Leevy CB, Phillips JA. Hospitalizations during the use of rifaximin versus lactulose for the treatment of hepatic encephalopathy. Dig Dis Sci. 2007;52:737–41.
Article
CAS
PubMed
Google Scholar
Weissenborn K, Giewekemeyer K, Heidenreich S, Bokemeyer M, Berding G, Ahl B. Attention, memory, and cognitive function in hepatic encephalopathy. Metab Brain Dis. 2005;20:359–67.
Article
PubMed
Google Scholar
Felipo V, Ordoño JF, Urios A, El Mlili N, Giménez-Garzó C, Aguado C, et al. Patients with minimal hepatic encephalopathy show impaired mismatch negativity correlating with reduced performance in attention tests. Hepatology. 2012;5(2):530–9.
Article
Google Scholar
Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci. 2013;14(12):851–8.
Article
CAS
PubMed
Google Scholar
Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40(2):247–54.
Article
CAS
PubMed
Google Scholar
Montoliu C, Piedrafita B, Serra MA, del Olmo JA, Urios A, Rodrigo JM, et al. V. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol. 2009;43(3):272–9.
Article
CAS
PubMed
Google Scholar
Felipo V, Urios A, Montesinos E, Molina I, El Mlili N, Garcia-Torres ML, et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis. 2012;27(1):51–8.
Article
CAS
PubMed
Google Scholar
Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo JM, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139(2):675–84.
Article
CAS
PubMed
Google Scholar
Colombo JP. Urea cycle disorders, hyperammonemia and neurotransmitter changes. Enzyme. 1987;38(1–4):214–9.
CAS
PubMed
Google Scholar
Ballard RA, Vinocur B, Reynolds JW, Wennberg RP, Merritt A, Sweetman L, Nyhan WL. Transient hyperammonemia of the preterminfant. N Engl J Med. 1978;299:920–5.
Article
CAS
PubMed
Google Scholar
Yoshino M, Sakaguchi Y, Kuriya N, Ohtani Y, Yamashita F, Hashimoto T, Oyanagi K, Tada K, Narisawa K, Kitagawa T. A nationwide survey on transient hyperammonemia in newborn infants in Japan: prognosis of life and neurological outcome. Neuropediatrics. 1991;22:198–2002.
Article
CAS
PubMed
Google Scholar
Kang ES, Gerald PS. Hyperammonemia and Reye’s syndrome. N Engl J Med. 1972;286(22):1216–7.
CAS
PubMed
Google Scholar
Hussain J, Schlachterman A, Kamel A, Gupte A. Hyperinsulinism hyperammonemia syndrome, a rare clinical constellation. J Investig Med High Impact Case Rep. 2016;4(1):2324709616632552.
PubMed
PubMed Central
Google Scholar
Lichter-Konecki U, Nadkarni V, Moudgil A, Cook N, Poeschl J, Meyer MT, Dimmock D, Baumgart S. Feasibility of adjunct therapeutic hypothermia treatment for hyperammonemia and encephalopathy due to urea cycle disorders and organic acidemias. Mol Genet Metab. 2013;109(4):354–9.
Article
CAS
PubMed
Google Scholar
Carr RB, Shrewsbury K. Hyperammonemia due to valproic acid in the psychiatric setting. Indian J Pharmacol. 2014;46(3):345–7.
Article
Google Scholar
Heitink-Pollé KM, Prinsen BH, de Koning TJ, van Hasselt PM, Bierings MB. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase. Am J Psychiatry. 2007;164(7):1020–7.
Article
Google Scholar
Felipo V, Butterworth RF. Neurobiol Ammonia Prog Neurobiol. 2002;67:259–79.
Article
CAS
PubMed
Google Scholar
Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with porto-caval shunts. Hepatology. 2007;46:514–9.
Article
CAS
PubMed
Google Scholar
Zemtsova I, Görg B, Keitel V, Bidmon HJ, Schrör K, Häussinger D. Microglia activation in hepatic encephalopathy in rats and humans. Hepatology. 2011;54(1):204–15.
Article
CAS
PubMed
Google Scholar
Agusti A, Cauli O, Rodrigo R, et al. p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut. 2011;60(11):1572–9.
Article
CAS
PubMed
Google Scholar
Cauli O, Rodrigo R, Piedrafita B, Llansola M, Mansouri MT, Felipo V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy. Ibuprofen restores its motor activity. J Neurosci Res. 2009;87(6):1369–74.
Article
CAS
PubMed
Google Scholar
Imani F, Motavaf M, Safari S, Alavian SM. The therapeutic use of analgesics in patients with liver cirrhosis: a literature review and evidence-based recommendations. Hepat Mon. 2014;14(10):e23539.
Article
PubMed
PubMed Central
Google Scholar
Cohen S, Fleischmann R. Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol. 2010;22(3):330–5.
Article
CAS
PubMed
Google Scholar
Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, de Ceballos ML, Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol. 2008;181(1):680–9.
Article
CAS
PubMed
Google Scholar
Zhao X, Sun G, Ting SM, Song S, Zhang J, Edwards NJ, et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem. 2015;133(1):144–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foresti R, Bains SK, Pitchumony TS, de Castro Brás LE, Drago F, Dubois-Randé JL, et al. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res. 2013;76:132–48.
Article
CAS
PubMed
Google Scholar
Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC, Mann GE. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med. 2013;65:1012–22.
