Trapp BD, Nave KA: Multiple sclerosis: an immune or neurodegenerative disorder?. Annu Rev Neurosci. 2008, 31: 247-69. 10.1146/annurev.neuro.30.051606.094313.
Article
CAS
PubMed
Google Scholar
Andrews H, White K, Thomson C, Edgar J, Bates D, Griffiths I, Turnbull D, Nichols P: Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J Neurosci Res. 2006, 83 (8): 1533-9. 10.1002/jnr.20842.
Article
CAS
PubMed
Google Scholar
Ciccarelli O, Toosy AT, De Stefano N, Wheeler-Kingshott CA, Miller DH, Thompson AJ: Assessing neuronal metabolism in vivo by modeling imaging measures. J Neurosci. 2010, 30 (45): 15030-3. 10.1523/JNEUROSCI.3330-10.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Das Sarma J, Kenyon LC, Hingley ST, Shindler KS: Mechanisms of primary axonal damage in a viral model of multiple sclerosis. J Neurosci. 2009, 29 (33): 10272-80. 10.1523/JNEUROSCI.1975-09.2009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D, Yu X, Fowlkes J, Rahder M, Stem K, Bernardi P, Bourdette D: Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci USA. 2007, 104 (18): 7558-63. 10.1073/pnas.0702228104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pohl HB, Porcheri C, Mueggler T, Bachmann LC, Martino G, Riethmacher D, Franklin RJ, Rudin M, Suter U: Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci. 2011, 31 (3): 1069-80. 10.1523/JNEUROSCI.5035-10.2011.
Article
CAS
PubMed
Google Scholar
Su KG, Banker G, Bourdette D, Forte M: Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep. 2009, 9 (5): 411-7. 10.1007/s11910-009-0060-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M: A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011, 17 (4): 495-9. 10.1038/nm.2324.
Article
CAS
PubMed
Google Scholar
Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q, Raz E: Control of Chemokine-Guided Cell Migration by Ligand Sequestration. Cell. 2008, 132 (3): 463-473. 10.1016/j.cell.2007.12.034.
Article
CAS
PubMed
Google Scholar
Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold MET, Sunshine MJ, Littman DR, Kuo CJ, Wei K, McMaster BE, Wright K, Howard MC, Schall TJ: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine. 2006, 203 (9): 2201-2213. 10.1084/jem.20052144.
Article
PubMed Central
CAS
PubMed
Google Scholar
Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes H-G, Rot A, Thelen M: CXCR7 Functions as a Scavenger for CXCL12 and CXCL11. PLoS ONE. 2010, 5 (2): e9175-10.1371/journal.pone.0009175.
Article
PubMed Central
PubMed
Google Scholar
Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, McCandless EE, Patel JR, Luker GD, Littman DR, Russell JH, Klein RS: CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med. 2011, 208 (2): 327-39. 10.1084/jem.20102010.
Article
PubMed Central
CAS
PubMed
Google Scholar
McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS: CXCL12 Limits Inflammation by Localizing Mononuclear Infiltrates to the Perivascular Space during Experimental Autoimmune Encephalomyelitis. J Immunol. 2006, 177 (11): 8053-8064.
Article
CAS
PubMed
Google Scholar
McCandless EE, Zhang B, Diamond MS, Klein RS: CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proceedings of the National Academy of Sciences. 2008, 105 (32): 11270-11275. 10.1073/pnas.0800898105.
Article
CAS
Google Scholar
McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, Klein RS: Pathological Expression of CXCL12 at the Blood-Brain Barrier Correlates with Severity of Multiple Sclerosis. Am J Pathol. 2008, 172 (3): 799-808. 10.2353/ajpath.2008.070918.
Article
PubMed Central
PubMed
Google Scholar
Budde MD, Kim JH, Liang H-F, Russell JH, Cross AH, Song S-K: Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR in Biomedicine. 2008, 21 (6): 589-597. 10.1002/nbm.1229.
Article
PubMed Central
PubMed
Google Scholar
Budde MD, Xie M, Cross AH, Song SK: Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci. 2009, 29 (9): 2805-13. 10.1523/JNEUROSCI.4605-08.2009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fox RJ: Picturing Multiple Sclerosis: Conventional and Diffusion Tensor Imaging. Semin Neurol. 2008, 28 (04): 453-10.1055/s-0028-1083689. 466
Article
PubMed
Google Scholar
Ge Y, Law M, Grossman RI: Applications of Diffusion Tensor MR Imaging in Multiple Sclerosis. Annals of the New York Academy of Sciences. 2005, 1064 (1): 202-219. 10.1196/annals.1340.039.
