Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5(6):796–812.
CAS
PubMed
PubMed Central
Google Scholar
Munoz LS, Parra B, Pardo CA. Neuroviruses emerging in the Americas S. neurological implications of zika virus infection in adults. J Infect Dis. 2017;216(suppl_10):S897–905.
CAS
PubMed
PubMed Central
Google Scholar
Freitas DA, Souza-Santos R, Carvalho LMA, Barros WB, Neves LM, Brasil P, et al. Congenital zika syndrome: a systematic review. PLoS ONE. 2020;15(12): e0242367.
CAS
PubMed
PubMed Central
Google Scholar
Marques VM, Santos CS, Santiago IG, Marques SM, Nunes Brasil MDG, Lima TT, et al. Neurological complications of congenital zika virus infection. Pediatr Neurol. 2019;91:3–10.
PubMed
Google Scholar
Coyne CB, Lazear HM. Zika virus—reigniting the TORCH. Nat Rev Microbiol. 2016;14(11):707–15.
CAS
PubMed
Google Scholar
Schwartzmann PV, Ramalho LN, Neder L, Vilar FC, Ayub-Ferreira SM, Romeiro MF, et al. Zika virus meningoencephalitis in an immunocompromised patient. Mayo Clin Proc. 2017;92(3):460–6.
PubMed
Google Scholar
Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, et al. An immunocompetent mouse model of zika virus infection. Cell Host Microbe. 2018;23(5):672-85 e6.
CAS
PubMed
PubMed Central
Google Scholar
Daniels BP, Kofman SB, Smith JR, Norris GT, Snyder AG, Kolb JP, et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity. 2019;50(1):64–764.
CAS
PubMed
PubMed Central
Google Scholar
Berry N, Ferguson D, Ham C, Hall J, Jenkins A, Giles E, et al. High susceptibility, viral dynamics and persistence of South American Zika virus in New World monkey species. Sci Rep. 2019;9(1):14495.
PubMed
PubMed Central
Google Scholar
Raper J, Kovacs-Balint Z, Mavigner M, Gumber S, Burke MW, Habib J, et al. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat Commun. 2020;11(1):2534.
CAS
PubMed
PubMed Central
Google Scholar
Mavigner M, Raper J, Kovacs-Balint Z, Gumber S, O'Neal JT, Bhaumik SK, et al. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci Transl Med. 2018;10(435):eaao6975.
PubMed
PubMed Central
Google Scholar
Nem de Oliveira Souza I, Frost PS, Franca JV, Nascimento-Viana JB, Neris RLS, Freitas L, et al. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci Transl Med. 2018;10(444):eaar2749.
PubMed
Google Scholar
Adams Waldorf KM, Olson EM, Nelson BR, Little ME, Rajagopal L. The aftermath of zika: need for long-term monitoring of exposed children. Trends Microbiol. 2018;26(9):729–32.
CAS
PubMed
Google Scholar
Patel H, Sander B, Nelder MP. Long-term sequelae of West Nile virus-related illness: a systematic review. Lancet Infect Dis. 2015;15(8):951–9.
PubMed
Google Scholar
Zucker J, Neu N, Chiriboga CA, Hinton VJ, Leonardo M, Sheikh A, et al. Zika virus-associated cognitive impairment in adolescent, 2016. Emerg Infect Dis. 2017;23(6):1047–8.
PubMed
PubMed Central
Google Scholar
Ripamonti E, Gaffuri M, Molteni F. Cognitive, neuropsychiatric, and motor profile in post tick-borne flaviviral encephalomyelitis. Neurol Sci. 2020;41(12):3759–60.
PubMed
Google Scholar
Belaunzaran-Zamudio PF, Ortega-Villa AM, Mimenza-Alvarado AJ, Guerra-De-Blas PDC, Aguilar-Navarro SG, Sepulveda-Delgado J, et al. Comparison of the impact of zika and dengue virus infection, and other acute illnesses of unidentified origin on cognitive functions in a prospective cohort in Chiapas Mexico. Front Neurol. 2021;12: 631801.
