Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297: 353-356. 10.1126/science.1072994.
Article
CAS
PubMed
Google Scholar
Palop JJ, Mucke L: Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci. 2010, 13: 812-818. 10.1038/nn.2583.
Article
PubMed Central
CAS
PubMed
Google Scholar
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, et al: Inflammation and Alzheimer's disease. Neurobiol Aging. 2000, 21: 383-421. 10.1016/S0197-4580(00)00124-X.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19: 312-318. 10.1016/0166-2236(96)10049-7.
Article
CAS
PubMed
Google Scholar
Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM: Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol. 2005, 64: 743-753. 10.1097/01.jnen.0000178444.33972.e0.
Article
CAS
PubMed
Google Scholar
Guillemin GJ, Brew BJ: Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004, 75: 388-397.
Article
CAS
PubMed
Google Scholar
Town T, Nikolic V, Tan J: The microglial "activation" continuum: from innate to adaptive responses. J Neuroinflammation. 2005, 2: 24-10.1186/1742-2094-2-24.
Article
PubMed Central
PubMed
Google Scholar
Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002, 40: 133-139. 10.1002/glia.10154.
Article
PubMed
Google Scholar
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L: TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001, 7: 612-618. 10.1038/87945.
Article
CAS
PubMed
Google Scholar
Colton CA: Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009, 4: 399-418. 10.1007/s11481-009-9164-4.
Article
PubMed Central
PubMed
Google Scholar
Ransohoff RM, Perry VH: Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009, 27: 119-145. 10.1146/annurev.immunol.021908.132528.
Article
CAS
PubMed
Google Scholar
McGeer PL, McGeer EG: NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging. 2007, 28: 639-647. 10.1016/j.neurobiolaging.2006.03.013.
Article
CAS
PubMed
Google Scholar
Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, Craft S, Evans D, Green R, Mullan M: Cognitive function over time in the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. 2008, 65: 896-905.
Article
PubMed
Google Scholar
Ha HC, Hester LD, Snyder SH: Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA. 2002, 99: 3270-3275. 10.1073/pnas.052712399.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kraus WL, Lis JT: PARP goes transcription. Cell. 2003, 113: 677-683. 10.1016/S0092-8674(03)00433-1.
Article
CAS
PubMed
Google Scholar
Chiarugi A, Moskowitz MA: Poly(ADP-ribose) polymerase-1 activity promotes NF-kappaB-driven transcription and microglial activation: implication for neurodegenerative disorders. J Neurochem. 2003, 85: 306-317. 10.1046/j.1471-4159.2003.01684.x.
Article
CAS
PubMed
Google Scholar
Ullrich O, Diestel A, Eyupoglu IY, Nitsch R: Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol. 2001, 3: 1035-1042. 10.1038/ncb1201-1035.
Article
CAS
PubMed
Google Scholar
Kauppinen TM, Suh SW, Berman AE, Hamby AM, Swanson RA: Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury. J Cereb Blood Flow Metab. 2009, 29: 820-829. 10.1038/jcbfm.2009.9.
Article
CAS
PubMed
Google Scholar
Nakajima H, Nagaso H, Kakui N, Ishikawa M, Hiranuma T, Hoshiko S: Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB-dependent gene expression in primary cultured mouse glial cells. J Biol Chem. 2004, 279: 42774-42786. 10.1074/jbc.M407923200.
Article
CAS
PubMed
Google Scholar
Chang WJ, Alvarez-Gonzalez R: The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. J Biol Chem. 2001, 276: 47664-47670. 10.1074/jbc.M104666200.
Article
CAS
PubMed
Google Scholar
Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO: Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J Biol Chem. 2003, 278: 45145-45153. 10.1074/jbc.M307957200.
Article
CAS
PubMed
Google Scholar
Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO: The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem. 2001, 276: 45588-45597. 10.1074/jbc.M106528200.
Article
CAS
PubMed
Google Scholar
Zerfaoui M, Suzuki Y, Naura AS, Hans CP, Nichols C, Boulares AH: Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal. 2008, 20: 186-194. 10.1016/j.cellsig.2007.10.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kauppinen TM, Swanson RA: Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol. 2005, 174: 2288-2296.