Article
PubMed
Google Scholar
Kim JH, Budde MD, Liang H-F, Klein RS, Russell JH, Cross AH, Song S-K: Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiology of Disease. 2006, 21 (3): 626-632. 10.1016/j.nbd.2005.09.009.
Article
CAS
PubMed
Google Scholar
Kolappan M, Henderson A, Jenkins T, Wheeler-Kingshott C, Plant G, Thompson A, Miller D: Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. Journal of Neurology. 2009, 256 (3): 305-319. 10.1007/s00415-009-0123-z.
Article
PubMed
Google Scholar
Sun S-W, Liang H-F, Schmidt RE, Cross AH, Song S-K: Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiology of Disease. 2007, 28 (1): 30-38. 10.1016/j.nbd.2007.06.011.
Article
PubMed Central
PubMed
Google Scholar
Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H: Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging. 2001, 13 (4): 534-546. 10.1002/jmri.1076.
Article
CAS
PubMed
Google Scholar
Neil J, Miller J, Mukherjee P, Hüppi PS: Diffusion tensor imaging of normal and injured developing human brain - a technical review. NMR in Biomedicine. 2002, 15 (7-8): 543-552. 10.1002/nbm.784.
Article
CAS
PubMed
Google Scholar
Song T, An J, Chen Q, Lee V, Laine A: Assessment of Adipose Tissue from Whole Body 3T MRI Scans. Conf Proc IEEE Eng Med Biol Soc. 2005, 7: 7012-5.
PubMed
Google Scholar
Stejskal EO, Tanner JE: Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. The Journal of Chemical Physics. 1965, 42 (1): 288-292. 10.1063/1.1695690.
Article
CAS
Google Scholar
Koay CG, Chang L-C, Carew JD, Pierpaoli C, Basser PJ: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. Journal of Magnetic Resonance. 2006, 182 (1): 115-125. 10.1016/j.jmr.2006.06.020.
Article
CAS
PubMed
Google Scholar
Abràmoff MD, Magalhães PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International. 2004, 11 (7): 36-42.
Google Scholar
Rasband WS: ImageJ U.S. National Institutes of Health, Bethesda, Maryland, USA. 1997, [http://imagej.nih.gov/ij]
Google Scholar
Ferreira T, Rasband W: The mageJ User Guide -- IJ 1.45. 2010, [http://imagej.nih.gov/ij/docs/guide/]
Google Scholar
Herz J, Zipp F, Siffrin V: Neurodegeneration in autoimmune CNS inflammation. Exp Neurol. 2010, 225 (1): 9-17. 10.1016/j.expneurol.2009.11.019.
Article
CAS
PubMed
Google Scholar
Siffrin V, Vogt J, Radbruch H, Nitsch R, Zipp F: Multiple sclerosis - candidate mechanisms underlying CNS atrophy. Trends Neurosci. 2010, 33 (4): 202-10. 10.1016/j.tins.2010.01.002.
Article
CAS
PubMed
Google Scholar
Deumens R, Koopmans GC, Joosten EA: Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol. 2005, 77 (1-2): 57-89. 10.1016/j.pneurobio.2005.10.004.
Article
CAS
PubMed
Google Scholar
Geddes JF, Hackshaw AK, Vowles GH, Nickols CD, Whitwell HL: Neuropathology of inflicted head injury in children. I. Patterns of brain damage. Brain. 2001, 124 (Pt 7): 1290-8.
Article
CAS
PubMed
Google Scholar
Geddes JF, Vowles GH, Hackshaw AK, Nickols CD, Scott IS, Whitwell HL: Neuropathology of inflicted head injury in children. II. Microscopic brain injury in infants. Brain. 2001, 124 (Pt 7): 1299-306.
Article
CAS
PubMed
Google Scholar
Geddes JF, Whitwell HL: Head injury in routine and forensic pathological practice. Curr Top Pathol. 2001, 95: 101-24. 10.1007/978-3-642-59554-7_3.