PubMed
PubMed Central
Google Scholar
Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534(7608):538–43.
CAS
PubMed
PubMed Central
Google Scholar
Garber C, Soung A, Vollmer LL, Kanmogne M, Last A, Brown J, et al. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat Neurosci. 2019;22(8):1276–88.
CAS
PubMed
PubMed Central
Google Scholar
Figueiredo CP, Barros-Aragao FGQ, Neris RLS, Frost PS, Soares C, Souza INO, et al. Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun. 2019;10(1):3890.
PubMed
PubMed Central
Google Scholar
Bayless NL, Greenberg RS, Swigut T, Wysocka J, Blish CA. Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe. 2016;20(4):423–8.
CAS
PubMed
PubMed Central
Google Scholar
Rosa-Fernandes L, Cugola FR, Russo FB, Kawahara R, de Melo Freire CC, Leite PEC, et al. Zika virus impairs neurogenesis and synaptogenesis pathways in human neural stem cells and neurons. Front Cell Neurosci. 2019;13:64.
CAS
PubMed
PubMed Central
Google Scholar
Brault JB, Khou C, Basset J, Coquand L, Fraisier V, Frenkiel MP, et al. comparative analysis between flaviviruses reveals specific neural stem cell tropism for zika virus in the mouse developing neocortex. EBioMedicine. 2016;10:71–6.
PubMed
PubMed Central
Google Scholar
Yoon KJ, Song G, Qian X, Pan J, Xu D, Rho HS, et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell. 2017;21(3):349-58 e6.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell. 2016;19(5):593–8.
CAS
PubMed
PubMed Central
Google Scholar
Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587–90.
CAS
PubMed
PubMed Central
Google Scholar
Soung AL, Dave VA, Garber C, Tycksen ED, Vollmer LL, Klein RS. IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain Behav Immun. 2021. https://doi.org/10.1016/j.bbi.2021.10.010.
Article
PubMed
Google Scholar
Garber C, Vasek MJ, Vollmer LL, Sun T, Jiang X, Klein RS. Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat Immunol. 2018;19(2):151–61.
CAS
PubMed
PubMed Central
Google Scholar
Murray KO, Garcia MN, Rahbar MH, Martinez D, Khuwaja SA, Arafat RR, et al. Survival analysis, long-term outcomes, and percentage of recovery up to 8 years post-infection among the Houston West Nile virus cohort. PLoS ONE. 2014;9(7): e102953.
PubMed
PubMed Central
Google Scholar
Mehta R, Soares CN, Medialdea-Carrera R, Ellul M, da Silva MTT, Rosala-Hallas A, et al. The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: a case series. PLoS Negl Trop Dis. 2018;12(2): e0006212.
PubMed
PubMed Central
Google Scholar
Carson PJ, Konewko P, Wold KS, Mariani P, Goli S, Bergloff P, et al. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin Infect Dis. 2006;43(6):723–30.
PubMed
Google Scholar
Murray KO, Resnick M, Miller V. Depression after infection with West Nile virus. Emerg Infect Dis. 2007;13(3):479–81.
PubMed
PubMed Central
Google Scholar
Nolan MS, Hause AM, Murray KO. Findings of long-term depression up to 8 years post infection from West Nile virus. J Clin Psychol. 2012;68(7):801–8.
PubMed
PubMed Central
Google Scholar
John CC, Carabin H, Montano SM, Bangirana P, Zunt JR, Peterson PK. Global research priorities for infections that affect the nervous system. Nature. 2015;527(7578):S178–86.
CAS
PubMed
PubMed Central
Google Scholar
Correa-Oliveira GE, do Amaral JL, da Fonseca BAL, Del-Ben CM. Zika virus infection followed by a first episode of psychosis: another flavivirus leading to pure psychiatric symptomatology. Braz J Psychiatry. 2017;39(4):381–2.
