Bauer J, Sminia T, Wouterlood FG, Dijkstra CD: Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis.
J Neurosci Res 1994, 38:365–375.
Article
CAS
PubMed
Google Scholar
Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration.
Exp Eye Res 2003, 76:463–471.
Article
CAS
PubMed
Google Scholar
Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration.
Brain 2009, 132:288–295.
Article
CAS
PubMed
Google Scholar
Penfold PL, Liew SC, Madigan MC, Provis JM: Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration.
Invest Ophthalmol Vis Sci 1997, 38:2125–2133.
CAS
PubMed
Google Scholar
Penfold PL, Provis JM, Liew SC: Human retinal microglia express phenotypic characteristics in common with dendritic antigen-presenting cells.
J Neuroimmunol 1993, 45:183–191.
Article
CAS
PubMed
Google Scholar
Mattiace LA, Davies P, Dickson DW: Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors.
Am J Pathol 1990, 136:1101–1114.
CAS
PubMed
PubMed Central
Google Scholar
Matsubara T, Pararajasegaram G, Wu GS, Rao NA: Retinal microglia differentially express phenotypic markers of antigen-presenting cells in vitro.
Invest Ophthalmol Vis Sci 1999, 40:3186–3193.
CAS
PubMed
Google Scholar
Nakajima K, Kohsaka S: Microglia: neuroprotective and neurotrophic cells in the central nervous system.
Curr Drug Targets Cardiovasc Haematol Disord 2004, 4:65–84.
Article
CAS
PubMed
Google Scholar
Langmann T: Microglia activation in retinal degeneration.
J Leukoc Biol 2007, 81:1345–1351.
Article
CAS
PubMed
Google Scholar
Kim SU, de Vellis J: Microglia in health and disease.
J Neurosci Res 2005, 81:302–313.
Article
CAS
PubMed
Google Scholar
Wirenfeldt M, Babcock AA, Vinters HV: Microglia - insights into immune system structure, function, and reactivity in the central nervous system.
Histol Histopathol 2011, 26:519–530.
PubMed
Google Scholar
Ezzat MK, Hann CR, Vuk-Pavlovic S, Pulido JS: Immune cells in the human choroid.
Br J Ophthalmol 2008, 92:976–980.
Article
PubMed
Google Scholar
Penfold PL, Killingsworth MC, Sarks SH: Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium.
Invest Ophthalmol Vis Sci 1986, 27:364–271.
CAS
PubMed
Google Scholar
Wong J, Madigan M, Billson F, Penfold P: Quantification of leukocyte common antigen (CD45) expression in macular degeneration.
Invest Ophthalmol Vis Sci 2001, 42:S227.
Google Scholar
Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH: Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration.
Br J Ophthalmol 2009, 94:918–925.
Article
PubMed
Google Scholar
Lewis GP, Sethi CS, Carter KM, Charteris DG, Fisher SK: Microglial cell activation following retinal detachment: a comparison between species.
Mol Vis 2005, 11:491–500.
CAS
PubMed
Google Scholar
Vrabec F: Activated human retinal microglia under pathological conditions.
Albrecht Von Graefes Arch Klin Exp Ophthalmol 1975, 196:49–60.
Article
CAS
PubMed
Google Scholar
Yuan L, Neufeld AH: Activated microglia in the human glaucomatous optic nerve head.
J Neurosci Res 2001, 64:523–532.
Article
CAS
PubMed
Google Scholar
Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma.
Arch Ophthalmol 1999, 117:1050–1056.
Article
CAS
PubMed
Google Scholar
Zeng HY, Green WR, Tso MO: Microglial activation in human diabetic retinopathy.
Arch Ophthalmol 2008, 126:227–232.
Article
PubMed
Google Scholar
Yang LP, Zhu XA, Tso MO: A possible mechanism of microglia-photoreceptor crosstalk.
Mol Vis 2007, 13:2048–2057.
