Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737–52. https://doi.org/10.1016/j.cger.2013.07.002.
Article
PubMed Central
PubMed
Google Scholar
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6. https://doi.org/10.1038/nature20411.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. Alzheimer's Disease Neuroimaging I: What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40. https://doi.org/10.1016/j.pneurobio.2014.02.004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, et al. Brain atrophy in Alzheimer's disease and aging. Ageing Res Rev. 2016;30:25–48. https://doi.org/10.1016/j.arr.2016.01.002.
Article
PubMed
Google Scholar
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: a review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem. 2020;170:106981. https://doi.org/10.1016/j.nlm.2019.01.004.
Article
PubMed
Google Scholar
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017;79:66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030.
Article
PubMed
Google Scholar
Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A. 2008;105(40):15605–10. https://doi.org/10.1073/pnas.0806883105.
Article
PubMed Central
PubMed
Google Scholar
Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012;9(1):179. https://doi.org/10.1186/1742-2094-9-179.
Article
CAS
PubMed Central
PubMed
Google Scholar
Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience. 2015;309:84–99. https://doi.org/10.1016/j.neuroscience.2015.03.007.
Article
CAS
PubMed
Google Scholar
Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation. 2008;15(4-6):323–30. https://doi.org/10.1159/000156474.
Article
CAS
PubMed
Google Scholar
Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun. 2008;22(3):301–11. https://doi.org/10.1016/j.bbi.2007.08.014.
Article
CAS
PubMed
Google Scholar
Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005;19(10):1329–31. https://doi.org/10.1096/fj.05-3776fje.
Article
CAS
PubMed
Google Scholar
von Bernhardi R, Tichauer JE, Eugenin J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem. 2010;112(5):1099–114. https://doi.org/10.1111/j.1471-4159.2009.06537.x.
Article
CAS
Google Scholar
Patterson SL. Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1beta, BDNF and synaptic plasticity. Neuropharmacology. 2015;96(Pt A):11–8. https://doi.org/10.1016/j.neuropharm.2014.12.020.
Article
CAS
PubMed
Google Scholar
Diniz LP, Matias I, Siqueira M, Stipursky J, Gomes FCA. Astrocytes and the TGF-beta1 pathway in the healthy and diseased brain: a double-edged sword. Mol Neurobiol. 2019;56(7):4653–79. https://doi.org/10.1007/s12035-018-1396-y.
Article
CAS
PubMed
Google Scholar
Weber M, Wu T, Hanson JE, Alam NM, Solanoy H, Ngu H, Lauffer BE, Lin HH, Dominguez SL, Reeder J, Tom J, Steiner P, Foreman O, Prusky GT, Scearce-Levie K: Cognitive deficits, changes in synaptic function, and brain pathology in a mouse model of normal aging(1,2,3). eNeuro 2015, 2, 5, ENEURO.0047, ENEU15.2015, DOI: https://doi.org/10.1523/ENEURO.0047-15.2015.
Bodles AM, Barger SW. Cytokines and the aging brain - what we don't know might help us. Trends Neurosci. 2004;27(10):621–6. https://doi.org/10.1016/j.tins.2004.07.011.
Article
CAS
PubMed
Google Scholar
Wingo AP, Dammer EB, Breen MS, Logsdon BA, Duong DM, Troncosco JC, et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat Commun. 2019;10(1):1619. https://doi.org/10.1038/s41467-019-09613-z.
Article
CAS
PubMed Central
PubMed
Google Scholar
Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev. 2017;75:114–28. https://doi.org/10.1016/j.neubiorev.2017.01.044.
Article
PubMed
Google Scholar
Barroeta-Espar I, Weinstock LD, Perez-Nievas BG, Meltzer AC. Siao Tick Chong M, Amaral AC, Murray ME, Moulder KL, Morris JC, Cairns NJ, et al: Distinct cytokine profiles in human brains resilient to Alzheimer's pathology. Neurobiol Dis. 2019;121:327–37. https://doi.org/10.1016/j.nbd.2018.10.009.
Article
CAS
PubMed
Google Scholar
Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J. 2018;17:634–46. https://doi.org/10.17179/excli2017-654.
Article
PubMed Central
PubMed
Google Scholar
Spencer SJ, D'Angelo H, Soch A, Watkins LR, Maier SF, Barrientos RM. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiol Aging. 2017;58:88–101. https://doi.org/10.1016/j.neurobiolaging.2017.06.014.
