Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T. Tick-borne encephalitis virus—a review of an emerging zoonosis. J Gen Virol. 2009;90:1781–94.
Article
CAS
PubMed
Google Scholar
National Institute of Public Health—National Institute of Hygiene—Department of Epidemiology. Infectious diseases and poisonings in Poland in 2011. http://wwwold.pzh.gov.pl/oldpage/epimeld/2011/Ch_2011.pdf.
Randolph SE. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc Lond. 2001;356:1045–56.
Article
CAS
Google Scholar
Czupryna P, Moniuszko A, Pancewicz SA, Grygorczuk S, Kondrusik M, Zajkowska J. Tick-borne encephalitis in Poland in years 1993–2008—epidemiology and clinical presentation. A retrospective study of 687 patients. Eur J Neurol. 2011;18:673–9.
Article
CAS
PubMed
Google Scholar
Gustafson R, Svenungsson B, Fosgren M, Gardulf A, Granstrom M. Two-year survey of the incidence of Lyme borreliosis and tick-borne encephalitis in a high-risk population in Sweden. Eur J Clin Microbiol Infect Dis. 1992;11:894–900.
Article
CAS
PubMed
Google Scholar
Kaiser R. Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int J Med Microbiol. 2002;291 Suppl 33:58–61.
Article
PubMed
Google Scholar
Mickienė A, Laiškonis A, Günther G, Vene S, Lundkvist A, Lindquist L. Tick-borne encephalitis in an area of high endemicity in Lithuania: disease severity and long-term prognosis. Clin Infect Dis. 2002;35:650–8.
Article
PubMed
Google Scholar
Schellinger PD, Schmutzhard E, Fiebach JB, Pfausler B, Maier H, Schwab S. Poliomyelitic-like illness in central European encephalitis. Neurology. 2000;55:299–302.
Article
CAS
PubMed
Google Scholar
Bílý T, Palus M, Eyer L, Elsterová J, Vancová M, Růžek D. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci Rep. 2015;5:10745. doi:10.1038/srep10745.
Article
PubMed Central
PubMed
Google Scholar
Hayasaka D, Nagata N, Fujii Y, Hasagawa H, Sata T, Suzuki R, et al. Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology. 2009;390:139–50.
Article
CAS
PubMed
Google Scholar
Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol. 2005;64:506–12.
Article
PubMed
Google Scholar
Günther G, Haglund M, Lindquist L, Sköldenberg B, Fosgren M. Intrathecal production of neopterin and beta 2 microglobulin in tick-borne encephalitis (TBE) compared to meningoencephalitis of other etiology. Scand J Infect Dis. 1996;28:131–8.
Article
PubMed
Google Scholar
Růžek D, Salát J, Palus M, Gritsun TS, Gould EA, Dyková I, et al. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology. 2009;384:1–6.
Article
PubMed
Google Scholar
Holub M, Klučková Z, Beran O, Aster V, Lobovská A. Lymphocyte subset numbers in cerebrospinal fluid: comparison of tick-borne encephalitis and neuroborreliosis. Acta Neurol Scand. 2002;106:302–8.
Article
CAS
PubMed
Google Scholar
Jeren T, Vince A. Cytologic and immunoenzymatic findings in CSF from patients with tick-borne encephalitis. Acta Cytol. 1998;42:330–4.
Article
CAS
PubMed
Google Scholar
Lepej SŽ, Mišić-Majerus L, Jeren T, Rode OD, Remenar A, Šporec V, et al. Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol Scand. 2007;115:109–14.
Article
CAS
PubMed
Google Scholar
King NJC, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM. Immunopathology of flavivirus infections. Immunol Cell Biol. 2007;85:33–42.
Article
CAS
PubMed
Google Scholar
Gelpi E, Preusser M, Laggner U, Garzuly F, Holzmann H, Heinz FX, et al. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol. 2006;12:322–7.
