 390: 350-351. 10.1038/37022.
Article
CAS
PubMed
Google Scholar
Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, Velískŏvá J, Moshé SL, De Simoni MG, Vezzani A: Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003, 14: 494-503. 10.1016/j.nbd.2003.08.001.
Article
CAS
PubMed
Google Scholar
Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM: A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000, 405: 85-90. 10.1038/35011084.
Article
CAS
PubMed
Google Scholar
Raymond A, Ensslin MA, Shur BD: SED1/MFG-E8: a bi-motif protein that orchestrates diverse cellular interactions. J Cell Biochem. 2009, 106: 957-966. 10.1002/jcb.22076.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu R, Chaung WW, Zhou M, Ji Y, Dong W, Wang Z, Qiang X, Wang P: Milk fat globule EGF factor 8 attenuates sepsis-induced apoptosis and organ injury in alcohol-intoxicated rats. Alcohol Clin Exp Res. 2010, 34: 1625-1633. 10.1111/j.1530-0277.2010.01248.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Lesèche G, Boulanger C, Tedgui A, Mallat Z: Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 2007, 115: 2168-2177. 10.1161/CIRCULATIONAHA.106.662080.
Article
CAS
PubMed
Google Scholar
Boivin A, Pineau I, Barrette B, Filali M, Vallières N, Rivest S, Lacroix S: Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci. 2007, 27: 12565-12576. 10.1523/JNEUROSCI.3027-07.2007.
Article
CAS
PubMed
Google Scholar
Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K: Role of toll-like receptor signalling in Aβ uptake and clearance. Brain. 2006, 129: 3006-3019. 10.1093/brain/awl249.
Article
PubMed Central
PubMed
Google Scholar
Miksa M, Wu R, Dong W, Das P, Yang D, Wang P: Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock. 2006, 25: 586-593. 10.1097/01.shk.0000209533.22941.d0.
Article
CAS
PubMed
Google Scholar
Mir M, Tolosa L, Asensio VJ, Lladó J, Olmos G: Complementary roles of tumor necrosis factor alpha and interferon gamma in inducible microglial nitric oxide generation. J Neuroimmunol. 2008, 204: 101-109. 10.1016/j.jneuroim.2008.07.002.
Article
CAS
PubMed
Google Scholar
Yu H, Pardoll D, Jove R: STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009, 9: 798-809. 10.1038/nrc2734.
Article
CAS
PubMed
Google Scholar
Smith JA, Das A, Ray SK, Banik NL: Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012, 87: 10-20. 10.1016/j.brainresbull.2011.10.004.
Article
CAS
PubMed
Google Scholar
Yang XS, He GL, Hao YT, Chen CH, Li M, Wang Y, Zhang GB, Yu ZP: The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. J Neuroinflammation. 2010, 7: 54-10.1186/1742-2094-7-54.
Article
PubMed Central
PubMed
Google Scholar