Article
CAS
PubMed Central
PubMed
Google Scholar
McLinden KA, Kranjac D, Deodati LE, Kahn M, Chumley MJ, Boehm GW. Age exacerbates sickness behavior following exposure to a viral mimetic. Physiol Behav. 2012;105(5):1219–25. https://doi.org/10.1016/j.physbeh.2011.04.024.
Article
CAS
PubMed
Google Scholar
Chen Y, Yin M, Cao X, Hu G, Xiao M. Pro- and anti-inflammatory effects of high cholesterol diet on aged brain. Aging Dis. 2018;9(3):374–90. https://doi.org/10.14336/AD.2017.0706.
Article
PubMed Central
PubMed
Google Scholar
Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA. The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem. 2006;99(4):1263–72. https://doi.org/10.1111/j.1471-4159.2006.04165.x.
Article
CAS
PubMed
Google Scholar
Nolan Y, Maher FO, Martin DS, Clarke RM, Brady MT, Bolton AE, et al. Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. J Biol Chem. 2005;280(10):9354–62. https://doi.org/10.1074/jbc.M412170200.
Article
CAS
PubMed
Google Scholar
Murray CA, Lynch MA. Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci. 1998;18(8):2974–81. https://doi.org/10.1523/JNEUROSCI.18-08-02974.1998.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maher FO, Nolan Y, Lynch MA. Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiol Aging. 2005;26(5):717–28. https://doi.org/10.1016/j.neurobiolaging.2004.07.002.
Article
CAS
PubMed
Google Scholar
Tha KK, Okuma Y, Miyazaki H, Murayama T, Uehara T, Hatakeyama R, et al. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 2000;885(1):25–31. https://doi.org/10.1016/S0006-8993(00)02883-3.
Article
CAS
PubMed
Google Scholar
Barrientos RM, Higgins EA, Biedenkapp JC, Sprunger DB, Wright-Hardesty KJ, Watkins LR, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging. 2006;27(5):723–32. https://doi.org/10.1016/j.neurobiolaging.2005.03.010.
Article
PubMed
Google Scholar
Barrientos RM, Frank MG, Hein AM, Higgins EA, Watkins LR, Rudy JW, et al. Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav Immun. 2009;23(1):46–54. https://doi.org/10.1016/j.bbi.2008.07.002.
Article
CAS
PubMed
Google Scholar
Barrientos RM, Hein AM, Frank MG, Watkins LR, Maier SF. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci. 2012;32(42):14641–8. https://doi.org/10.1523/JNEUROSCI.2173-12.2012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ye SM, Johnson RW. Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol. 1999;93(1-2):139–48. https://doi.org/10.1016/S0165-5728(98)00217-3.
Article
CAS
PubMed
Google Scholar
Prechel MM, Halbur L, Devata S, Vaidya AM, Young MR. Increased interleukin-6 production by cerebral cortical tissue of adult versus young mice. Mech Ageing Dev. 1996;92(2-3):185–94. https://doi.org/10.1016/S0047-6374(96)01833-7.
Article
CAS
PubMed
Google Scholar
Buchanan JB, Sparkman NL, Chen J, Johnson RW. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology. 2008;33(6):755–65. https://doi.org/10.1016/j.psyneuen.2008.02.013.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sandhir R, Puri V, Klein RM, Berman NE. Differential expression of cytokines and chemokines during secondary neuron death following brain injury in old and young mice. Neurosci Lett. 2004;369(1):28–32. https://doi.org/10.1016/j.neulet.2004.07.032.
Article
CAS
PubMed
Google Scholar
d'Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-Neto HC, et al. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation. 2018;15(1):28. https://doi.org/10.1186/s12974-018-1059-y.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 2007;55(4):412–24. https://doi.org/10.1002/glia.20468.
Article
PubMed
Google Scholar
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, et al. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res. 2017;320:97–112. https://doi.org/10.1016/j.bbr.2016.11.019.
Article
CAS
PubMed
Google Scholar
Ye SM, Johnson RW. An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation. 2001;9(4):183–92. https://doi.org/10.1159/000049025.
Article
CAS
PubMed
Google Scholar
Ye SM, Johnson RW. Regulation of interleukin-6 gene expression in brain of aged mice by nuclear factor kappaB. J Neuroimmunol. 2001;117(1-2):87–96. https://doi.org/10.1016/S0165-5728(01)00316-2.