Article
CAS
PubMed
Google Scholar
Lim JK, Murphy PM. Chemokine control of West Nile virus infection. Exp Cell Res. 2011;317:569–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Michlmayr D, McKimmie CS, Pingen M, Haxton B, Mansfield K, Johnson N, et al. Defining the chemokine basis for leukocyte recruitment during viral encephalitis. J Virol. 2014;88:9553–67.
Article
PubMed Central
PubMed
Google Scholar
Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A. 1997;94:1925–30.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bonecchi R, Bianchi G, Bordignon PP, D’Ambosio D, Lang R, Borsatti A, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998;187:129–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nansen A, Christensen JP, Andreasen SØ, Bartholdy C, Christensen JE, Thomsen AR. The role of CC chemokine receptor 5 in antiviral immunity. Blood. 2002;99:1237–45.
Article
CAS
PubMed
Google Scholar
Patterson BK, Czerniewski MA, Andersson J, Sullivan Y, Su F, Jityamapa D, et al. Regulation of CCR5 and CXCR4 expression by type 1 and type 2 cytokines: CCR5 expression is downregulated by IL-10 in CD4-positive lymphocytes. Clin Immunol. 1999;91:254–62.
Article
CAS
PubMed
Google Scholar
Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185:1681–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol. 2003;73:584–90.
Article
CAS
PubMed
Google Scholar
Jacobsen M, Zhou D, Cepok S, Nessler S, Happel M, Stei S, et al. Clonal accumulation of activated CD8+ T cells in the central nervous system during the early phase of neuroborreliosis. J Infect Dis. 2003;187:963–73.
Article
PubMed
Google Scholar
Kivisäkk P, Trebst C, Liu Z, Tucky BH, Sørensen TL, Rudick RA, et al. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clin Exp Immunol. 2002;129:510–8.
Article
PubMed Central
PubMed
Google Scholar
Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999;103:807–15.
Article
PubMed Central
PubMed
Google Scholar
Židovec-Lepej S, Đaković-Rode O, Jeren T, Vince A, Remenar A, Baršić B. Increased expression of CXCR3 and CCR5 on memory CD4+ T-cells migrating into cerebrospinal fluid of patients with neuroborreliosis: the role of CXCL10 and CXCL11. J Neuroimmunol. 2005;163:28–34.
Google Scholar
Lucotte G. Frequencies of 32 base pair deletion of the (Δ32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians; a comparative analysis. Infect Gen Evol. 2002;1:201–5.
Article
CAS
Google Scholar
Glass WG, Lim JK, Cholera R, Pletnev AG, Gao J-L, Murphy PM. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. JEM. 2005;202:1087–98.
Article
CAS
Google Scholar
Crawford A, Angelosanto JM, Nadwodny KL, Blackburn SD, Wherry EJ. A role for the chemokine RANTES in regulating CD8 T cell responses during chronic viral infection. PLoS Pathog. 2011. doi:10.1371/journal.ppat.1002098.
PubMed Central
PubMed
Google Scholar
Klein RS. A moving target: the multiple roles of CCR5 in infectious diseases. J Infect Dis. 2008;197:183–6.
Article
CAS
PubMed
Google Scholar
Pulendran B, Miller J, Querec TD, Akondy R, Moseley N, Laur O, et al. Case of yellow fever vaccine associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis. 2008;198:500–7.
Article
PubMed Central
PubMed
Google Scholar
Hayes EB, Gubler DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med. 2006;57:181–94.
Article
CAS
PubMed
Google Scholar
Tyler KL. West Nile virus infection in the United States. Arch Neurol. 2004;61:1190–4.
Article
PubMed
Google Scholar
Glass WG, McDermott DH, Lim JK, Lim JK, Lekhong S, Yu SF, et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med. 2006;203:35–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lim JK, Louie CY, Glaser C, Jean C, Johnson B, Johnson H, et al. Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemics. J Infect Dis. 2008;197:262–5.
Article
PubMed
Google Scholar
Lim JK, Mc Dermott H, Lisco A, Foster GA, Krysztof D, Follmann D, et al. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J Infect Dis. 2010;201:178–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kindberg E, Mickiené A, Ax C, Åkerlind B, Vene S, Lindquist L, et al. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197:266–9.