CAS
PubMed
Google Scholar
Roque RS, Rosales AA, Jingjing L, Agarwal N, Al-Ubaidi MR: Retina-derived microglial cells induce photoreceptor cell death in vitro.
Brain Res 1999, 836:110–119.
Article
CAS
PubMed
Google Scholar
Boje KM, Arora PK: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death.
Brain Res 1992, 587:250–256.
Article
CAS
PubMed
Google Scholar
Chao CC, Hu S, Ehrlich L, Peterson PK: Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors.
Brain Behav Immun 1995, 9:355–365.
Article
CAS
PubMed
Google Scholar
McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons.
Exp Neurol 2001, 169:219–230.
Article
CAS
PubMed
Google Scholar
Sawada M, Kondo N, Suzumura A, Marunouchi T: Production of tumor necrosis factor-alpha by microglia and astrocytes in culture.
Brain Res 1989, 491:394–397.
Article
CAS
PubMed
Google Scholar
Hanisch UK: Microglia as a source and target of cytokines.
Glia 2002, 40:140–155.
Article
PubMed
Google Scholar
Ding AH, Nathan CF, Stuehr DJ: J Immunol. 1988, 141:2407–2412.
CAS
PubMed
Google Scholar
Garden GA, Moller T: Microglia biology in health and disease.
J Neuroimmune Pharmacol 2006, 1:127–137.
Article
PubMed
Google Scholar
Kataoka K, Nishiguchi KM, Kaneko H, van Rooijen N, Kachi S, Terasaki H: The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization.
Invest Ophthalmol Vis Sci 2011, 14:1431–1438.
Article
CAS
Google Scholar
Hoppeler T, Hendrickson P, Dietrich C, Reme C: Morphology and time-course of defined photochemical lesions in the rabbit retina.
Curr Eye Res 1988, 7:849–860.
Article
CAS
PubMed
Google Scholar
Ni YQ, Xu GZ, Hu WZ, Shi L, Qin YW, Da CD: Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation.
Invest Ophthalmol Vis Sci 2008, 49:2589–2598.
Article
PubMed
Google Scholar
Chang CJ, Cherng CH, Liou WS, Liao CL: Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury.
Ophthalmic Res 2005, 37:202–213.
Article
CAS
PubMed
Google Scholar
Ibrahim AS, El-Shishtawy MM, Pena A Jr: Liou GI: genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation.
Mol Vis 2010, 16:2033–2042.
CAS
PubMed
PubMed Central
Google Scholar
Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy.
Diabetes 2005, 54:1559–1565.
Article
CAS
PubMed
Google Scholar
Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma.
Invest Ophthalmol Vis Sci 2008, 49:1437–1446.
Article
PubMed
Google Scholar
Neufeld AH: Pharmacologic neuroprotection with an inhibitor of nitric oxide synthase for the treatment of glaucoma.
Brain Res Bull 2004, 62:455–459.
Article
CAS
PubMed
Google Scholar
Yang LP, Li Y, Zhu XA, Tso MO: Minocycline delayed photoreceptor death in rds mice through iNOS-dependent mechanism.
Mol Vis 2007, 13:1073–1082.
CAS
PubMed
PubMed Central
Google Scholar
Karlstetter M, Ebert S, Langmann T: Microglia in the healthy and degenerating retina: insights from novel mouse models.
Immunobiol 2010, 215:685–691.
Article
CAS
Google Scholar
Luster AD: Chemokines–chemotactic cytokines that mediate inflammation.
N Engl J Med 1998, 338:436–445.
Article
CAS
PubMed
Google Scholar
Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K: Properties of the novel proinflammatory supergene "intercrine" cytokine family.
Annu Rev Immunol 1991, 9:617–648.
Article
CAS
PubMed
Google Scholar
Bajetto A, Bonavia R, Barbero S, Schettini G: Characterization of chemokines and their receptors in the central nervous system: physiopathological implications.