Carteaux G, Maquart M, Bedet A, Contou D, Brugieres P, Fourati S, et al. Zika virus associated with meningoencephalitis. N Engl J Med. 2016;374(16):1595–6.
PubMed
Google Scholar
Daniels BP, Snyder AG, Olsen TM, Orozco S, Oguin TH 3rd, Tait SWG, et al. RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation. Cell. 2017;169(2):301-13 e11.
CAS
PubMed
PubMed Central
Google Scholar
Szretter KJ, Daniels BP, Cho H, Gainey MD, Yokoyama WM, Gale M Jr, et al. 2’-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012;8(5): e1002698.
CAS
PubMed
PubMed Central
Google Scholar
Durrant DM, Daniels BP, Klein RS. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. J Immunol. 2014;193(8):4095–106.
CAS
PubMed
Google Scholar
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568-84 e23.
CAS
PubMed
PubMed Central
Google Scholar
Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013;4(1):36.
PubMed
PubMed Central
Google Scholar
Arcos-Burgos M, Vélez JI, Solomon BD, Muenke M. A common genetic network underlies substance use disorders and disruptive or externalizing disorders. Hum Genet. 2012;131(6):917–29.
PubMed
PubMed Central
Google Scholar
Arias B, Fabbri C, Serretti A, Drago A, Mitjans M, Gastó C, et al. DISC1-TSNAX and DAOA genes in major depression and citalopram efficacy. J Affect Disord. 2014;168:91–7.
CAS
PubMed
Google Scholar
Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC, Takagi S, et al. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci USA. 2013;110(26):E2400–9.
CAS
PubMed
PubMed Central
Google Scholar
Barkus C, Sanderson DJ, Rawlins JN, Walton ME, Harrison PJ, Bannerman DM. What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit. Mol Psychiatry. 2014;19(10):1060–70.
CAS
PubMed
PubMed Central
Google Scholar
Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2008;13(2):197–207.
CAS
PubMed
Google Scholar
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.
CAS
PubMed
Google Scholar
Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol. 2012;99(1):1–14.
CAS
PubMed
PubMed Central
Google Scholar
Charney AW, Ruderfer DM, Stahl EA, Moran JL, Chambert K, Belliveau RA, et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl Psychiatry. 2017;7(1):e993-e.
Google Scholar
Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281–92.
PubMed
PubMed Central
Google Scholar
Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ, et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry. 2013;18(2):195–205.
CAS
PubMed
Google Scholar
Chen Q, Che R, Wang X, O’Neill FA, Walsh D, Tang W, et al. Association and expression study of synapsin III and schizophrenia. Neurosci Lett. 2009;465(3):248–51.
CAS
PubMed
PubMed Central
Google Scholar
Christensen JH, Børglum AD. Modeling the cooperativity of schizophrenia risk genes. Nat Genet. 2019;51(10):1434–6.
CAS
PubMed
Google Scholar
Cichon S, Mühleisen TW, Degenhardt FA, Mattheisen M, Miró X, Strohmaier J, et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet. 2011;88(3):372–81.
CAS
PubMed
PubMed Central
Google Scholar
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51(1):63–75.
CAS
PubMed
Google Scholar
Escamilla MA, Zavala JM. Genetics of bipolar disorder. Dialogues Clin Neurosci. 2008;10(2):141–52.
PubMed
PubMed Central
Google Scholar
Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry. 2020;25:544+.
PubMed
Google Scholar
Hawi Z, Segurado R, Conroy J, Sheehan K, Lowe N, Kirley A, et al. Preferential transmission of paternal alleles at risk genes in attention-deficit/hyperactivity disorder. Am J Hum Genet. 2005;77(6):958–65.