Article
CAS
PubMed
Google Scholar
Zhao J, Kobori N, Aronowski J, Dash PK. Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett. 2006;393(2–3):108–12.
Article
CAS
PubMed
Google Scholar
Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernández-Ruiz J, Cuadrado A. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal. 2011;14(12):2347–60.
Article
CAS
PubMed
Google Scholar
Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT. Members of the ISHEN Commission on Experimental Models of HE. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int. 2009;29(6):783–8.
Article
PubMed
Google Scholar
Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, et al. Glutamatergic and GABAergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab Brain Dis. 2009;24:69–80.
Article
CAS
PubMed
Google Scholar
Cauli O, Mansouri MT, Agusti A, Felipo V. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology. 2009;136:1359–67.
Article
CAS
PubMed
Google Scholar
Gonzalez-Usano A, Cauli O, Agusti A, Felipo V. Pregnenolone sulphate restores the glutamate-nitric oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci. 2014;5(2):100–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boix J, Cauli O, Felipo V. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats. Mech Involved Neurosci. 2010;167:994–1003.
Article
CAS
Google Scholar
Felipo V, Miñana MD, Grisolía S. Long term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamyl phosphate synthase. Eur J Biochem. 1988;176:567–71.
Article
CAS
PubMed
Google Scholar
Negi G, Kumar A, Sharma SS. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res. 2011;8(4):294–304.
Article
CAS
PubMed
Google Scholar
Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, Malaguarnera M, Agustí A, Llansola M, Felipo V. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation. 2016;13(1):41.
Article
PubMed
PubMed Central
Google Scholar
Aguilar MA, Miñarro J, Felipo V. Chronic moderate hyperammonemia impairs active and passive avoidance behavior and conditional discrimination learning in rats. Exp Neurol. 2000;161:704–13.
Article
CAS
PubMed
Google Scholar
Monfort P, Corbalán R, Martinez L, López-Talavera JC, Córdoba J, Felipo V. Altered content and modulation of soluble guanylate cyclase in the cerebellum of rats with portacaval anastomosis. Neuroscience. 2001;104:1119–25.
Article
CAS
PubMed
Google Scholar
Canales JJ, Elayadi A, Errami M, Llansola M, Cauli O, Felipo V. Chronic hyperammonemia alters motor and neurochemical responses to activation of group I metabotropic glutamate receptors in the nucleus accumbens in rats in vivo. Neurobiol Dis. 2003;14:380–90.
Article
CAS
PubMed
Google Scholar
Boudreau AC, Wolf ME. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci. 2005;25:9144–51.
Article
CAS
PubMed
Google Scholar
Felipo V, Miñana MD, Azorín I, Grisolía S. Induction of rat brain tubulin following ammonium ingestion. J Neurochem. 1988;51:1041–5.
Article
CAS
PubMed
Google Scholar
Fedele E, Ansaldo MA, Varnier G, Raiteri M. Benzodiazepine-sensitive GABA(A) receptors limit the activity of the NMDA/NO/cyclic GMP pathway: a microdialysis study in the cerebellum of freely moving rats. J Neurochem. 2000;75(2):782–7.
Article
CAS
PubMed
Google Scholar
Chen JR, Wang BN, Tseng GF, Wang YJ, Huang YS, Wang TJ. Morphological changes of cortical pyramidal neurons in hepatic encephalopathy. BMC Neurosci. 2014;15:15. doi:10.1186/1471-2202-15-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–102.
Article
PubMed
Google Scholar
Wright GA, Sharifi Y, Newman TA, Davies N, Vairappan B, Perry HV, Jalan R. Characterisation of temporal microglia and astrocyte immune responses in bile duct-ligated rat models of cirrhosis. Liver Int. 2014;34(8):1184–91.
Article
CAS
PubMed
Google Scholar
Su J, Yin J, Qin W, Sha S, Xu J, Jiang C. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res. 2015;40:621–7.
Article
CAS
PubMed
Google Scholar
Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzhiemer’s disease model. Nat Commun. 2014;5:4159.
CAS
PubMed
PubMed Central
Google Scholar
Ferraguti F, Corti C, Valerio E, Mion S, Xuereb J. Activated astrocytes in areas of kainate-induced neuronal injury upregulate the expression of the metabotropic glutamate receptors 2/3 and 5. Exp Brain Res. 2001;137(1):1–11.
Article
CAS
PubMed
Google Scholar
Zhang X, Wang J, Zhou Q, Xu Y, Pu S, Wu J, Xue Y, Tian Y, Lu J, Jiang W, Du D. Brain-derived neurotrophic factor-activated astrocytes produce mechanical allodynia in neuropathic pain. Neuroscience. 2011;199:452–60. doi:10.1016/j.neuroscience.2011.10.017. Epub 2011 Oct 20.
Article
CAS
PubMed
Google Scholar
Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol. 2015. [Epub ahead of print] DOI 10.1007/s12035-014-9070-5.
Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 2011;89(5–6):141–6.
Article
CAS
PubMed
Google Scholar
Rodrigo R, Jover R, Candela A, Compañ A, Sáez-Valero J, Erceg S, Felipo V. Bile duct ligation plus hyperammonemia in rats reproduces the alterations in the modulation of soluble guanylate cyclase by nitric oxide in brain of cirrhotic patients. Neuroscience. 2005;130:435–43.
Article
CAS
PubMed
Google Scholar