J Neurochem 2002, 82:1311–1329.
Article
CAS
PubMed
Google Scholar
Ransohoff RM, Glabinski A, Tani M: Chemokines in immune-mediated inflammation of the central nervous system.
Cytokine Growth Factor Rev 1996, 7:35–46.
Article
CAS
PubMed
Google Scholar
Deshmane SL, Kremlev S, Amini S, Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): an overview.
J Interferon Cytokine Res 2009, 29:313–326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ: Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line.
J Exp Med 1989, 169:1485–1490.
Article
CAS
PubMed
Google Scholar
Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J, Leonard EJ: Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants.
J Exp Med 1989, 169:1449–1459.
Article
CAS
PubMed
Google Scholar
Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A, Miyahara S, Nakao S, Yin Y, et al.: Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis.
Proc Natl Acad Sci USA 2007, 104:2425–2430.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prat E, Baron P, Meda L, Scarpini E, Galimberti D, Ardolino G, Catania A, Scarlato G: The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with beta-amyloid protein.
Neurosci Lett 2000, 283:177–180.
Article
CAS
PubMed
Google Scholar
Johnstone M, Gearing AJ, Miller KM: A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced.
J Neuroimmunol 1999, 93:182–193.
Article
CAS
PubMed
Google Scholar
Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN: Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions.
J Neuroimmunol 1998, 84:238–249.
Article
CAS
PubMed
Google Scholar
McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study.
J Neuroimmunol 1998, 86:20–29.
Article
CAS
PubMed
Google Scholar
Galimberti D, Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A, Benussi L, Cortini F, Scalabrini D, Perini L, et al.: MCP-1 A-2518 G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels.
J Alzheimers Dis 2009, 17:125–133.
CAS
PubMed
Google Scholar
Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM: Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain.
J Immunol 1996, 156:4363–4368.
CAS
PubMed
Google Scholar
Muessel MJ, Berman NE, Klein RM: Early and specific expression of monocyte chemoattractant protein-1 in the thalamus induced by cotrical injury.
Brain Res 2000, 870:211–221.
Article
CAS
PubMed
Google Scholar
Rutar M, Natoli R, Valter K, Provis JM: Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light.
Invest Ophthalmol Vis Sci 2011,52(5):2379–2388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rutar M, Provis JM, Valter K: Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina.
Curr Eye Res 2010, 35:631–643.
Article
CAS
PubMed
Google Scholar
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.
Nature 2001, 411:494–498.
Article
CAS
PubMed
Google Scholar
Ameres SL, Martinez J, Schroeder R: Molecular basis for target RNA recognition and cleavage by human RISC.
Cell 2007, 130:101–112.
Article
CAS
PubMed
Google Scholar
Gao H, Pennesi M, Shah K, Qiao X, Hariprasad SM, Mieler WF, Wu SM, Holz ER: Safety of intravitreal voriconazole: electroretinographic and histopathologic studies.
Trans Am Ophthalmol Soc 2003, 101:183–189. discussion 189
PubMed
Google Scholar
Natoli R, Provis J, Valter K, Stone J: Gene regulation induced in the C57BL/6 J mouse retina by hyperoxia: a temporal microarray study.
Mol Vis 2008, 14:1983–1994.
CAS
PubMed
PubMed Central
Google Scholar
Cornish EE, Madigan MC, Natoli R, Hales A, Hendrickson AE, Provis JM: Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina.
Vis Neurosci 2005, 22:447–459.
Article
PubMed
Google Scholar
Maslim J, Valter K, Egensperger R, et al.: Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors.
Invest Ophthalmol Vis Sci 1997, 38:1667–1677.
CAS
PubMed
Google Scholar
Ng TF, Streilein JW: Light-induced migration of retinal microglia into the subretinal space.
Invest Ophthalmol Vis Sci 2001, 42:3301–3310.