CAS
PubMed
PubMed Central
Google Scholar
Hayman V, Fernandez TV. Genetic insights into ADHD biology. Front Psychiatry. 2018. https://doi.org/10.3389/fpsyt.2018.00251.
Article
PubMed
PubMed Central
Google Scholar
Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387(10023):1085–93.
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, Sachs GS, et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry. 2010;167(10):1254–63.
PubMed
Google Scholar
Kandaswamy R, McQuillin A, Sharp SI, Fiorentino A, Anjorin A, Blizard RA, et al. Genetic association, mutation screening, and functional analysis of a kozak sequence variant in the metabotropic glutamate receptor 3 gene in bipolar disorder. JAMA Psychiat. 2013;70(6):591–8.
CAS
Google Scholar
Kerner B. Genetics of bipolar disorder. Appl Clin Genet. 2014;7:33–42.
PubMed
PubMed Central
Google Scholar
Kerner B, Lambert CG, Muthén BO. Genome-wide association study in bipolar patients stratified by co-morbidity. PLoS ONE. 2011;6(12): e28477.
CAS
PubMed
PubMed Central
Google Scholar
LeDoux MS. The genetics of dystonias. Adv Genet. 2012;79:35–85.
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Kanazawa T, Tian Y, Mohamed Saini S, Mancuso S, Mostaid MS, et al. The schizophrenia genetics knowledgebase: a comprehensive update of findings from candidate gene studies. Transl Psychiatry. 2019;9(1):205.
PubMed
PubMed Central
Google Scholar
Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12(6):539–46.
PubMed
PubMed Central
Google Scholar
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88.
CAS
PubMed
PubMed Central
Google Scholar
McMahon F, Detera-Wadleigh S. Genetics of bipolar disorder. 2020. pp. 735–43.
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron. 2014;83(1):27–49.
CAS
PubMed
PubMed Central
Google Scholar
Mei L, Xiong W-C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9(6):437–52.
CAS
PubMed
PubMed Central
Google Scholar
Mill J, Xu X, Ronald A, Curran S, Price T, Knight J, et al. Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am J Med Genet B Neuropsychiatr Genet. 2005;133B(1):68–73.
PubMed
Google Scholar
Mühleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5(1):3339.
PubMed
Google Scholar
Neves FS, Silveira G, Romano-Silva MA, Malloy-Diniz L, Ferreira AA, De Marco L, et al. Is the 5-HTTLPR polymorphism associated with bipolar disorder or with suicidal behavior of bipolar disorder patients? Am J Med Genet B Neuropsychiatr Genet. 2008;147b(1):114–6.
CAS
PubMed
Google Scholar
Ni X, Trakalo JM, Mundo E, Macciardi FM, Parikh S, Lee L, et al. Linkage disequilibrium between dopamine D1 receptor gene (DRD1) and bipolar disorder. Biol Psychiatry. 2002;52(12):1144–50.
CAS
PubMed
Google Scholar
Pagnamenta AT, Khan H, Walker S, Gerrelli D, Wing K, Bonaglia MC, et al. Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet. 2011;48(1):48.
CAS
PubMed
Google Scholar
Palladino VS, McNeill R, Reif A, Kittel-Schneider S. Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet. 2019. https://doi.org/10.1097/YPG.0000000000000220.
Article
PubMed
Google Scholar
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.
CAS
PubMed
Google Scholar
Poquet H, Faivre L, Chehadeh S, Morton J, McMullan D, Hamilton S. Further evidence for Dlgap2 as strong autism spectrum disorders/intellectual disability candidate gene. Autism-Open Access. 2016. https://doi.org/10.4172/2165-7890.1000197.
Article
Google Scholar
Schmidt-Kastner R, Guloksuz S, Kietzmann T, van Os J, Rutten BPF. Analysis of GWAS-derived schizophrenia genes for links to ischemia-hypoxia response of the brain. Front Psychiatry. 2020. https://doi.org/10.3389/fpsyt.2020.00393.
