Cullen AE, Holmes S, Pollak TA, Blackman G, Joyce DW, Kempton MJ, et al. Associations between non-neurological autoimmune disorders and psychosis: a meta-analysis. Biol Psychiatry. 2019;85(1):35–48. https://doi.org/10.1016/j.biopsych.2018.06.016.
Article
PubMed
PubMed Central
Google Scholar
Devinsky O, Schein A, Najjar S. Epilepsy associated with systemic autoimmune disorders. Epilepsy Curr. 2013;13(2):62–8. https://doi.org/10.5698/1535-7597-13.2.62.
Article
PubMed
PubMed Central
Google Scholar
Kayser MS, Dalmau J. The emerging link between autoimmune disorders and neuropsychiatric disease. J Neuropsychiatry Clin Neurosci. 2011;23(1):90–7. https://doi.org/10.1176/appi.neuropsych.23.1.90.
Article
PubMed
PubMed Central
Google Scholar
Lin Z, Si Q, Xiaoyi Z. Association between epilepsy and systemic autoimmune diseases: a meta-analysis. Seizure. 2016;41:160-6. https://doi.org/10.1016/j.seizure.2016.08.003.
Schor NF. Neurology of systemic autoimmune disorders: a pediatric perspective. Semin Pediatr Neurol. 2000;7(2):108–17. https://doi.org/10.1053/pb.2000.6692.
Article
PubMed
CAS
Google Scholar
Valencia I. Epilepsy in systemic autoimmune disorders. Semin Pediatr Neurol. 2014;21(3):226–31. https://doi.org/10.1016/j.spen.2014.07.001.
Article
PubMed
Google Scholar
Vincent A, Crino PB. Systemic and neurologic autoimmune disorders associated with seizures or epilepsy. Epilepsia. 2011;52(Suppl 3):12–7. https://doi.org/10.1111/j.1528-1167.2011.03030.x.
Article
PubMed
Google Scholar
Ong M-S, Kohane IS, Cai T, Gorman MP, Mandl KD. Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol. 2014;71(5):569–74. https://doi.org/10.1001/jamaneurol.2014.188.
Article
PubMed
PubMed Central
Google Scholar
Hilt RJ, Chaudhari M, Bell JF, Wolf C, Koprowicz K, King BH. Side effects from use of one or more psychiatric medications in a population-based sample of children and adolescents. J Child Adolesc Psychopharmacol. 2014;24(2):83–9. https://doi.org/10.1089/cap.2013.0036.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haddad PM, Dursun SM. Neurological complications of psychiatric drugs: clinical features and management. Hum Psychopharmacol. 2008;23(Suppl 1):15–26. https://doi.org/10.1002/hup.918.
Article
PubMed
Google Scholar
Hayter SM, Cook MC. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev. 2012;11(10):754–65. https://doi.org/10.1016/j.autrev.2012.02.001.
Article
PubMed
Google Scholar
Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Nat Acad Sci. 2008;105(44):17151–6. https://doi.org/10.1073/pnas.0806682105.
Article
PubMed
PubMed Central
Google Scholar
Riazi K, Honar H, Homayoun H, Demehri S, Bahadori M, Dehpour AR. Intestinal inflammation alters the susceptibility to pentylenetetrazole-induced seizure in mice. J Gastroenterol Hepatol. 2004;19(3):270–7. https://doi.org/10.1111/j.1440-1746.2003.03284.x.
Article
PubMed
CAS
Google Scholar
D'Mello C, Riazi K, Le T, Stevens KM, Wang A, McKay DM, et al. P-selectin-mediated monocyte–cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci. 2013;33(37):14878–88. https://doi.org/10.1523/JNEUROSCI.1329-13.2013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buckman LB, Thompson MM, Moreno HN, Ellacott KLJ. Regional astrogliosis in the mouse hypothalamus in response to obesity. J Comp Neurol. 2013;521(6):1322–33. https://doi.org/10.1002/cne.23233.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun. 2014;35:33–42. https://doi.org/10.1016/j.bbi.2013.06.007.
Article
PubMed
CAS
Google Scholar
Cerri C, Genovesi S, Allegra M, Pistillo F, Püntener U, Guglielmotti A, et al. The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J Neurosci. 2016;36(13):3777–88. https://doi.org/10.1523/JNEUROSCI.0451-15.2016.
Article
PubMed
PubMed Central
CAS
Google Scholar
D'Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–102. https://doi.org/10.1523/JNEUROSCI.3567-08.2009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Auvin S, Shin D, Mazarati A, Sankar R. Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia. 2010;51(Suppl 3):34–8. https://doi.org/10.1111/j.1528-1167.2010.02606.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai Z, Pang Y, Lin S, Rhodes PG. Differential roles of tumor necrosis factor-α and interleukin-1 β in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res. 2003;975(1-2):37–47. https://doi.org/10.1016/S0006-8993(03)02545-9.
