Sommer A: Intraocular pressure and glaucoma. Am J Ophthalmol. 1989, 107: 186.
PubMed
Google Scholar
Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish I, Richard K: The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002, 120: 714.
PubMed
Google Scholar
Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M: Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002, 120: 1268-1279.
PubMed
Google Scholar
Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E: Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003, 121: 48-56.
PubMed
Google Scholar
Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008, 28: 12085-12096.
PubMed Central
PubMed
Google Scholar
Gramlich OW, Beck S, und Hohenstein-Blaul N, von Thun N, Boehm N, Ziegler A, Vetter JM, Pfeiffer N, Grus FH: Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One. 2013, 8: e57557.
PubMed Central
PubMed
Google Scholar
Sappington RM, Sidorova T, Long DJ, Calkins DJ: TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci. 2009, 50: 717-728.
PubMed Central
PubMed
Google Scholar
McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ: Current management of glaucoma and the need for complete therapy. Am J Manag Care. 2008, 14: S20-S27.
PubMed
Google Scholar
Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ: Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A. 2010, 107: 5196-5201.
PubMed Central
PubMed
Google Scholar
Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW: Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005, 1: e4.
PubMed Central
Google Scholar
Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL: Role of microglia in the central nervous system’s immune response. Neurol Res. 2005, 27: 685-691.
PubMed
Google Scholar
Bosco A, Steele MR, Vetter ML: Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol. 2011, 519: 599-620.
PubMed Central
PubMed
Google Scholar
Lee JE, Liang KJ, Fariss RN, Wong WT: Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci. 2008, 49: 4169-4176.
PubMed Central
PubMed
Google Scholar
Tambuyzer BR, Ponsaerts P, Nouwen EJ: Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009, 85: 352-370.
PubMed
Google Scholar
Thanos S: The relationship of microglial cells to dying neurons during natural neuronal cell death and axotomy‒induced degeneration of the Rat retina. Eur J Neurosci. 1991, 3: 1189-1207.
PubMed
Google Scholar
Zhang C, Tso MO: Characterization of activated retinal microglia following optic axotomy. J Neurosci Res. 2003, 73: 840-845.
PubMed
Google Scholar
Garcia-Valenzuela E, Sharma SC, Piña AL: Multilayered retinal microglial response to optic nerve transection in rats. Mol Vis. 2005, 11: 225-231.
PubMed
Google Scholar
Baptiste D, Powell K, Jollimore C, Hamilton C, LeVatte T, Archibald M, Chauhan B, Robertson G, Kelly M: Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience. 2005, 134: 575-582.
PubMed
Google Scholar
Sobrado-Calvo P, Vidal-Sanz M, Villegas-Perez MP: Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol. 2007, 501: 866-878.
PubMed
Google Scholar
Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol. 1993, 24: 23-36.
PubMed
Google Scholar
Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M: Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci. 1996, 37: 489-500.
PubMed
Google Scholar
Thanos S, Pavlidis C, Mey J, Thiel HJ: Specific transcellular staining of microglia in the adult rat after traumatic degeneration of carbocyanine-filled retinal ganglion cells. Exp Eye Res. 1992, 55: 101-117.
PubMed
Google Scholar
Thanos S, Pavlidis C, Mey J, Thiel HJ: Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Invest Ophthalmol Vis Sci. 2013, 54: 974-985.
Google Scholar
Davies MH, Eubanks JP, Powers MR: Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis. 2006, 12: 467-477.
PubMed
Google Scholar
Zhang C, Lam TT, Tso MO: Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. Exp Eye Res. 2005, 81: 700-709.
PubMed
Google Scholar
Selles-Navarro I, Villegas-Perez MP, Salvador-Silva M, Ruiz-Gomez JM, Vidal-Sanz M: Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. Invest Ophthalmol Vis Sci. 1996, 37: 2002-2014.