Article
PubMed
PubMed Central
Google Scholar
Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psychiatry. 2018;9:334.
PubMed
PubMed Central
Google Scholar
Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51(5):793–803.
CAS
PubMed
PubMed Central
Google Scholar
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. Front Biol. 2013;8(1):1–31.
CAS
Google Scholar
Verrall L, Burnet PWJ, Betts JF, Harrison PJ. The neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Mol Psychiatry. 2010;15(2):122–37.
CAS
PubMed
Google Scholar
Weber H, Kittel-Schneider S, Heupel J, Weißflog L, Kent L, Freudenberg F, et al. On the role of NOS1 ex1f-VNTR in ADHD—allelic, subgroup, and meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2015;168(6):445–58.
CAS
PubMed
Google Scholar
Yoshikawa A, Kushima I, Miyashita M, Toriumi K, Suzuki K, Horiuchi Y, et al. Dysregulation of post-transcriptional modification by copy number variable microRNAs in schizophrenia with enhanced glycation stress. Transl Psychiatry. 2021;11(1):331.
CAS
PubMed
PubMed Central
Google Scholar
Zamanian Azodi M, Rezaei-Tavirani M. Identification of the key genes of autism spectrum disorder through protein-protein interaction network. Galen Med J; 2019; 8(2019): 2019.
Burger-Calderon R, Bustos Carrillo F, Gresh L, Ojeda S, Sanchez N, Plazaola M, et al. Age-dependent manifestations and case definitions of paediatric Zika: a prospective cohort study. Lancet Infect Dis. 2020;20(3):371–80.
CAS
PubMed
Google Scholar
Simoes ESAC, Moreira JM, Romanelli RM, Teixeira AL. Zika virus challenges for neuropsychiatry. Neuropsychiatr Dis Treat. 2016;12:1747–60.
Google Scholar
Tucci V, Moukaddam N, Meadows J, Shah S, Galwankar SC, Kapur GB. The forgotten plague: psychiatric manifestations of ebola, zika, and emerging infectious diseases. J Glob Infect Dis. 2017;9(4):151–6.
PubMed
PubMed Central
Google Scholar
Joob B, Wiwanitkit V. Zika virus infection and psychosis. Braz J Psychiatry. 2018;40(1):113.
PubMed
PubMed Central
Google Scholar
Euteneuer F, Dannehl K, Del Rey A, Engler H, Schedlowski M, Rief W. Peripheral immune alterations in major depression: the role of subtypes and pathogenetic characteristics. Front Psychiatry. 2017;8:250.
PubMed
PubMed Central
Google Scholar
Liu JJ, Wei YB, Strawbridge R, Bao Y, Chang S, Shi L, et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry. 2020;25(2):339–50.
CAS
PubMed
Google Scholar
Pedrotti Moreira F, Wiener CD, Jansen K, Portela LV, Lara DR, Souza LDM, et al. Childhood trauma and increased peripheral cytokines in young adults with major depressive: population-based study. J Neuroimmunol. 2018;319:112–6.
CAS
PubMed
Google Scholar
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.
CAS
PubMed
Google Scholar
Fineberg AM, Ellman LM. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol Psychiatry. 2013;73(10):951–66.
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues-Amorim D, Rivera-Baltanas T, Spuch C, Caruncho HJ, Gonzalez-Fernandez A, Olivares JM, et al. Cytokines dysregulation in schizophrenia: a systematic review of psychoneuroimmune relationship. Schizophr Res. 2018;197:19–33.
PubMed
Google Scholar
Reale M, Costantini E, Greig NH. Cytokine imbalance in schizophrenia. From research to clinic: potential implications for treatment. Front Psychiatry. 2021;12: 536257.