Article
CAS
PubMed
Google Scholar
Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M, Kapitein LC, Strikis D, Lemmon V, Bixby J, Hoogenraad CC, Bradke F: Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science. 2011, 331 (6019): 928-31. 10.1126/science.1201148.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kozlowski KF, Leddy JJ, Tomita M, Bergen A, Willer BS: Use of the ICECI and ICD-10 E-Coding structures to evaluate causes of head injury and concussion from sport and recreation participation in a school population. NeuroRehabilitation. 2007, 22 (3): 191-8.
PubMed
Google Scholar
Schwab ME, Bartholdi D: Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996, 76 (2): 319-70.
CAS
PubMed
Google Scholar
Jackson SJ, Giovannoni G, Baker D: Fingolimod modulates microglial activation to augment markers of remyelination. Journal of neuroinflammation. 2011, 8 (1): 76-10.1186/1742-2094-8-76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mi S, Lee X, Hu Y, Ji B, Shao Z, Yang W, Huang G, Walus L, Rhodes K, Gong BJ, Miller RH, Pepinsky RB: Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nature medicine. 2011, 17 (7): 816-21. 10.1038/nm.2373.
Article
CAS
PubMed
Google Scholar
Ludwin SK, Sternberger NH: An immunohistochemical study of myelin proteins during remyelination in the central nervous system. Acta neuropathologica. 1984, 63 (3): 240-8. 10.1007/BF00685250.
Article
CAS
PubMed
Google Scholar
Sternberger NH, McFarlin DE, Traugott U, Raine CS: Myelin basic protein and myelin-associated glycoprotein in chronic, relapsing experimental allergic encephalomyelitis. Journal of Neuroimmunology. 1984, 6 (4): 217-29. 10.1016/0165-5728(84)90010-9.
Article
CAS
PubMed
Google Scholar
Kumar S, Biancotti JC, Yamaguchi M, de Vellis J: Combination of growth factors enhances remyelination in a cuprizone-induced demyelination mouse model. Neurochemical research. 2007, 32 (4-5): 783-97. 10.1007/s11064-006-9208-6.
Article
CAS
PubMed
Google Scholar
Bando Y, Ito S, Nagai Y, Terayama R, Kishibe M, Jiang YP, Mitrovic B, Takahashi T, Yoshida S: Implications of protease M/neurosin in myelination during experimental demyelination and remyelination. Neuroscience Letters. 2006, 405 (3): 175-80. 10.1016/j.neulet.2006.06.030.
Article
CAS
PubMed
Google Scholar
Plant SR, Arnett HA, Ting JP: Astroglial-derived lymphotoxin-alpha exacerbates inflammation and demyelination, but not remyelination. Glia. 2005, 49 (1): 1-14. 10.1002/glia.20089.
Article
PubMed
Google Scholar
Mason JL, Suzuki K, Chaplin DD, Matsushima GK: Interleukin-1beta promotes repair of the CNS. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2001, 21 (18): 7046-52.
CAS
Google Scholar
Tanaka K, Nogawa S, Suzuki S, Dembo T, Kosakai A: Upregulation of oligodendrocyte progenitor cells associated with restoration of mature oligodendrocytes and myelination in peri-infarct area in the rat brain. Brain research. 2003, 989 (2): 172-9. 10.1016/S0006-8993(03)03317-1.
Article
CAS
PubMed
Google Scholar
Girolamo F, Ferrara G, Strippoli M, Rizzi M, Errede M, Trojano M, Perris R, Roncali L, Svelto M, Mennini T, Virgintino D: Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiology of Disease. 2011, 43 (3): 678-89. 10.1016/j.nbd.2011.05.021.
Article
CAS
PubMed
Google Scholar
Dandekar AA, Wu GF, Pewe L, Perlman S: Axonal Damage Is T Cell Mediated and Occurs Concomitantly with Demyelination in Mice Infected with a Neurotropic Coronavirus. J Virol. 2001, 75 (13): 6115-6120. 10.1128/JVI.75.13.6115-6120.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee V, Carden M, Schlaepfer W, Trojanowski J: Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. The Journal of Neuroscience. 1987, 7 (11): 3474-3488.
CAS
PubMed
Google Scholar
Haines JD, Inglese M, Casaccia P: Axonal damage in multiple sclerosis. Mt Sinai J Med. 2011, 78 (2): 231-43. 10.1002/msj.20246.