PubMed
Google Scholar
Lafuente MP, Villegas-Perez MP, Sobrado-Calvo P, Garcia-Aviles A, Miralles de Imperial J, Vidal-Sanz M: Neuroprotective effects of alpha(2)-selective adrenergic agonists against ischemia-induced retinal ganglion cell death. Invest Ophthalmol Vis Sci. 2001, 42: 2074-2084.
PubMed
Google Scholar
Wang X, Sam-Wah Tay S, Ng Y: Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. Brain Res. 2000, 878: 136-147.
PubMed
Google Scholar
Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME, Tremblay F: Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci. 2002, 43: 2969-2976.
PubMed
Google Scholar
Naskar R, Wissing M, Thanos S: Detection of early neuron degeneration and accompanying microglial in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002, 43: 2962-2968.
PubMed
Google Scholar
Inman DM, Horner PJ: Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia. 2007, 55: 942-953.
PubMed
Google Scholar
Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC: Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007, 48: 3161-3177.
PubMed Central
PubMed
Google Scholar
Ebneter A, Casson RJ, Wood JP, Chidlow G: Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci. 2010, 51: 6448-6460.
PubMed
Google Scholar
Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA, Marsh-Armstrong N: Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 2010, 58: 780-789.
PubMed
Google Scholar
de Hoz R, Gallego BI, Ramírez AI, Rojas B, Salazar JJ, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Triviño A, Vidal-Sanz M: Rod-like microglia Are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One. 2013, 8: e83733.
PubMed Central
PubMed
Google Scholar
Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortín-Martínez A, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP: IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation. 2012, 9: 92.
PubMed Central
PubMed
Google Scholar
Quigley HA: Experimental glaucoma damage mechanism. Arch Ophthalmol. 1983, 101: 1301-1302.
PubMed
Google Scholar
Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol. 1999, 117: 1050-1056.
PubMed
Google Scholar
Yuan L, Neufeld AH: Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res. 2001, 64: 523-532.
PubMed
Google Scholar
Shimazawa M, Yamashima T, Agarwal N, Hara H: Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage. Brain Res. 2005, 1053: 185-194.
PubMed
Google Scholar
Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S: Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol. 2006, 124: 520-526.
PubMed
Google Scholar
Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2008, 49: 1437-1446.
PubMed
Google Scholar
Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Ortin-Martinez A, Jimenez-Lopez M, Aviles-Trigueros M, Villegas-Perez MP, de la Villa P, Vidal-Sanz M: Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis. 2009, 15: 2578-2598.
PubMed Central
PubMed
Google Scholar
Cuenca N, Pinilla I, Fernández-Sánchez L, Salinas-Navarro M, Alarcón-Martínez L, Avilés-Trigueros M, de la Villa P, Miralles de Imperial J, Villegas-Pérez MP, Vidal-Sanz M: Changes in the inner and outer retinal layers after acute increase of the intraocular pressure in adult albino Swiss mice. Exp Eye Res. 2010, 91: 273-285.
PubMed
Google Scholar
Danias J, Kontiola AI, Filippopoulos T, Mittag T: Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci. 2003, 44: 1138-1141.
PubMed
Google Scholar
Wang X, Ng YK, Tay SS: Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res. 2005, 82: 674-689.
PubMed
Google Scholar
Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolas FM, Alarcon-Martinez L, Valiente-Soriano FJ, de Imperial JM, Aviles-Trigueros M, Agudo-Barriuso M, Villegas-Perez MP: Understanding glaucomatous damage: anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res. 2012, 31: 1-27.
PubMed
Google Scholar
Aihara M, Lindsey JD, Weinreb RN: Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Res. 2003, 77: 681-686.
PubMed
Google Scholar
Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM: Glaucoma alters the circadian timing system. PLoS One. 2008, 3: e3931.
PubMed Central
PubMed
Google Scholar
Ramírez JM, Triviño A, Ramírez AI, Salazar JJ, García-Sánchez J: Immunohistochemical study of human retinal astroglia. Vision Res. 1994, 34: 1935-1946.
PubMed
Google Scholar
Triviño A, De Hoz R, Salazar JJ, Ramírez AI, Rojas B, Ramírez JM: Distribution and organization of the nerve fiber and ganglion cells of the human choroid. Anat Embryol (Berl). 2002, 205: 417-430.