PubMed
PubMed Central
Google Scholar
Leis AA, Grill MF, Goodman BP, Sadiq SB, Sinclair DJ, Vig PJS, et al. Tumor necrosis factor-alpha signaling may contribute to chronic west nile virus post-infectious proinflammatory state. Front Med (Lausanne). 2020;7:164.
Google Scholar
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, et al. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. 2017;127(3):843–56.
PubMed
PubMed Central
Google Scholar
Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, et al. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol. 2017;8:1016.
PubMed
PubMed Central
Google Scholar
Chen Z, Wang X, Ashraf U, Zheng B, Ye J, Zhou D, et al. Activation of neuronal N-methyl-D-aspartate receptor plays a pivotal role in Japanese encephalitis virus-induced neuronal cell damage. J Neuroinflamm. 2018;15(1):238.
CAS
Google Scholar
Chen W, Sheng J, Guo J, Gao F, Zhao X, Dai J, et al. Tumor necrosis factor-alpha enhances voltage-gated Na(+) currents in primary culture of mouse cortical neurons. J Neuroinflamm. 2015;12:126.
Google Scholar
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflamm. 2016;13(1):236.
Google Scholar
Pickering M, Cumiskey D, O’Connor JJ. Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol. 2005;90(5):663–70.
CAS
PubMed
Google Scholar
Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO. Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells. 2008;26(9):2361–71.
CAS
PubMed
Google Scholar
Keohane A, Ryan S, Maloney E, Sullivan AM, Nolan YM. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol Cell Neurosci. 2010;43(1):127–35.
CAS
PubMed
Google Scholar
Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015;38(3):145–57.
CAS
PubMed
Google Scholar
Heir R, Stellwagen D. TNF-mediated homeostatic synaptic plasticity: from in vitro to in vivo models. Front Cell Neurosci. 2020;14: 565841.
CAS
PubMed
PubMed Central
Google Scholar
Maggio N, Vlachos A. Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores. J Mol Med (Berl). 2018;96(10):1039–47.
CAS
Google Scholar
Pozniak PD, Darbinyan A, Khalili K. TNF-alpha/TNFR2 regulatory axis stimulates EphB2-mediated neuroregeneration via activation of NF-kappaB. J Cell Physiol. 2016;231(6):1237–48.
CAS
PubMed
Google Scholar
Cornelius ADA, Hosseini S, Schreier S, Fritzsch D, Weichert L, Michaelsen-Preusse K, et al. Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs. J Neuroinflamm. 2020;17(1):278.
CAS
Google Scholar
Wu YH, Cui XY, Yang W, Fan DY, Liu D, Wang PG, et al. Zika virus infection in hypothalamus causes hormone deficiencies and leads to irreversible growth delay and memory impairment in mice. Cell Rep. 2018;25(6):1537-47 e4.
CAS
PubMed
Google Scholar
Stanelle-Bertram S, Walendy-Gnirss K, Speiseder T, Thiele S, Asante IA, Dreier C, et al. Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood. Nat Microbiol. 2018;3(10):1161–74.
CAS
PubMed
Google Scholar
Funk KE, Arutyunov AD, Desai P, White JP, Soung AL, Rosen SF, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20(8): e13412.
CAS
PubMed
PubMed Central
Google Scholar
Montgomery RR. Age-related alterations in immune responses to West Nile virus infection. Clin Exp Immunol. 2017;187(1):26–34.
CAS
PubMed
Google Scholar
Pecanha PM, Gomes Junior SC, Pone SM, Pone M, Vasconcelos Z, Zin A, et al. Neurodevelopment of children exposed intra-uterus by Zika virus: a case series. PLoS ONE. 2020;15(2): e0229434.
CAS
PubMed
PubMed Central
Google Scholar
Vouga M, Pomar L, Panchaud A, Musso D, Baud D. A critical analysis of the neurodevelopmental and neurosensory outcomes after 2 years for children with in utero Zika virus exposure. Nat Med. 2019;25(11):1641–2.
CAS
PubMed
Google Scholar