Article
CAS
PubMed
Google Scholar
Reyes TM, Fabry Z, Coe CL. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res. 1999;851(1-2):215–20. https://doi.org/10.1016/S0006-8993(99)02189-7.
Article
CAS
PubMed
Google Scholar
Palomera-Avalos V, Grinan-Ferre C, Izquierdo V, Camins A, Sanfeliu C, Pallas M. Metabolic stress induces cognitive disturbances and inflammation in aged mice: protective role of resveratrol. Rejuvenation Res. 2017;20(3):202–17. https://doi.org/10.1089/rej.2016.1885.
Article
CAS
PubMed
Google Scholar
Blackwell BN, Bucci TJ, Hart RW, Turturro A. Longevity, body weight, and neoplasia in ad libitum-fed and diet-restricted C57BL6 mice fed NIH-31 open formula diet. Toxicol Pathol. 1995;23(5):570–82. https://doi.org/10.1177/019262339502300503.
Article
CAS
PubMed
Google Scholar
Finnell JE, Lombard CM, Melson MN, Singh NP, Nagarkatti M, Nagarkatti P, et al. The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior. Brain Behav Immun. 2017;59:147–57. https://doi.org/10.1016/j.bbi.2016.08.019.
Article
CAS
PubMed
Google Scholar
Finnell JE, Moffitt CM, Hesser LA, Harrington E, Melson MN, Wood CS, Wood SK: The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming. Brain Behav Immun. 2019;79:102–13.
Patel NS, Klett J, Pilarzyk K, Lee DI, Kass D, Menniti FS, et al. Identification of new PDE9A isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. Neurobiol Aging. 2018;65:217–34. https://doi.org/10.1016/j.neurobiolaging.2018.01.019.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, et al. Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal. 2014;26(2):383–97. https://doi.org/10.1016/j.cellsig.2013.10.007.
Article
CAS
PubMed
Google Scholar
Pilarzyk K, Klett J, Pena EA, Porcher L, Smith AJ, Kelly MP. Loss of function of phosphodiesterase 11A4 shows that recent and remote long-term memories can be uncoupled. Curr Biol. 2019;29(14):2307–21 e2305. https://doi.org/10.1016/j.cub.2019.06.018.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cohen L, Fiore-Gartland A, Randolph AG, Panoskaltsis-Mortari A, Wong SS, Ralston J, et al. A modular cytokine analysis method reveals novel associations with clinical phenotypes and identifies sets of co-signaling cytokines across influenza natural infection cohorts and healthy controls. Front Immunol. 2019;10:1338. https://doi.org/10.3389/fimmu.2019.01338.
Article
CAS
PubMed Central
PubMed
Google Scholar
Campbell IL, Erta M, Lim SL, Frausto R, May U, Rose-John S, et al. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci. 2014;34(7):2503–13. https://doi.org/10.1523/JNEUROSCI.2830-13.2014.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 1863;2016(6):1218–27. https://doi.org/10.1016/j.bbamcr.2016.03.018.
Article
CAS
Google Scholar
Escrig A, Canal C, Sanchis P, Fernandez-Gayol O, Montilla A, Comes G, et al. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer's disease. Brain Behav Immun. 2019;82:145–59. https://doi.org/10.1016/j.bbi.2019.08.005.
Article
CAS
PubMed
Google Scholar
Mudd PA, Crawford JC, Turner JS, Souquette A, Reynolds D, Bender D, et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci Adv. 2020;6(50):eabe3024. https://doi.org/10.1126/sciadv.abe3024.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gelfo V, Rodia MT, Pucci M, Dall'Ora M, Santi S, Solmi R, et al. A module of inflammatory cytokines defines resistance of colorectal cancer to EGFR inhibitors. Oncotarget. 2016;7(44):72167–83. https://doi.org/10.18632/oncotarget.12354.
Article
PubMed Central
PubMed
Google Scholar
Livi GP, Lillquist JS, Miles LM, Ferrara A, Sathe GM, Simon PL, et al. Secretion of N-glycosylated interleukin-1 beta in Saccharomyces cerevisiae using a leader peptide from Candida albicans. Effect of N-linked glycosylation on biological activity. J Biol Chem. 1991;266(23):15348–55. https://doi.org/10.1016/S0021-9258(18)98622-9.