CAS
PubMed
Google Scholar
Chen L, Yang P, Kijlsta A: Distribution, markers, and functions of retinal microglia.
Ocul Immunol Inflamm 2002, 10:27–39.
Article
PubMed
Google Scholar
Davoust N, Vuaillat C, Androdias G, Nataf S: From bone marrow to microglia: barriers and avenues.
Trends Immunol 2008, 29:227–234.
Article
CAS
PubMed
Google Scholar
Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, et al.: Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions.
Am J Pathol 2009, 174:2310–2323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Shen JK, Lam TT, Zeng HY, Chiang SK, Yang F, Tso MO: Activation of microglia and chemokines in light-induced retinal degeneration.
Mol Vis 2005, 11:887–895.
CAS
PubMed
Google Scholar
Shi G, Maminishkis A, Banzon T, Jalickee S, Li R, Hammer J, Miller SS: Control of chemokine gradients by the retinal pigment epithelium.
Invest Ophthalmol Vis Sci 2008, 49:4620–4630.
Article
PubMed
PubMed Central
Google Scholar
Elner SG, Elner VM, Bian ZM, Lukacs NW, Kurtz RM, Strieter RM, Kunkel SL: Human retinal pigment epithelial cell interleukin-8 and monocyte chemotactic protein-1 modulation by T-lymphocyte products.
Invest Ophthalmol Vis Sci 1997, 38:446–455.
CAS
PubMed
Google Scholar
Elner VM, Burnstine MA, Strieter RM, Kunkel SL, Elner SG: Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses.
Exp Eye Res 1997, 65:781–789.
Article
CAS
PubMed
Google Scholar
Bian ZM, Elner SG, Strieter RM, Kunkel SL, Lukacs NW, Elner VM: IL-4 potentiates IL-1beta- and TNF-alpha-stimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells.
Curr Eye Res 1999, 18:349–357.
Article
CAS
PubMed
Google Scholar
Holtkamp GM, Kijlstra A, Peek R, de Vos AF: Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes.
Prog Retin Eye Res 2001, 20:29–48.
Article
CAS
PubMed
Google Scholar
Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina.
Invest Ophthalmol Vis Sci 2008, 49:4162–4168.
Article
PubMed
Google Scholar
Yoshimura T, Leonard EJ: Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes.
J Immunol 1990, 145:292–297.
CAS
PubMed
Google Scholar
Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain.
J Neurosci 2007, 27:12396–12406.
Article
CAS
PubMed
Google Scholar
Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM: MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium.
Invest Ophthalmol Vis Sci 2011, 52:6026–6034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elner VM, Elner SG, Standiford TJ, Lukacs NW, Strieter RM, Kunkel SL: Interleukin-7 (IL-7) induces retinal pigment epithelial cell MCP-1 and IL-8.
Exp Eye Res 1996, 63:297–303.
Article
CAS
PubMed
Google Scholar
Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues.
J Exp Med 2001, 194:1361–1373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice.
J Exp Med 1998, 187:601–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis.
J Exp Med 2001, 193:713–726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson WL, Karpus WJ, Van Eldik LJ: MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult.
J Neuroinflammation 2008, 5:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Joly S, Samardzija M, Wenzel A, Thiersch M, Grimm C: Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration.
Invest Ophthalmol Vis Sci 2009, 50:1423–1432.
Article
PubMed
Google Scholar
Organisciak DT, Vaughan DK: Retinal light damage: mechanisms and protection.
Prog Retin Eye Res 2009, 29:113–134.
Article
PubMed
PubMed Central
Google Scholar
Wenzel A, Grimm C, Samardzija M, Remé CE: Molecular mechanisms of light induced photoreceptor apoptosis and neuroprotection for retinal degeneration.
Prog Ret Eye Res 2005, 24:275–306.
Article
CAS
Google Scholar
Sullivan R, Penfold P, Pow DV: Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD.