Google Scholar
de Hoz R, Gallego BI, Rojas B, Ramirez AI, Salazar JJ, Triviño A, de Gracia P, Ramirez JM: A new automatic method for microglial‒cell quantification in whole‒mount mouse retinas. Acta Ophthalmol. 2013, 91: 0.
Google Scholar
Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcón-Martínez L, Ortín-Martínez A, Avilés-Trigueros M, Vidal-Sanz M, Trivino A, Ramírez JM: Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci. 2010, 51: 5690-5696.
PubMed
Google Scholar
Lam TT, Kwong JMK, Tso MOM: Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci. 2003, 44: 638-645.
PubMed
Google Scholar
Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan Sarks SH, Lemley HL, Millecchia LL: Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000, 118: 235-245.
PubMed
Google Scholar
Grozdanic SD, Betts DM, Sakaguchi DS, Allbaugh RA, Kwon YH, Kardon RH: Laser-induced mouse model of chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2003, 44: 4337-4346.
PubMed
Google Scholar
Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA: Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci. 2004, 45: 1854-1862.
PubMed
Google Scholar
Grozdanic SD, Kwon YH, Sakaguchi DS, Kardon RH, Sonea IM: Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertension. Exp Eye Res. 2004, 79: 75-83.
PubMed
Google Scholar
Holcombe DJ, Lengefeld N, Gole GA, Barnett NL: Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol. 2008, 92: 683-688.
PubMed
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005, 308: 1314-1318.
PubMed
Google Scholar
Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, Samardzija M, Reichenbach A, Grimm C, Reme CE: Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol. 2009, 174: 2310-2323.
PubMed Central
PubMed
Google Scholar
Karlstetter M, Ebert S, Langmann T: Microglia in the healthy and degenerating retina: Insights from novel mouse models. Immunobiology. 2010, 215: 685-691.
PubMed
Google Scholar
Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ, Calkins DJ, Vetter ML: Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One. 2012, 7: e43602.
PubMed Central
PubMed
Google Scholar
Beynon SB, Walker FR: Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience. 2012, 225: 162-171.
PubMed
Google Scholar
Nakajima KKohsaka S: Response of microglia to brain injury. Neuroglia. Edited by: Kettenmann H, Ransom BR. 2005, Oxford: Oxford University Press, 443-453.
Google Scholar
Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M, Nilsson M: Dynamic structural remodelling of microglia in health and disease: A review of the models, the signals and the mechanisms. Brain Behav Immun. 2014, 37: 1-14.
PubMed
Google Scholar
Streit WJ, Walter SA, Pennell NA: Reactive microgliosis. 1999, 57: 563-581.
Google Scholar
Tremblay M, Majewska AK, Lowery RL: Microglial interactions with synapses are modulated by visual experience. PLoS One. 2010, 8: e1000527.
Google Scholar
Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One. 2011, 6: e15973.
PubMed Central
PubMed
Google Scholar
Hinwood M, Morandini J, Day TA, Walker FR: Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex. 2012, 22: 1442-1454.
PubMed
Google Scholar
Wilson MA, Molliver ME: Microglial response to degeneration of serotonergic axon terminals. Glia. 1994, 11: 18-34.
PubMed
Google Scholar
Hurley SD, Coleman PD: Facial nerve axotomy in aged and young adult rats: analysis of the glial response. Neurobiol Aging. 2003, 24: 511-518.
PubMed
Google Scholar
Morrison HW, Filosa JA: A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation. 2013, 10: 10-14.
Google Scholar
Neumann H, Kotter M, Franklin R: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009, 132: 288-295.
PubMed Central
PubMed
Google Scholar
Perry VH, O’Connor V: The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro. 2010, 14: e00047.
Google Scholar
Blinzinger K, Kreutzberg G: Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Cell Tissue Res. 1968, 85: 145-157.