Article
CAS
PubMed
Google Scholar
Mangold CA, Wronowski B, Du M, Masser DR, Hadad N, Bixler GV, et al. Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging. J Neuroinflammation. 2017;14(1):141. https://doi.org/10.1186/s12974-017-0920-8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Katafuchi T, Takaki A, Take S, Kondo T, Yoshimura M. Endotoxin inhibitor blocks heat exposure-induced expression of brain cytokine mRNA in aged rats. Brain Res Mol Brain Res. 2003;118(1-2):24–32. https://doi.org/10.1016/S0169-328X(03)00331-0.
Article
CAS
PubMed
Google Scholar
Buchanan JB, Peloso E, Satinoff E. A warmer ambient temperature increases the passage of interleukin-1beta into the brains of old rats. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R361–8. https://doi.org/10.1152/ajpregu.00104.2007.
Article
CAS
PubMed Central
PubMed
Google Scholar
Arisi GM. Nervous and immune systems signals and connections: cytokines in hippocampus physiology and pathology. Epilepsy Behav. 2014;38:43–7. https://doi.org/10.1016/j.yebeh.2014.01.017.
Article
PubMed
Google Scholar
Tsakiri N, Kimber I, Rothwell NJ, Pinteaux E. Interleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol. 2008;153(4):775–83. https://doi.org/10.1038/sj.bjp.0707610.
Article
CAS
PubMed
Google Scholar
Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal 'On' and 'Off' signals control microglia. Trends Neurosci. 2007;30(11):596–602. https://doi.org/10.1016/j.tins.2007.08.007.
Article
CAS
PubMed
Google Scholar
Olsnes S, Klingenberg O, Wiedlocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev. 2003;83(1):163–82. https://doi.org/10.1152/physrev.00021.2002.
Article
CAS
PubMed
Google Scholar
Jostock T, Mullberg J, Ozbek S, Atreya R, Blinn G, Voltz N, et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem. 2001;268(1):160–7. https://doi.org/10.1046/j.1432-1327.2001.01867.x.
Article
CAS
PubMed
Google Scholar
Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, et al. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood. 1993;82(4):1120–6. https://doi.org/10.1182/blood.V82.4.1120.1120.
Article
CAS
PubMed
Google Scholar
Wei H, Chadman KK, McCloskey DP, Sheikh AM, Malik M, Brown WT, et al. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta. 1822;2012(6):831–42. https://doi.org/10.1016/j.bbadis.2012.01.011.
Article
CAS
Google Scholar
Balschun D, Wetzel W, Del Rey A, Pitossi F, Schneider H, Zuschratter W, et al. Interleukin-6: a cytokine to forget. FASEB J. 2004;18(14):1788–90. https://doi.org/10.1096/fj.04-1625fje.
Article
CAS
PubMed
Google Scholar
Hueston CM, O'Leary JD, Hoban AE, Kozareva DA, Pawley LC, O'Leary OF, et al. Chronic interleukin-1beta in the dorsal hippocampus impairs behavioural pattern separation. Brain Behav Immun. 2018;74:252–64. https://doi.org/10.1016/j.bbi.2018.09.015.
Article
CAS
PubMed
Google Scholar
Ni P, Dong H, Wang Y, Zhou Q, Xu M, Qian Y, et al. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation. 2018;15(1):332. https://doi.org/10.1186/s12974-018-1374-3.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V, et al. Tumor necrosis factor and interleukin-1beta modulate synaptic plasticity during neuroinflammation. Neural Plast. 2018;2018:8430123–12. https://doi.org/10.1155/2018/8430123.
Article
CAS
PubMed Central
PubMed
Google Scholar
Keegan AP, Paris D, Luis CA, Abdullah L, Ait-Ghezala G, Beaulieu-Abdelahad D, et al. Plasma cytokine IL-6 levels and subjective cognitive decline: preliminary findings. Int J Geriatr Psychiatry. 2018;33(2):358–63. https://doi.org/10.1002/gps.4752.
Article
PubMed
Google Scholar
Singh-Manoux A, Dugravot A, Brunner E, Kumari M, Shipley M, Elbaz A, et al. Interleukin-6 and C-reactive protein as predictors of cognitive decline in late midlife. Neurology. 2014;83(6):486–93. https://doi.org/10.1212/WNL.0000000000000665.