Article
CAS
PubMed
Google Scholar
Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA: Zinc triggers microglial activation. J Neurosci. 2008, 28: 5827-5835. 10.1523/JNEUROSCI.1236-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Love S, Barber R, Wilcock GK: Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain. 1999, 122 (Pt 2): 247-253.
Article
PubMed
Google Scholar
Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF: Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 1995, 9: 509-520. 10.1101/gad.9.5.509.
Article
CAS
PubMed
Google Scholar
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L: High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000, 20: 4050-4058.
CAS
PubMed
Google Scholar
Chen Y, Swanson RA: The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem. 2003, 84: 1332-1339. 10.1046/j.1471-4159.2003.01630.x.
Article
CAS
PubMed
Google Scholar
Heurtaux T, Michelucci A, Losciuto S, Gallotti C, Felten P, Dorban G, Grandbarbe L, Morga E, Heuschling P: Microglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2. J Neurochem. 2010, 114: 576-586. 10.1111/j.1471-4159.2010.06783.x.
Article
CAS
PubMed
Google Scholar
Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron. 2006, 49: 489-502. 10.1016/j.neuron.2006.01.022.
Article
CAS
PubMed
Google Scholar
Floden AM, Combs CK: Beta-amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J Neurosci. 2006, 26: 4644-4648. 10.1523/JNEUROSCI.4822-05.2006.
Article
CAS
PubMed
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem. 1985, 150: 76-85. 10.1016/0003-2697(85)90442-7.
Article
CAS
PubMed
Google Scholar
Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L: SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005, 280: 40364-40374. 10.1074/jbc.M509329200.
Article
CAS
PubMed
Google Scholar
Suh SW, Aoyama K, Chen Y, Garnier P, Matsumori Y, Gum E, Liu J, Swanson RA: Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci. 2003, 23: 10681-10690.
CAS
PubMed
Google Scholar
Johnson-Wood K, Lee M, Motter R, Hu K, Gordon G, Barbour R, Khan K, Gordon M, Tan H, Games D, et al: Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci USA. 1997, 94: 1550-1555. 10.1073/pnas.94.4.1550.
Article
PubMed Central
CAS
PubMed
Google Scholar
Squire LR, Wixted JT, Clark RE: Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci. 2007, 8: 872-883. 10.1038/nrn2154.
Article
PubMed Central
CAS
PubMed
Google Scholar
Palop JJ, Jones B, Kekonius L, Chin J, Yu GQ, Raber J, Masliah E, Mucke L: Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proc Natl Acad Sci USA. 2003, 100: 9572-9577. 10.1073/pnas.1133381100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J: Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001, 21: 2580-2588.
CAS
PubMed
Google Scholar
Combs CK, Karlo JC, Kao SC, Landreth GE: beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci. 2001, 21: 1179-1188.
CAS
PubMed
Google Scholar
Yenari MA, Kauppinen TM, Swanson RA: Microglial activation in stroke: therapeutic targets. Neurotherapeutics. 2010, 7: 378-391. 10.1016/j.nurt.2010.07.005.
Article
CAS
PubMed
Google Scholar
Baeuerle PA, Henkel T: Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994, 12: 141-179. 10.1146/annurev.iy.12.040194.001041.
Article
CAS
PubMed
Google Scholar
Li Q, Verma IM: NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002, 2: 725-734. 10.1038/nri910.
Article
CAS
PubMed
Google Scholar
Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME: Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997, 272: 21096-21103. 10.1074/jbc.272.34.21096.
Article
CAS
PubMed
Google Scholar
Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW: Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci. 1999, 19: 1708-1716.
CAS
PubMed
Google Scholar
Elkabes S, DiCicco-Bloom EM, Black IB: Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996, 16: 2508-2521.
CAS
PubMed
Google Scholar
Guthrie KM, Nguyen T, Gall CM: Insulin-like growth factor-1 mRNA is increased in deafferented hippocampus: spatiotemporal correspondence of a trophic event with axon sprouting. J Comp Neurol. 1995, 352: 147-160. 10.1002/cne.903520111.
Article
CAS
PubMed
Google Scholar
Tran KC, Ryu JK, McLarnon JG: Induction of angiogenesis by platelet-activating factor in the rat striatum. Neuroreport. 2005, 16: 1579-1583. 10.1097/01.wnr.0000179073.24412.7b.