Google Scholar
Cho BP, Song DY, Sugama S, Shin DH, Shimizu Y, Kim SS, Kim YS, Joh TH: Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia. 2006, 53: 92-102.
PubMed
Google Scholar
Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J: Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience. 2012, 225: 65-75.
PubMed Central
PubMed
Google Scholar
Humphrey MF, Moore SR: Microglial responses to focal lesions of the rabbit retina: correlation with neural and macroglial reactions. Glia. 1996, 16: 325-341.
PubMed
Google Scholar
Roque RS, Imperial CJ, Caldwell RB: Microglial cells invade the outer retina as photoreceptors degenerate in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci. 1996, 37: 196-203.
PubMed
Google Scholar
Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K: Microglia–Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci. 2002, 22: 9228-9236.
PubMed
Google Scholar
Hughes EH, Schlichtenbrede FC, Murphy CC, Sarra G, Luthert PJ, Ali RR, Dick AD: Generation of activated sialoadhesin-positive microglia during retinal degeneration. Invest Ophthalmol Vis Sci. 2003, 44: 2229-2234.
PubMed
Google Scholar
Marella M, Chabry J: Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci. 2004, 24: 620-627.
PubMed
Google Scholar
Lewis GP, Sethi CS, Carter KM, Charteris DG, Fisher SK: Microglial cell activation following retinal detachment: a comparison between species. Mol Vis. 2005, 11: 491-500.
PubMed
Google Scholar
Zeng HY, Zhu XA, Zhang C, Yang LP, Wu LM, Tso MO: Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Invest Ophthalmol Vis Sci. 2005, 46: 2992-2999.
PubMed
Google Scholar
Zhang C, Shen J, Lam TT, Zeng H, Chiang SK, Yang F, Tso M: Activation of microglia and chemokines in light-induced retinal degeneration. Mol Vis. 2005, 11: 887-895.
PubMed
Google Scholar
Ng TF, Streilein JW: Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci. 2001, 42: 3301-3310.
PubMed
Google Scholar
Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol. 2007, 81: 1345-1351.
PubMed
Google Scholar
Santos AM, Martin-Oliva D, Ferrer-Martin RM, Tassi M, Calvente R, Sierra A, Carrasco MC, Marin-Teva JL, Navascues J, Cuadros MA: Microglial response to light-induced photoreceptor degeneration in the mouse retina. J Comp Neurol. 2010, 518: 477-492.
PubMed
Google Scholar
Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD: Turnover of resident retinal microglia in the normal adult mouse. Glia. 2007, 55: 1189-1198.
PubMed
Google Scholar
Xu H, Chen M, Manivannan A, Lois N, Forrester JV: Age‒dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell. 2008, 7: 58-68.
PubMed
Google Scholar
Jonas RA, Yuan TF, Liang YX, Jonas JB, Tay DKC, Ellis-Behnke RG: The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo. PLoS One. 2012, 7: e30763.
PubMed Central
PubMed
Google Scholar
Thanos S: Sick photoreceptors attract activated microglia from the ganglion cell layer: a model to study the inflammatory cascades in rats with inherited retinal dystrophy. Brain Res. 1992, 588: 21-28.
PubMed
Google Scholar
Thanos S, Richter W: The migratory potential of vitally labelled microglial cells within the retina of rats with hereditary photoreceptor dystrophy. Int J Dev Neurosci . 1993, 11: 671-680.
PubMed
Google Scholar
Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003, 76: 463-471.
PubMed
Google Scholar
Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, Debre P, Sirinyan M, Deterre P, Ferroukhi T, Cohen SY, Chauvaud D, Jeanny JC, Chemtob S, Behar-Cohen F, Sennlaub F: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest. 2007, 117: 2920-2928.
PubMed Central
PubMed
Google Scholar
Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X, Ruitenberg MJ, McMenamin PG: Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging. 2012, 33: 1769-1776.
PubMed
Google Scholar
Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT: Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One. 2009, 4: e7945.
PubMed Central
PubMed
Google Scholar
Xu H, Chen M, Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res. 2009, 28: 348-368.