Article
CAS
PubMed
Google Scholar
Mickienė A, Pakalnienė J, Nordgren J, Carlsson B, Hagbom M, Svensson L, et al. Polymorphisms in chemokine receptor 5 and toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS One. 2014. doi:10.1371/journal.pone.0106798.
PubMed Central
PubMed
Google Scholar
Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med. 1998;187:1215–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005;307:1434–40.
Article
CAS
PubMed
Google Scholar
Kristiansen TB, Knudsen TB, Ohlendorff S, Eugen-Olsen J. A new multiplex PCR strategy for the simultaneous determination of four genetic polymorphisms affecting HIV-1 disease progression. J Immunol Methods. 2001;252:147–51.
Article
CAS
PubMed
Google Scholar
Holme PA, Müller F, Solum NO, Brosstad F, Frøland SS, Aukrust P. Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection. FASEB J. 1998;12:79–90.
CAS
PubMed
Google Scholar
Bardina SV, Lim JK. The role of chemokines in the pathogenesis of neurotropic flaviviruses. Immunol Res. 2012;54:121–32.
Article
CAS
PubMed
Google Scholar
Teixeira MM, Vilela MC, Soriani FM, Rodrigues DH, Teixeira AL. Using intravital microscopy to study the role of chemokines during infection and inflammation of the central nervous system. J Neuroimmunol. 2010;224:62–5.
Article
CAS
PubMed
Google Scholar
Günther G, Haglund M, Lindquist L, Sköldenberg B, Forsgren M. Intrathecal IgM, IgA and IgG antibody response in tick-borne encephalitis. Long term follow-up related to clinical course and outcome. Clin Diagn Virol. 1997;8:17–29.
Article
PubMed
Google Scholar
Lim JK, Obara CJ, Rivollier A, Pletnev AG, Kelsall BL, Murphy PM. Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol. 2011;186:471–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One. 2011;6(5):e20472. doi:10.1371/journal.pone.0020472.
Article
PubMed Central
PubMed
Google Scholar
Grygorczuk S, Zajkowska J, Swierzbińska R, Pancewicz S, Kondrusik M, Hermanowska-Szpakowicz T. Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis. Neurol Neurochir Pol. 2006;40:106–11.
CAS
PubMed
Google Scholar
Grygorczuk S, Zajkowska J, Świerzbińska R, Pancewicz S, Kondrusik M, Hermanowska-Szpakowicz T. Elevated concentration of the chemokine CCL3 (MIP-1α) in cerebrospinal fluid and serum of patients with tick borne encephalitis. Adv Med Sci. 2006;51:340–4.
CAS
PubMed
Google Scholar
Palus M, Formanová P, Salát J, Žampachová E, Elsterová J, Růžek D. Analysis of serum levels of cytokines, chemokines, growth factors, and monoamine neurotransmitters in patients with tick-borne encephalitis: identification of novel inflammatory markers with implications for pathogenesis. J Med Virol. 2015;87:885–92.
Article
CAS
PubMed
Google Scholar
Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, et al. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation. 2013. doi:10.1186/1742-2094-10-77.
PubMed Central
PubMed
Google Scholar
Winter PM, Dung NM, Loan HT, Kneen R, Wills B, Thule T, et al. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J Infect Dis. 2004;190:1618–26.
Article
CAS
PubMed
Google Scholar
Barkhash AV, Voevoda MI, Romaschenko AG. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral Res. 2013;99:136–8.
Article
CAS
PubMed
Google Scholar
McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM. CCR5 promoter plolymorphism and HIV-1 disease progression. Multicenter AIDS cohort study (MACS). Lancet. 1998;352:866–70.
Article
CAS
PubMed
Google Scholar
McDermott DH, Beecroft MJ, Kleeberger CA, Al-Sharif FM, Ollier WER, Zimmermen PA, et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the multicenter AIDS cohort study. AIDS. 2000;14:2671–8.
Article
CAS
PubMed
Google Scholar