Invest Ophthalmol Vis Sci 2003, 44:856–865.
Article
PubMed
Google Scholar
Marco-Gomariz MA, Hurtado-Montalban N, Vidal-Sanz M, Lund RD, Villegas-Perez MP: Phototoxic-induced photoreceptor degeneration causes retinal ganglion cell degeneration in pigmented rats.
J Comp Neurol 2006, 498:163–179.
Article
CAS
PubMed
Google Scholar
Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT: Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration.
Mol Vis 2008, 14:782–806.
PubMed
PubMed Central
Google Scholar
Rapaport DH, Stone J: The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system.
Neuroscience 1984, 11:289–301.
Article
CAS
PubMed
Google Scholar
Fukuda Y: A three-group classification of rat retinal ganglion cells: histological and physiological studies.
Brain Res 1977, 119:327–344.
Article
CAS
PubMed
Google Scholar
Rowe MH, Dreher B: Functional morphology of beta cells in the area centralis of the cat's retina: a model for the evolution of central retinal specializations.
Brain Behav Evol 1982, 21:1–23.
Article
CAS
PubMed
Google Scholar
Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW: Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization.
Invest Ophthalmol Vis Sci 2003, 44:3586–3592.
Article
PubMed
Google Scholar
Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, et al.: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration.
J Clin Invest 2007, 117:2920–2928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J: Macrophage depletion inhibits experimental choroidal neovascularization.
Invest Ophthalmol Vis Sci 2003, 44:3578–3585.
Article
PubMed
Google Scholar
Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, Cooper JB, Hageman GS, Anderson DH, Johnson LV, Radeke MJ: Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks.
Genome Med 2012, 4:16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer M, Hasanreisoglu M, Feldman A, Siegel RA, Sonis P, Maharshak I, Monselise Y, Gurevich M, Weinberger D: Monocyte chemoattractant protein-1 in the aqueous humor of patients with age-related macular degeneration.
Clin Experiment Ophthalmol 2012, 40:617–12.
Article
PubMed
Google Scholar
Jonas JB, Tao Y, Neumaier M, Findeisen P: Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration.
Arch Ophthalmol 2010, 128:1281–1286.
Article
CAS
PubMed
Google Scholar
Chen M, Muckersie E, Forrester JV, Xu H: Immune activation in retinal aging: a gene expression study.
Invest Ophthalmol Vis Sci 2010, 51:5888–5896.
Article
PubMed
Google Scholar
Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW, Bainbridge JW, Ali RR, MacLaren RE: The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages.
Invest Ophthalmol Vis Sci 2009, 50:5934–5943.
Article
PubMed
PubMed Central
Google Scholar
Tsutsumi C, Sonoda KH, Egashira K, Qiao H, Hisatomi T, Nakao S, Ishibashi M, Charo IF, Sakamoto T, Murata T, Ishibashi T: The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization.
J Leukoc Biol 2003, 74:25–32.
Article
CAS
PubMed
Google Scholar
Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK: An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice.
Nat Med 2003, 9:1390–1397.
Article
CAS
PubMed
Google Scholar
Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadiere C, Sennlaub F: CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration.
J Neuroinflammation 2010, 7:87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, et al.: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs.
Nature 2004, 432:173–178.
Article
CAS
PubMed
Google Scholar
Whitehead KA, Langer R, Anderson DG: Knocking down barriers: advances in siRNA delivery.
Nat Rev Drug Discov 2009, 8:129–138.
Article
CAS
PubMed
Google Scholar
Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, Kossen K, Fosnaugh K, et al.: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1.
Gene Ther 2006, 13:225–234.
Article
CAS
PubMed
Google Scholar
Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model.
Mol Vis 2003, 9:210–216.
CAS
PubMed
Google Scholar
Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, et al.: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3.
Nature 2008, 452:591–597.
Article
CAS
PubMed
PubMed Central
Google Scholar