PubMed
Google Scholar
Tezel G, the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference, Working Group: The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci. 2009, 50: 1001-1012.
PubMed
Google Scholar
Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci. 2008, 49: 4162-4168.
PubMed
Google Scholar
Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW: Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012, 122: 1246-1261.
PubMed Central
PubMed
Google Scholar
Wang X, Tay S, Ng YK: An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res. 2000, 132: 476.
PubMed
Google Scholar
Inman DM, Lupien CB, Horner PJ: Manipulating Glia to Protect Retinal Ganglion Cells in Glaucoma. Glaucoma-Current Clinical and Research Aspects. Edited by: Gunvant P. 2011, Rijeka, Croatia: InTech, 26-50.
Google Scholar
Giulian D, Ingeman JE: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci. 1988, 8: 4707-4717.
PubMed
Google Scholar
Aloisi F: Cytokine Production. Neuroglia. Edited by: Kettenmann H, Ransom BR. 2005, Oxford, United Kingdom: Oxford University Press, 285-301.
Google Scholar
Wohl SG, Schmeer CW, Witte OW, Isenmann S: Proliferative response of microglia and macrophages in the adult mouse Eye after optic nerve lesion. Invest Ophthalmol Vis Sci. 2010, 51: 2686-2696.
PubMed
Google Scholar
Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19: 312-318.
PubMed
Google Scholar
Caicedo A, Espinosa-Heidmann DG, Piña Y, Hernandez EP, Cousins SW: Blood-derived macrophages infiltrate the retina and activate Müller glial cells under experimental choroidal neovascularization. Exp Eye Res. 2005, 81: 38-47.
PubMed
Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005, 8: 752-758.
PubMed
Google Scholar
Kezic J, McMenamin PG: Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol. 2008, 84: 721-729.
PubMed
Google Scholar
Muther PS, Semkova I, Schmidt K, Abari E, Kuebbeler M, Beyer M, Abken H, Meyer KL, Kociok N, Joussen AM: Conditions of retinal glial and inflammatory cell activation after irradiation in a GFP-chimeric mouse model. Invest Ophthalmol Vis Sci. 2010, 51: 4831-4839.
PubMed
Google Scholar
Prinz M, Mildner A: Microglia in the CNS: immigrants from another world. Glia. 2011, 59: 177-187.
PubMed
Google Scholar
Chen L, Yang P, Kijlstra A: Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm. 2002, 10: 27-39.
PubMed
Google Scholar
Walker FR, Nilsson M, Jones K: Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013, 14: 1262-1276.
PubMed
Google Scholar
Yang J, Yang P, Tezel G, Patil RV, Hernandez MR, Wax MB: Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. Invest Ophthalmol Vis Sci. 2001, 42: 365-371.
PubMed
Google Scholar
Tezel G, Chauhan BC, LeBlanc RP, Wax MB: Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci. 2003, 44: 3025-3033.
PubMed
Google Scholar
Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D: Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci. 2007, 48: 705-714.
PubMed Central
PubMed
Google Scholar
Chiu K, Yeung S, So K, Chang RC: Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol. 2010, 7: 61-68.
PubMed Central
PubMed
Google Scholar
Chang L, Karin M: Mammalian MAP kinase signalling cascades. Nature. 2001, 410: 37-40.
PubMed
Google Scholar
Perego C, Fumagalli S, De Simoni M: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011, 8: 174.
PubMed Central
PubMed
Google Scholar
Broderick C, Duncan L, Taylor N, Dick AD: IFN-γ and LPS-Mediated IL-10–Dependent Suppression of Retinal Microglial Activation. Invest Ophthalmol Vis Sci. 2000, 41: 2613-2622.
PubMed
Google Scholar
Barron KD: The microglial cell. A historical review. J Neurol Sci. 1995, 134: 57-68.
PubMed
Google Scholar
Schuetz E, Thanos S: Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. Curr Drug Targets. 2004, 5: 619-627.
PubMed
Google Scholar
Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005, 54: 1559-1565.
PubMed
Google Scholar