Article
PubMed
CAS
Google Scholar
Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, et al. Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci. 2008;28(27):6904–13. https://doi.org/10.1523/JNEUROSCI.1901-08.2008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jeong H-K, Jou I. Joe E-h: Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med. 2010;42(12):823–32. https://doi.org/10.3858/emm.2010.42.12.085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of IL-1β and glutamate in the effects of lipopolysaccharide on the hippocampal electrical kindling of seizures. J Neuroimmunol. 2016;298:146-52. https://doi.org/10.1016/j.jneuroim.2016.07.018.
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–62. https://doi.org/10.1002/glia.20467.
Article
PubMed
PubMed Central
Google Scholar
Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation. 2012;9(1):236. https://doi.org/10.1186/1742-2094-9-236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niesman IR, Schilling JM, Shapiro LA, Kellerhals SE, Bonds JA, Kleschevnikov AM, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11(1):39. https://doi.org/10.1186/1742-2094-11-39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91. https://doi.org/10.1038/nrneurol.2017.13.
Article
PubMed
PubMed Central
Google Scholar
Stilling RM, Cryan JF. Host response: a trigger for neurodegeneration? Nature Microbiology. 2016;1(8):16129. https://doi.org/10.1038/nmicrobiol.2016.129.
Article
PubMed
CAS
Google Scholar
Dickens AM, Tovar-y-Romo LB, Yoo S-W, Trout AL, Bae M, Kanmogne M, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017;10:eaai7696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benavente L, Morís G. Neurologic disorders associated with inflammatory bowel disease. Eur J Neurol. 2011;18(1):138–43. https://doi.org/10.1111/j.1468-1331.2010.03095.x.
Article
PubMed
CAS
Google Scholar
Kappelman MD, Moore KR, Allen JK, Cook SF. Recent trends in the prevalence of Crohn’s disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci. 2013;58(2):519–25. https://doi.org/10.1007/s10620-012-2371-5.
Article
PubMed
Google Scholar
Langenberg DRV, Yelland GW, Robinson SR, Gibson PR. Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. U Eur Gastroenterol J. 2017;5(4):579-87. https://doi.org/10.1177/2050640616663397.
Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504–17. https://doi.org/10.1053/j.gastro.2004.01.063.
Article
PubMed
Google Scholar
Virta LJ, Kolho K-L. The risk of contracting pediatric inflammatory bowel disease in children with celiac disease, epilepsy, juvenile arthritis and type 1 diabetes—a nationwide study. J Crohns Colitis. 2013;7(1):53–7. https://doi.org/10.1016/j.crohns.2012.02.021.
Article
PubMed
Google Scholar
Camara-Lemarroy CR, Escobedo-Zúñiga N, Ortiz-Zacarias D, Peña-Avendaño J, Villarreal-Garza E, Díaz-Torres MA. Prevalence and impact of irritable bowel syndrome in people with epilepsy. Epilepsy Behav. 2016;63:29–33. https://doi.org/10.1016/j.yebeh.2016.05.041.
Article
PubMed
Google Scholar
Chapman RW, Laidlow JM, Colin-Jones D, Eade OE, Smith CL. Increased prevalence of epilepsy in coeliac disease. Br Med J. 1978;2(6132):250–1. https://doi.org/10.1136/bmj.2.6132.250.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tellez-Zenteno JF, Matijevic S, Wiebe S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia. 2005;46(12):1955–62. https://doi.org/10.1111/j.1528-1167.2005.00344.x.
Article
PubMed
Google Scholar
Hermaszewski RA, Rigby S, Dalgleish AG. Coeliac disease presenting with cerebellar degeneration. Postgrad Med J. 1991;67(793):1023–4. https://doi.org/10.1136/pgmj.67.793.1023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luostarinen L, Pirttilä T, Collin P. Coeliac disease presenting with neurological disorders. Eur Neurol. 1999;42(3):132–5. https://doi.org/10.1159/000008086.
Article
PubMed
CAS
Google Scholar
Mirabella M, Cianfoni A, Bucci M, Nociti V, Sancricca C, Patanella AK, et al. Coeliac disease presenting with acute disseminated encephalomyelitis. Eur J Neurol. 2006;13(2):202–3. https://doi.org/10.1111/j.1468-1331.2006.01112.x.
Article
PubMed
CAS
Google Scholar
Oliveira-Maia AJ, Andrade I, Barahona-Corrêa JB. Case of coeliac disease presenting in the psychiatry ward. BMJ Case Rep. 2016;2016. https://doi.org/10.1136/bcr-2016-216825.
Scheid R, Teich N. Neurologic manifestations of ulcerative colitis. Eur J Neurol. 2007;14(5):483–93. https://doi.org/10.1111/j.1468-1331.2007.01718.x.
Article
PubMed
CAS
Google Scholar
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21. https://doi.org/10.1073/pnas.091062498.
Article
PubMed
PubMed Central
CAS
Google Scholar
Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773–82. https://doi.org/10.1038/s41587-019-0114-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. https://doi.org/10.1093/nar/gkw377.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. https://doi.org/10.1186/1471-2105-14-128.
Article
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154–70. https://doi.org/10.1016/j.jcmgh.2015.01.006.