Article
PubMed Central
PubMed
Google Scholar
O'Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL: Loss of Na+ channel beta2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci. 2009, 40 (2): 143-55. 10.1016/j.mcn.2008.10.001.
Article
PubMed Central
PubMed
Google Scholar
Jackson SJ, Lee J, Nikodemova M, Fabry Z, Duncan ID: Quantification of myelin and axon pathology during relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. J Neuropathol Exp Neurol. 2009, 68 (6): 616-25. 10.1097/NEN.0b013e3181a41d23.
Article
CAS
PubMed
Google Scholar
Sobottka B, Harrer MD, Ziegler U, Fischer K, Wiendl H, Hunig T, Becher B, Goebels N: Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss. The American Journal of Pathology. 2009, 175 (3): 1160-6. 10.2353/ajpath.2009.090340.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shriver LP, Dittel BN: T-cell-mediated disruption of the neuronal microtubule network: correlation with early reversible axonal dysfunction in acute experimental autoimmune encephalomyelitis. Am J Pathol. 2006, 169 (3): 999-1011. 10.2353/ajpath.2006.050791.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W: Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000, 123 (Pt 6): 1174-83.
Article
PubMed
Google Scholar
Luo Y, Xue H, Pardo AC, Mattson MP, Rao MS, Maragakis NJ: Impaired SDF1/CXCR4 signaling in glial progenitors derived from SOD1(G93A) mice. J Neurosci Res. 2007, 85 (11): 2422-32. 10.1002/jnr.21398.
Article
CAS
PubMed
Google Scholar
Patel JR, McCandless EE, Dorsey D, Klein RS: CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proceedings of the National Academy of Sciences. 2010, 107 (24): 11062-11067. 10.1073/pnas.1006301107.
Article
CAS
Google Scholar
Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE: Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proceedings of the National Academy of Sciences. 2010, 107 (24): 11068-11073. 10.1073/pnas.1006375107.
Article
CAS
Google Scholar
Gottle P, Kremer D, Jander S, Odemis V, Engele J, Hartung HP, Kury P: Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann Neurol. 2010, 68 (6): 915-24. 10.1002/ana.22214.
Article
PubMed
Google Scholar
Maysami S, Nguyen D, Zobel F, Pitz C, Heine S, Hopfner M, Stangel M: Modulation of rat oligodendrocyte precursor cells by the chemokine CXCL12. Neuroreport. 2006, 17 (11): 1187-90. 10.1097/01.wnr.0000227985.92551.9a.
Article
CAS
PubMed
Google Scholar
Bockhorst KH, Narayana PA, Dulin J, Liu R, Rea HC, Hahn K, Wosik J, Perez-Polo JR: Normobaric hyperoximia increases hypoxia-induced cerebral injury: DTI study in rats. Journal of Neuroscience Research. 2010, 88 (5): 1146-1156.
CAS
PubMed
Google Scholar
Chen Z, Ni P, Lin Y, Xiao H, Chen J, Qian G, Ye Y, Xu S, Wang J, Yang X: Visual pathway lesion and its development during hyperbaric oxygen treatment: A bold- fMRI and DTI study. Journal of Magnetic Resonance Imaging. 2010, 31 (5): 1054-1060. 10.1002/jmri.22142.
Article
PubMed
Google Scholar
Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu T-H, Guo J, Zhang W, So K-F, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX, Wu W: LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007, 13 (10): 1228-1233. 10.1038/nm1664.
Article
CAS
PubMed
Google Scholar
Duning T, Schiffbauer H, Warnecke T, Mohammadi S, Floel A, Kolpatzik K, Kugel H, Schneider A, Knecht S, Deppe M, Schäbitz WR: G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial. PLoS ONE. 2011, 6 (3): e17770-10.1371/journal.pone.0017770.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yadav A, Chaudhary C, Keshavan AH, Agarwal A, Verma S, Prasad KN, Rathore RKS, Trivedi R, Gupta RK: Correlation of CSF Proinflammatory Cytokines with MRI in Tuberculous Meningitis. Academic Radiology. 2010, 17 (2): 194-200. 10.1016/j.acra.2009.09.017.
Article
PubMed
Google Scholar