Article
CAS
PubMed Central
PubMed
Google Scholar
Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59(3):371–8. https://doi.org/10.1212/WNL.59.3.371.
Article
CAS
PubMed
Google Scholar
Nenov MN, Malkov AE, Konakov MV, Levin SG. Interleukin-10 and transforming growth factor-beta1 facilitate long-term potentiation in CA1 region of hippocampus. Biochem Biophys Res Commun. 2019;518(3):486–91. https://doi.org/10.1016/j.bbrc.2019.08.072.
Article
CAS
PubMed
Google Scholar
Brombacher TM, Nono JK, De Gouveia KS, Makena N, Darby M, Womersley J, et al. IL-13-mediated regulation of learning and memory. J Immunol. 2017;198(7):2681–8. https://doi.org/10.4049/jimmunol.1601546.
Article
CAS
PubMed
Google Scholar
Mudo G, Frinchi M, Nuzzo D, Scaduto P, Plescia F, Massenti MF, et al. Anti-inflammatory and cognitive effects of interferon-beta1a (IFNbeta1a) in a rat model of Alzheimer's disease. J Neuroinflammation. 2019;16(1):44. https://doi.org/10.1186/s12974-019-1417-4.
Article
PubMed Central
PubMed
Google Scholar
Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP. Protection of TGF-beta1 against neuroinflammation and neurodegeneration in Abeta1-42-induced Alzheimer's disease model rats. PLoS One. 2015;10(2):e0116549. https://doi.org/10.1371/journal.pone.0116549.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sparkman NL, Buchanan JB, Heyen JR, Chen J, Beverly JL, Johnson RW. Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J Neurosci. 2006;26(42):10709–16. https://doi.org/10.1523/JNEUROSCI.3376-06.2006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J Neuroimmunol. 2004;147(1-2):141–4. https://doi.org/10.1016/j.jneuroim.2003.10.031.
Article
CAS
PubMed
Google Scholar
McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: the not so inconvenient truth. J Neurosci. 2012;32(7):2241–7. https://doi.org/10.1523/JNEUROSCI.5372-11.2012.
Article
PubMed Central
PubMed
Google Scholar
Levine DA, Gross AL, Briceno EM, Tilton N, Giordani BJ, Sussman JB, et al. Sex differences in cognitive decline among US adults. JAMA Netw Open. 2021;4(2):e210169. https://doi.org/10.1001/jamanetworkopen.2021.0169.
Article
PubMed Central
PubMed
Google Scholar
Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer's disease. J Alzheimers Dis. 2018;64(4):1077–83. https://doi.org/10.3233/JAD-180141.
Article
PubMed Central
PubMed
Google Scholar
Shansky RM. Are hormones a "female problem" for animal research? Science. 2019;364(6443):825–6. https://doi.org/10.1126/science.aaw7570.
Article
CAS
PubMed
Google Scholar
Steiner RA, Bremner WJ, Clifton DK, Dorsa DM. Reduced pulsatile luteinizing hormone and testosterone secretion with aging in the male rat. Biol Reprod. 1984;31(2):251–8. https://doi.org/10.1095/biolreprod31.2.251.
Article
CAS
PubMed
Google Scholar
Machida T, Yonezawa Y, Noumura T. Age-associated changes in plasma testosterone levels in male mice and their relation to social dominance or subordinance. Horm Behav. 1981;15(3):238–45. https://doi.org/10.1016/0018-506X(81)90013-1.
Article
CAS
PubMed
Google Scholar
Frick KM. Estrogens and age-related memory decline in rodents: what have we learned and where do we go from here? Horm Behav. 2009;55(1):2–23. https://doi.org/10.1016/j.yhbeh.2008.08.015.
Article
CAS
PubMed
Google Scholar
Mennenga SE, Bimonte-Nelson HA. Translational cognitive endocrinology: designing rodent experiments with the goal to ultimately enhance cognitive health in women. Brain Res. 2013;1514:50–62. https://doi.org/10.1016/j.brainres.2013.01.020.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yin F, Yao J, Sancheti H, Feng T, Melcangi RC, Morgan TE, et al. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiol Aging. 2015;36(7):2282–95. https://doi.org/10.1016/j.neurobiolaging.2015.03.013.