Article
CAS
PubMed
Google Scholar
Ryu JK, Cho T, Choi HB, Wang YT, McLarnon JG: Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology. J Neurosci. 2009, 29: 3-13. 10.1523/JNEUROSCI.2888-08.2009.
Article
CAS
PubMed
Google Scholar
Kiefer R, Gold R, Gehrmann J, Lindholm D, Wekerle H, Kreutzberg GW: Transforming growth factor beta expression in reactive spinal cord microglia and meningeal inflammatory cells during experimental allergic neuritis. J Neurosci Res. 1993, 36: 391-398. 10.1002/jnr.490360405.
Article
CAS
PubMed
Google Scholar
Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD: Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res Mol Brain Res. 1998, 62: 101-105.
Article
CAS
PubMed
Google Scholar
Wyss-Coray T: Tgf-Beta pathway as a potential target in neurodegeneration and Alzheimer's. Curr Alzheimer Res. 2006, 3: 191-195. 10.2174/156720506777632916.
Article
CAS
PubMed
Google Scholar
Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA: Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med. 2008, 14: 681-687.
PubMed Central
CAS
PubMed
Google Scholar
Albasser MM, Poirier GL, Aggleton JP: Qualitatively different modes of perirhinal-hippocampal engagement when rats explore novel vs. familiar objects as revealed by c-Fos imaging. Eur J Neurosci. 31: 134-147.
Wan H, Aggleton JP, Brown MW: Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci. 1999, 19: 1142-1148.
CAS
PubMed
Google Scholar
Valdor R, Schreiber V, Saenz L, Martinez T, Munoz-Suano A, Dominguez-Villar M, Ramirez P, Parrilla P, Aguado E, Garcia-Cozar F, Yelamos J: Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells. Mol Immunol. 2008, 45: 1863-1871. 10.1016/j.molimm.2007.10.044.
Article
CAS
PubMed
Google Scholar
Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, Bendetz-Nezer S, Yao Z, Seger R: DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell. 2007, 25: 297-308. 10.1016/j.molcel.2006.12.012.
Article
CAS
PubMed
Google Scholar
Phulwani NK, Kielian T: Poly (ADP-ribose) polymerases (PARPs) 1-3 regulate astrocyte activation. J Neurochem. 2008, 106: 578-590. 10.1111/j.1471-4159.2008.05403.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maezawa I, Zimin PI, Wulff H, Jin LW: Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem. 2011, 286: 3693-3706. 10.1074/jbc.M110.135244.
Article
PubMed Central
CAS
PubMed
Google Scholar
Floden AM, Li S, Combs CK: Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci. 2005, 25: 2566-2575. 10.1523/JNEUROSCI.4998-04.2005.
Article
CAS
PubMed
Google Scholar
Boje KM, Arora PK: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992, 587: 250-256. 10.1016/0006-8993(92)91004-X.
Article
CAS
PubMed
Google Scholar
Alano CC, Kauppinen TM, Valls AV, Swanson RA: Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci USA. 2006, 103: 9685-9690. 10.1073/pnas.0600554103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Familian A, Eikelenboom P, Veerhuis R: Minocycline does not affect amyloid beta phagocytosis by human microglial cells. Neurosci Lett. 2007, 416: 87-91. 10.1016/j.neulet.2007.01.052.
Article
CAS
PubMed
Google Scholar
Malm TM, Magga J, Kuh GF, Vatanen T, Koistinaho M, Koistinaho J: Minocycline reduces engraftment and activation of bone marrow-derived cells but sustains their phagocytic activity in a mouse model of Alzheimer's disease. Glia. 2008, 56: 1767-1779. 10.1002/glia.20726.
Article
PubMed
Google Scholar
Seabrook TJ, Jiang L, Maier M, Lemere CA: Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia. 2006, 53: 776-782. 10.1002/glia.20338.
Article
PubMed
Google Scholar
Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, et al: Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology. 2007, 32: 2393-2404. 10.1038/sj.npp.1301377.
Article
CAS
PubMed
Google Scholar
Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH: Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease. FASEB J. 2009, 23: 739-750. 10.1096/fj.08-113795.
Article
CAS
PubMed
Google Scholar