Article
PubMed
PubMed Central
Google Scholar
Kitajima S, Takuma S, Morimoto M. Tissue distribution of dextran sulfate sodium (DSS) in the acute phase of murine DSS-induced colitis. J Vet Med Sci. 1999;61(1):67–70. https://doi.org/10.1292/jvms.61.67.
Article
PubMed
CAS
Google Scholar
Prichahd JW, Gallagher BB, Glaser GH. Experimental seizure-threshold testing with flurothyl. J Pharmacol Exp Ther. 1969;166:170–8.
Google Scholar
Remington LT, Babcock AA, Zehntner SP, Owens T. Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol. 2007;170(5):1713–24. https://doi.org/10.2353/ajpath.2007.060783.
Article
PubMed
PubMed Central
Google Scholar
Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, et al. Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res. 2010;88(16):3530–9. https://doi.org/10.1002/jnr.22510.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pascual O, Achour SB, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci. 2012;109(4):E197–205. https://doi.org/10.1073/pnas.1111098109.
Article
PubMed
Google Scholar
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 2018;48:380–395.e386.
Article
CAS
PubMed
Google Scholar
Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol. 2013;4. https://doi.org/10.3389/fneur.2013.00030.
Iori V, Frigerio F, Vezzani A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol. 2016;26:118–23. https://doi.org/10.1016/j.coph.2015.11.002.
Article
PubMed
CAS
Google Scholar
Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res. 2010;89(1):34–42. https://doi.org/10.1016/j.eplepsyres.2009.09.004.
Article
PubMed
CAS
Google Scholar
Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008;22(6):797–803. https://doi.org/10.1016/j.bbi.2008.03.009.
Article
PubMed
CAS
Google Scholar
Woods C, Marques-Lopes J, Contoreggi NH, Milner TA, Pickel VM, Wang G, et al. Tumor necrosis factor alpha-receptor type 1 activation in the hypothalamic paraventricular nucleus contributes to glutamate signaling and angiotensin II-dependent hypertension. J Neurosci. 2020;41(6):1349–62. https://doi.org/10.1523/JNEUROSCI.2360-19.2020.
Article
PubMed
Google Scholar
Mirza N. Gene expression analysis of hippocampal tissue from epilepsy surgery. 1 edition. https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3123: ArrayExpress; 2015.
Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, et al. Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS One. 2014;9(10):e110024. https://doi.org/10.1371/journal.pone.0110024.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, et al. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43(Suppl 5):30–5. https://doi.org/10.1046/j.1528-1157.43.s.5.14.x.
Article
PubMed
CAS
Google Scholar
Peltola J, Hurme M, Miettinen A, Keränen T. Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res. 1998;31(2):129–33. https://doi.org/10.1016/S0920-1211(98)00024-2.
Article
PubMed
CAS
Google Scholar
Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ. Interleukin-1β contributes to the generation of experimental febrile seizures. Ann Neurol. 2005;57(1):152–5. https://doi.org/10.1002/ana.20358.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90(21):10061–5. https://doi.org/10.1073/pnas.90.21.10061.
Article
PubMed
PubMed Central
CAS
Google Scholar
Argaw AT, Zhang Y, Snyder BJ, Zhao M-L, Kopp N, Lee SC, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol (Baltimore, Md: 1950). 2006;177:5574–84.
Article
CAS
Google Scholar
Min JK, Kim YM, Kim SW, Kwon MC, Kong YY, Hwang IK, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol. 2005;175(1):531–40. https://doi.org/10.4049/jimmunol.175.1.531.
Article
PubMed
CAS
Google Scholar
McHale JF, Harari OA, Marshall D, Haskard DO. TNF-alpha and IL-1 sequentially induce endothelial ICAM-1 and VCAM-1 expression in MRL/lpr lupus-prone mice. J Immunol. 1999;163:3993–4000.
PubMed
CAS
Google Scholar
Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS One. 2014;9(7):e101815. https://doi.org/10.1371/journal.pone.0101815.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Vries HE, Blom-Roosemalen MCM, Oosten MV, de Boer AG, van Berkel TJC, Breimer DD, et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996;64(1):37–43. https://doi.org/10.1016/0165-5728(95)00148-4.
Article
PubMed
Google Scholar
Gray MA, Chao CY, Staudacher HM, Kolosky NA, Talley NJ, Holtmann G. Anti-TNFα therapy in IBD alters brain activity reflecting visceral sensory function and cognitive-affective biases. PLoS One. 2018;13(3):e0193542. https://doi.org/10.1371/journal.pone.0193542.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bortolato B, Carvalho AF, Soczynska JK, Perini GI, McIntyre RS. The involvement of TNF-α in cognitive dysfunction associated with major depressive disorder: an opportunity for domain specific treatments. Curr Neuropharmacol. 2015;13(5):558–76. https://doi.org/10.2174/1570159X13666150630171433.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kemanetzoglou E, Andreadou E. CNS demyelination with TNF-α blockers. Curr Neurol Neurosci Rep. 2017;17(4):36. https://doi.org/10.1007/s11910-017-0742-1.
Article
PubMed
PubMed Central
Google Scholar