Article
CAS
PubMed Central
PubMed
Google Scholar
Surcel M, Constantin C, Caruntu C, Zurac S, Neagu M. Inflammatory cytokine pattern is sex-dependent in mouse cutaneous melanoma experimental model. J Immunol Res. 2017;2017:9212134–10. https://doi.org/10.1155/2017/9212134.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE, Maverakis E, et al. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. J Exp Med. 2013;210(11):2223–37. https://doi.org/10.1084/jem.20131219.
Article
CAS
PubMed Central
PubMed
Google Scholar
Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MSSG: Randomized controlled trial of interferon- beta-1a in secondary progressive MS: clinical results. Neurology 2001, 56:1496-1504, 11, DOI: https://doi.org/10.1212/WNL.56.11.1496.
Nagashima T, Okubo-Fornbacher H, Aoki Y, Kamata Y, Kimura H, Kamimura T, et al. Increase in plasma levels of adiponectin after administration of anti-tumor necrosis factor agents in patients with rheumatoid arthritis. J Rheumatol. 2008;35(5):936–8.
CAS
PubMed
Google Scholar
Ghanim H, Sia CL, Abuaysheh S, Korzeniewski K, Patnaik P, Marumganti A, et al. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J Clin Endocrinol Metab. 2010;95(9):E1–8. https://doi.org/10.1210/jc.2010-0482.
Article
PubMed Central
PubMed
Google Scholar
Witte AV, Kerti L, Margulies DS, Floel A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34(23):7862–70. https://doi.org/10.1523/JNEUROSCI.0385-14.2014.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rancan L, Paredes SD, Garcia I, Munoz P, Garcia C, Lopez de Hontanar G, de la Fuente M, Vara E, Tresguerres JAF. Protective effect of xanthohumol against age-related brain damage. J Nutr Biochem 2017, 49:133-140, DOI: https://doi.org/10.1016/j.jnutbio.2017.07.011.
Campbell A, Sharman E, Bondy SC. Age-related differences in the response of the brain to dietary melatonin. Age (Dordr). 2014;36(1):49–55. https://doi.org/10.1007/s11357-013-9542-y.
Article
CAS
Google Scholar
Huang SY, Chen LH, Wang MF, Hsu CC, Chan CH, Li JX, et al. Lactobacillus paracasei PS23 delays progression of age-related cognitive decline in senescence accelerated mouse prone 8 (SAMP8) mice. Nutrients. 2018;10(7). https://doi.org/10.3390/nu10070894.
Paredes D, Acosta S, Gemma C, Bickford PC. Role of TNFalpha induced inflammation in delay eyeblink conditioning in young and aged rats. Aging Dis. 2010;1(3):191–8.
PubMed Central
PubMed
Google Scholar
Dallagnol KMC, Remor AP, da Silva RA, Prediger RD, Latini A, Aguiar AS Jr. Running for REST: physical activity attenuates neuroinflammation in the hippocampus of aged mice. Brain Behav Immun. 2017;61:31–5. https://doi.org/10.1016/j.bbi.2016.07.159.
Article
CAS
PubMed
Google Scholar
Gomes da Silva S, Simoes PS, Mortara RA, Scorza FA, Cavalheiro EA, da Graca Naffah-Mazzacoratti M, Arida RM: Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflammation 2013, 10:61, 1, DOI: https://doi.org/10.1186/1742-2094-10-61.
Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun. 2013;28:25–43. https://doi.org/10.1016/j.bbi.2012.09.013.
Article
CAS
PubMed
Google Scholar
Ng TKS, Fam J, Feng L, Cheah IK, Tan CT, Nur F, et al. Mindfulness improves inflammatory biomarker levels in older adults with mild cognitive impairment: a randomized controlled trial. Transl Psychiatry. 2020;10(1):21. https://doi.org/10.1038/s41398-020-0696-y.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shields GS, Spahr CM, Slavich GM. Psychosocial interventions and immune system function: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 2020;77(10):1031–43. https://doi.org/10.1001/jamapsychiatry.2020.0431.
Article
PubMed
Google Scholar
Bordner KA, Kitchen RR, Carlyle B, George ED, Mahajan MC, Mane SM, et al. Parallel declines in cognition, motivation, and locomotion in aging mice: association with immune gene upregulation in the medial prefrontal cortex. Exp Gerontol. 2011;46(8):643–59. https://doi.org/10.1016/j.exger.2011.03.003.
Article
PubMed Central
PubMed
Google Scholar